Chemical Physics Letters 521 (2012) 138-141

Contents lists available at SciVerse ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier.com/locate/cplett

The J-mixing effect in Ln³⁺ ions crystal field levels

A.S. Souza, M.A. Couto dos Santos*

Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, SE, Brazil

ARTICLE INFO

Article history: Received 26 July 2011 In final form 26 October 2011 Available online 4 November 2011

ABSTRACT

The J-mixing effect in the ${}^{2S+1}L_j$ level barycentre energy and splitting of trivalent lanthanide ions is analysed. The main predictions are that the maximum ${}^{2S+1}L_j$ level splitting (ΔE) is reduced and the barycentre energy can become lower with increasing ΔE . This effect is particularly important in low symmetries. Satisfactory agreement between the predictions and experimental data was obtained to all analysed systems, namely, the maximum 7F_1 level splitting of the Eu $^{3+}$ ion and its barycentre energy in crystals and glasses.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The crystal field effect on tripositive lanthanide ions (Ln^{3+}) is still an attractive theme of study in theoretical physics and chemistry. The recent interest for this study is stimulated by necessity of the luminescent materials with Ln³⁺ used in telecommunication, lighting, electroluminescent devices, (bio-) analytical sensors and bio-imaging set-ups [1,2]. The Eu³⁺ ions in several structures have been analysed by various techniques, and has been often used as a luminescent structural probe [3,4]. However, the splitting of levels and its barycentre energy position are very important and some aspects are still in study [4–6]. In a crystal field (CF) the states may be completely defined by a $\left|JM\right\rangle$ basis, J being the total angular momentum and M its projection [7]. However, states with deferent J can be mixed due to the CF; this effect is known as J-mixing effect and can leads to change in the energy level positions. This Letter aims to discuss how the J-mixing effect affects the barycentre position and the nonlinear behaviour of the maximum splitting of the $^{7}F_{1}$ energy level of the Eu³⁺ ion as a function of the crystal field parameters.

The CF Hamiltonian can be obtained by phenomenological simulation, but the CF parameters (B_q^k) depend on the base functions used to describe the 4f electronic configuration [8]. However if J-mixing is considered the problem of finding the B_q^k becomes more complex due to the nonlinear terms in B_q^k . In the case of a strong CF, the J-mixing contribution cannot be neglected in predicting the energy level scheme [9]. Two effects are frequently attributed to the J-mixing: the change in the barycentre energy position and the nonlinear maximum splitting of the ^{2S+1}LJ manifold versus CF strength parameters [10,11]. The standard form of the Hamiltonian acting within the 4f^N configuration of trivalent lanthanides in any host is commonly written with 19 free ion parameters [3,7]. When a lanthanide ion is incorporated into a crystal host, the Slater parameter, F^k , and the spinorbit parameter, ζ , change with respect to their free-ion value. This changing is usually attributed to the nephelauxetic effect and cause a change in the barycentre of the ^{2S+1}L_J energy level. However, this shift depends only on the type and distance of the nearest neighbour and not on the angular part of the CF.

For each ${}^{2S+1}L_J$ manifold, the J-splitting depends on the B_q^k , only for $k \leq 2J$. Neglecting J-mixing, the relation between the maximum Stark splitting of the ${}^{2S+1}L_J$ manifold and B_q^k is found in Ref. [10]. In the case that the degeneracy of the 5D_1 and 7F_1 level is removed the $B_{|q|=1,2}^2$ values are nonzero. For the 7F_1 level splitting, ΔE , there is an expression for the maximum splitting as a function of the B_q^2 . This has been discussed for some crystals in Refs. [11,12]. The discrepancy in the predictions of ΔE is attributed to the J-mixing effect. However, the calculations have not yet been discussed without approximations.

2. The ^{2S+1}L_l levels barycentre energy position shift

The shift in barycentre of the level J through of the non spherical part occurs due to the J-mixing effect and depends on the symmetry of the CF. The CF states are written as $|J\Gamma\rangle = \sum_{M} |JM\rangle \langle JM| J\Gamma\rangle$. $|JM\rangle$ are states of the free ion and all others quantum number are implicit. The perturbation that removes the degeneracy in J also causes mixing of states with different J. By using perturbation theory as found in text books [14], to describe the corrections due to the J-mixing, the energy level is given by:

$$E_{J\Gamma} = \langle J\Gamma | \mathbf{H}_{cf} | J\Gamma \rangle + \sum_{\substack{J' \neq J \\ \Gamma'}} \frac{|\langle J\Gamma | \mathbf{H}_{cf} | J'\Gamma' \rangle|^2}{E(J) - E(J')}$$
(1)

^{*} Corresponding author. Fax: +55 79 21056807.

