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The J-mixing effect in the 2S+1LJ level barycentre energy and splitting of trivalent lanthanide ions is ana-
lysed. The main predictions are that the maximum 2S+1LJ level splitting (DE) is reduced and the barycentre
energy can become lower with increasing DE. This effect is particularly important in low symmetries. Sat-
isfactory agreement between the predictions and experimental data was obtained to all analysed sys-
tems, namely, the maximum 7F1 level splitting of the Eu3+ ion and its barycentre energy in crystals
and glasses.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The crystal field effect on tripositive lanthanide ions (Ln3+) is
still an attractive theme of study in theoretical physics and chem-
istry. The recent interest for this study is stimulated by necessity of
the luminescent materials with Ln3+ used in telecommunication,
lighting, electroluminescent devices, (bio-) analytical sensors and
bio-imaging set-ups [1,2]. The Eu3+ ions in several structures have
been analysed by various techniques, and has been often used as a
luminescent structural probe [3,4]. However, the splitting of levels
and its barycentre energy position are very important and some as-
pects are still in study [4–6]. In a crystal field (CF) the states may be
completely defined by a jJMi basis, J being the total angular
momentum and M its projection [7]. However, states with deferent
J can be mixed due to the CF; this effect is known as J-mixing effect
and can leads to change in the energy level positions. This Letter
aims to discuss how the J-mixing effect affects the barycentre po-
sition and the nonlinear behaviour of the maximum splitting of the
7F1 energy level of the Eu3+ ion as a function of the crystal field
parameters.

The CF Hamiltonian can be obtained by phenomenological sim-
ulation, but the CF parameters ðBk

qÞ depend on the base functions
used to describe the 4f electronic configuration [8]. However if
J-mixing is considered the problem of finding the Bk

q becomes more
complex due to the nonlinear terms in Bk

q. In the case of a strong CF,
the J-mixing contribution cannot be neglected in predicting the en-
ergy level scheme [9]. Two effects are frequently attributed to the
J-mixing: the change in the barycentre energy position and the
nonlinear maximum splitting of the 2S+1LJ manifold versus CF
strength parameters [10,11].
ll rights reserved.
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The standard form of the Hamiltonian acting within the 4fN con-
figuration of trivalent lanthanides in any host is commonly written
with 19 free ion parameters [3,7]. When a lanthanide ion is incor-
porated into a crystal host, the Slater parameter, Fk, and the spin–
orbit parameter, f, change with respect to their free-ion value. This
changing is usually attributed to the nephelauxetic effect and
cause a change in the barycentre of the 2S+1LJ energy level. How-
ever, this shift depends only on the type and distance of the nearest
neighbour and not on the angular part of the CF.

For each 2S+1LJ manifold, the J-splitting depends on the Bk
q, only

for k 6 2J. Neglecting J-mixing, the relation between the maximum
Stark splitting of the 2S+1LJ manifold and Bk

q is found in Ref. [10]. In
the case that the degeneracy of the 5D1 and 7F1 level is removed the
B2
jqj¼1;2 values are nonzero. For the 7F1 level splitting, DE, there is an

expression for the maximum splitting as a function of the B2
q. This

has been discussed for some crystals in Refs. [11,12]. The discrep-
ancy in the predictions of DE is attributed to the J-mixing effect.
However, the calculations have not yet been discussed without
approximations.

2. The 2S+1LJ levels barycentre energy position shift

The shift in barycentre of the level J through of the non spherical
part occurs due to the J-mixing effect and depends on the symme-
try of the CF. The CF states are written as jJCi ¼

P
MjJMihJMjJCi:

jJMi are states of the free ion and all others quantum number
are implicit. The perturbation that removes the degeneracy in J also
causes mixing of states with different J. By using perturbation the-
ory as found in text books [14], to describe the corrections due to
the J-mixing, the energy level is given by:

EJC ¼ hJCjHcf jJCi þ
X
J0–J
C0

j JCjHcf jJ0C0
� �

j2

EðJÞ � EðJ0Þ
ð1Þ
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Hcf is the non-spherical part of the crystal field Hamiltonian,
Hcf ¼

P
kqBk

qCk
q; k ¼ 2;4;6 and jqj 6 k [2,7]. The CF states and en-

ergy level are jJ0C0i and E(J’) respectively and
P

CgChJCjHcf jJCi ¼
0. Therefore, the shift in barycentre due J-mixing effect is given by:

DEB½J� ¼ ð2Jþ 1Þ�1
X
CJ0C0

jhJCjHcf jJ0C0ij2

EðJÞ � EðJ0Þ
ð2Þ

The summation over the C and C quantum numbers can be
converted to a sum in M and M0 through the projection operator
P0 ¼

P
MjJMihJMj onto the subspace of the free-ion state acts in

jJCi and jJ0C0i one gets:

DEB½J� ¼ ð2Jþ 1Þ�1
X
J0–J

1
EðJÞ � EðJ0Þ

X
M¼�J...J

M0¼�J0 ...J0

j JMjHcf J0M0�� �� ��2 ð3Þ

By using the Wigner–Eckart theorem and the 3-j symbol
orthogonal proprieties, the sum over M and M0 can be readily per-
formed [10,13]. Therefore, an exact analytical formula for the
change of the barycentre of the CF levels is:

DEB½J� ¼ ð2Jþ 1Þ�1
X

J0k

jhJjCkjJ0ij2

EðJÞ � EðJ0Þ
Sk ð4Þ

Sk ¼ ð2kþ 1Þ�1P
qjB

k
qj

2 is the CF strength parameter [10] and hJjCkjJ0i
is the reduced matrix elements, which can be rewriting in terms of
the unit tensor Uk [7,15]. Eq. (4) has been already obtained through
an effective Hamiltonian that includes J-mixing [9]. In weak CF or
high symmetry DEB[J] is negligible because the Sk parameters are
small.The composition of the wave functions now contains different
J values. The appropriate wave functions can be obtained through
perturbation theory [14].

3. The maximum splitting of the 2S+1LJ manifold

The relation between the maximum splitting squared of the
2S+1LJ manifold, ðDE½J�Þ2, is linear with the root-mean-square (De)2

[10]:

ðDeÞ2 ¼ 1
g

X
i

giðEiÞ2 / ðDE½J�Þ2 ð5Þ

Ei is the energy of the ith level with respect to the free ion posi-
tion and gi is its degeneracy. The (De)2 of the EJC levels of a 2J+1
degenerate level after the CF perturbation is given by [14]:

ðDeÞ2 ¼ ð2Jþ 1Þ�1TrP0ðV� DEB½J�ÞP0ðV� DEB½J�Þ
¼ ð2Jþ 1Þ�1TrP0VP0V� 2ð2Jþ 1Þ�1DEB½J�TrP0ðVÞ þ ðDEB½J�Þ2

ð6Þ

In related literature it is assumed that DEB½J� ¼ 0 [6,10,11]. How-
ever, because of the J-mixing effect, the term in DEB[J] in Eq. (6) can
be no more neglected. Therefore, in order to consider the J-mixing
effect, the CF potential is now expressed by [16]: V = Hcf + Hcorr, and

Hcorr ¼
X
J 0–J

M¼�J0 ...J0

Hcf J0M0�� �
J0M0� ��Hcf

EðJÞ � EðJ0Þ
ð7Þ

The TrP0(V) in Eq. (6) is obtained using both Eq. (4) and
TrP0ðHcfÞ ¼ 0 [3]. This leads to TrP0ðVÞ ¼ ð2Jþ 1ÞDEB½J�: Eq. (6) then
becomes

ðDeÞ2 ¼ ð2Jþ 1Þ�1TrP0VP0V� ðDEB½J�Þ2 ð8Þ

For the phenomenological �Bk
q values obtained through the base

functions without J-mixing it is assumed that the effective CF can
be written as V ¼

P
kq

�Bk
qCk

q and that DEB[J] = 0. Considering the cor-
rected Eq. (7), the first term in Eq. (8) can be clearly explained by
the following expression:
TrP0VP0V ¼ TrP0Hcf P0Hcf þ TrP0Hcf P0Hcorr þ TrP0Hcf P0Hcorr

þ TrP0HcorrP0Hcorr ð9Þ

The last term in Eq. (9) can be obtained from Eq. (8) by entering
V ¼ Hcorr and using that ðDemixÞ2 ¼ ð2Jþ 1Þ�1P

CgCðDECÞ2, which is
the root-mean-square of the Hcorr correction. Then,

TrP0HcorrP0Hcorr ¼
X

C

gCðDECÞ2 þ ð2Jþ 1ÞðDEB½J�Þ2 ð10Þ

DEC is the corrections due J-mixing and gC it is the degeneracy.
The second and three terms can be obtain through of the project

operator and the proprieties that the Hcf is orthogonal in relations
to functions jJCi ¼

P
MjJMihJMjJCi thus the trace is give as:

TrP0Hcf P0Hcorr ¼
X
CC0

JC Hcfj jJC0
� �

JC0 Hcorrj jJC
� �

¼
X

C

gCE0
CDEC ð11Þ

E0
C is the energy level of the CF without J-mixing. TrP0HcorrP0Hcf have

the same results. Therefore the (De)2 is found using the Eqs. (11)
and (10) in the Eq. (9) and substitute in Eq. (8). Thus as has

ðDeÞ2 ¼ 1
2Jþ 1

X
k

Jh jCk Jj i
��� ���2Sk þ 2

2Jþ 1

X
C

gCE0
CDEC þ

1
2Jþ 1

�
X

C

gCðDECÞ2 ð12Þ

From Eq. (1) DEC have the same signal for all C if the mixing is
only with one J. Using the propriety of the energy level without J-
mixing

P
CgCE0

C ¼ 0 and the approximation E0
C ¼ DEB=ð2Jþ 1Þ, one

has

ðDeÞ2 ffi 1
2Jþ 1

X
k

Jh jCk Jj i
��� ���2Sk þ DEB½J�

2Jþ 1

� �2

ð13Þ

In this case the J-mixing effect can lead to a decrease or increase
in (De)2, and then in DE[J]2, depending on if J-mixing decreases or
increases the magnitude of DEB[J].
4. Applications to the Eu3+ ion

The Eq. (8) predicts that the theoretical value of the (De)2 from
Bk

q without J-mixing ð�Bk
qÞ is smaller than the experimental value

due the value DEB[J]. This prediction is confirmed in Figure 1 for
the 7F2 of the Eu3+ ion for different crystals.

One has just shown that the shift in the barycentre of the energy
of the 7F1 level in a CF is due to two effects: J-mixing and changing
in the spin–orbit interaction parameter. Considering these effects,
the correction in the energy of the 7F0 and 7F1 levels are given by
the Eq. (4). Thus, the position of the 7F1 level in relation the 7F0 le-
vel can be written as:

EB½7F1� ¼ E½7F1� þ dðS2Þ þ dðSkP4Þ ð14Þ

E[7F1] is the free ion energy position. d(S2) and dðSkP4Þ are obtained
by expanding the right side of Eq. (4). This leads to:

dðS2Þ ¼ 1
3
jh7F1jC2j7F2ij2

E½7F1� � E½7F2�
þ jh

7F1jC2j7F3ij2

E½7F1� � E½7F3�
þ 3jh7F0jC2j7F2ij2

E½7F2�

 !
S2

ð15Þ

Then, dðS2Þ > 0 and dðSkP4Þ < 0, this latter because the denom-
inator in Eq. (4) is negative. Therefore, three cases in Eq. (14) can be
analysed: firstly, for dðSkP4Þ small in comparison to dðS2Þ: This can
be found in sites with high symmetry, due to the fact that several
Bk

q components are zero, or for high values of E[7F1] .
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Figure 1. The (De)theor/(De)Exp ratio for the 7F2 level of the Eu3+ ion. The horizontal
line shows the ideal theoretical prediction. The points show that, without J-mixing,
the experimental values are lower than the theoretical prediction, according to Eq.
(8). KY3F10 in Ref. [17], YOBr LaOI LaOBr and GdOBr in Ref. [20].
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Figure 2. The increasing in the maximum splitting of the 7F1 level due to the
increase in barycentre position. The experimental data are from the KYF4 (stars) and
KLuF4 (squares) crystals [17]. The solid line is the theoretical prediction.
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Figure 3. Increase and decrease in the barycentre energy with increasing
maximum 7F1 level splitting. The circles are the experimental data of the Eu3+ ions
in calcium diborate glasses [18]. The squares are experimental data the Eu3+ in the
zinc oxyfluorotellurite glass [19]. The solid line is the theoretical prediction [Eq.
(22)].
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The degeneracy lifting of the 7F1 level is due to non-vanishing
crystal field parameters of rank 2, namely, B2

q. The value (De)2 of
the 7F1 is given by: [10]

ðDeÞ2 ¼ 1
ð2Jþ 1Þ

DE
2

� �2

ð2þ a2Þ ð16Þ

By using Eqs. (13) and (16) the maximum splitting of the 7F1, DE, is
given by:

DE ¼ 4
jh7F1jC2j7F1ij2

ð2þ a2Þ S2 þ 4
ðDEBÞ2

3ð2þ a2Þ

" #1=2

ð17Þ

DEB is the change in the position of the barycentre of the 7F1 level.
Here is performance a new relation between S2 and the maximum
De splitting, however in Eq. (17) have relation also with ðDEBÞ2

due the J-mixing effect.The value of S2 can be obtained through of
the Eq. (17). Using a symmetric repartition, a = 0, one obtains

S2 ¼ 1
2

DE2 � ð2=3ÞðDEBÞ2

jh7F1jC2j7F1ij2
ð18Þ

Therefore, in the case of dðSkP4Þ negligible, and using the Eq. (18) in
Eq. (15), and then in Eq. (14), one has

DEb ¼
1
6
jh7F1jU2j7F2ij2

E½7F1� � E½7F2�
þ jh

7F1jU2j7F3ij2

E½7F1� � E½7F3�
þ 3jh7F0jU2j7F2ij2

E½7F2�

 !

� DE2 � ð2=3ÞðDEBÞ2

jh7F1jC2j7F1ij2
ð19Þ

DEb ¼ Ecf ½7F1� � E½7F1�: DEb is also equal to the difference
DEB � DEB[7F0]. From Eq. (4) only in the first term (k = 2) DEB is pro-
portional to DEB[7F0]. Thus DEB can be written in terms of DEb as
follows:

DEB ¼ 1� jh
7F1jU2j7F2ij2ðE½7F0� � E½7F2�Þ
jh7F0jU2j7F2ij2ðE½7F1� � E½7F2�Þ

 !�1

DEb ð20Þ

Using the value of jh7F1jU2j7FJij2, E[7F2] = 1024 cm�1, and
E[7F3] = 1800 cm�1 given in Ref. [15], as the barycentre energy
positions of each respective manifold, the Eq. (20) leads to
DEB = 2.4DEb and the Eq. (19) can be written as:

DEb ¼ 2:0� 10�4 DE2 þ ð2:4� ð2=3ÞðDEbÞ2
h i

ð21Þ
Solving for DE with DEb the solution with physical meaningful is

DE ¼ ð2=5Þ 31250ðDEbÞ � 10ðDEbÞ2
h i

ð22Þ

In order to test this prediction, one enters the hypothetical val-
ues E[7F1] = 360 cm�1 (in the case of the Eu3+: KYF4 and Eu3+: KLuF4

crystals and E[7F1] = 356 cm�1 (in the case of Eu3+ doped calcium
diborate glass) lead to very satisfactory predictions (Figures 2
and 3).

The second case is for d(S2) small compared to dðSkP4Þ. This oc-
curs when E[7F1], S4 and S6 are large. Therefore, the change in DEB

[Eq. (12)] due to S2 is small. So, the J-mixing contributes to a de-
crease in the barycentre energy position. For instance, in Figure 3
it is shown that E[7F1] = 447 cm�1 while De (7F1) = 0 for Eu3+ in zinc
oxyfluorotellurite glass [19]. This is being predicted for the first
time. In Ref. [19], as a function of excitation energy, it is observed
repulsion between neighbouring levels J. Figure 3 shows both cases:
dðS2Þ > dðSkP4Þ calculated via Eq. (21) and dðS2Þ < dðSkP4Þ. In Ref.
[21], now as a function of an external magnetic field, it is observed
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and simulated repulsion between neighbouring levels with the
same irreps. In very low site symmetries all Stark sublevels are de-
scribed by similar irreducible representations (irreps) [3].

For the case when S4 and S6 are comparable to S2, as S4 and S6

have opposite sign in comparison to S2, the barycentre may not
change appreciably and the maximum splitting will remain linear
with S2.

5. Conclusions

The levels of the Eu3+ ion have been revisited by considering the
J-mixing effect using first order perturbation theory without
approximations. A reduction in the 7FJ level splitting is predicted
and the barycentre energy position can become lower. This latter
is in the opposite sense when compared to the shift due to the
spin–orbit coupling. The relation between the 7F1 level splitting
and the S2 strength parameter shows that the J-mixing contributes
to reduce the splitting. In sites with high symmetry the J-mixing
can be negligible depending on the energy separation between
neighbouring Stark levels. The prediction of lowering the barycen-
tre energy position with increasing DE is being made for the first
time. Very satisfactory predictions is found between theory and
experiment to all analysed systems.
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