E-mail addresses: marcoscouto@ufs.br, marcos.couto@pq.cnpq.br (M.A. Couto dos Santos).

^{0009-2614/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.cplett.2011.10.060

 H_{cf} is the non-spherical part of the crystal field Hamiltonian, $H_{cf} = \sum_{kq} B_q^k C_q^k$, k = 2, 4, 6 and $|q| \le k$ [2,7]. The CF states and energy level are $|J'\Gamma'\rangle$ and E(J') respectively and $\sum_{\Gamma} g_{\Gamma} \langle J\Gamma | H_{cf} | J\Gamma \rangle = 0$. Therefore, the shift in barycentre due J-mixing effect is given by:

$$\Delta E_{\text{B}}[J] = (2J+1)^{-1} \sum_{\Gamma \uparrow \Gamma'} \frac{\left| \langle J \Gamma | H_{cf} | J' \Gamma' \rangle \right|^2}{E(J) - E(J')}$$

$$\tag{2}$$

The summation over the Γ and Γ quantum numbers can be converted to a sum in M and M' through the projection operator $P_0 = \sum_{M} |JM\rangle \langle JM|$ onto the subspace of the free-ion state acts in $|J\Gamma\rangle$ and $|J'\Gamma'\rangle$ one gets:

$$\Delta E_{B}[J] = (2J+1)^{-1} \sum_{J' \neq J} \frac{1}{E(J) - E(J')} \sum_{\substack{M'=-J...J \\ M'=-J'...J'}} \left| \langle JM | H_{cf} \big| J'M' \rangle \right|^{2} \tag{3}$$

By using the Wigner–Eckart theorem and the 3-j symbol orthogonal proprieties, the sum over M and M' can be readily performed [10,13]. Therefore, an exact analytical formula for the change of the barycentre of the CF levels is:

$$\Delta E_{\rm B}[J] = (2J+1)^{-1} \sum_{J'k} \frac{|\langle J|C^k|J'\rangle|^2}{E(J) - E(J')} S^k$$
(4)

 $S^k = (2k + 1)^{-1} \sum_q |B_q^k|^2$ is the CF strength parameter [10] and $\langle J|C^k|J' \rangle$ is the reduced matrix elements, which can be rewriting in terms of the unit tensor U^k [7,15]. Eq. (4) has been already obtained through an effective Hamiltonian that includes J-mixing [9]. In weak CF or high symmetry $\Delta E_B[J]$ is negligible because the S^k parameters are small.The composition of the wave functions now contains different J values. The appropriate wave functions can be obtained through perturbation theory [14].

3. The maximum splitting of the ^{2S+1}L₁ manifold

The relation between the maximum splitting squared of the ${}^{2S+1}L_J$ manifold, $(\Delta E[J])^2$, is linear with the root-mean-square $(\Delta \varepsilon)^2$ [10]:

$$\left(\Delta\varepsilon\right)^{2} = \frac{1}{g}\sum_{i}g_{i}(E_{i})^{2} \propto \left(\Delta E[J]\right)^{2}$$
(5)

 E_i is the energy of the ith level with respect to the free ion position and g_i is its degeneracy. The $(\Delta \varepsilon)^2$ of the $E_{J\Gamma}$ levels of a 2J+1 degenerate level after the CF perturbation is given by [14]:

$$\begin{split} (\Delta \epsilon)^{2} &= (2J+1)^{-1} Tr P_{0} (V - \Delta E_{B}[J]) P_{0} (V - \Delta E_{B}[J]) \\ &= (2J+1)^{-1} Tr P_{0} V P_{0} V - 2 (2J+1)^{-1} \Delta E_{B}[J] Tr P_{0} (V) + (\Delta E_{B}[J])^{2} \end{split}$$

In related literature it is assumed that $\Delta E_{\rm B}[J] = 0$ [6,10,11]. However, because of the J-mixing effect, the term in $\Delta E_{\rm B}[J]$ in Eq. (6) can be no more neglected. Therefore, in order to consider the J-mixing effect, the CF potential is now expressed by [16]: V = H_{cf} + H_{corr}, and

$$H_{\text{corr}} = \sum_{\substack{J' \neq J \\ M = -J' \dots J'}} \frac{H_{\text{cf}} |J'M'\rangle \langle J'M' | H_{\text{cf}}}{E(J) - E(J')}$$
(7)

The TrP₀(V) in Eq. (6) is obtained using both Eq. (4) and TrP₀(H_{cf}) = 0 [3]. This leads to $TrP_0(V) = (2J + 1)\Delta E_B[J]$. Eq. (6) then becomes

$$(\Delta \epsilon)^{2} = (2J+1)^{-1} Tr P_{0} V P_{0} V - (\Delta E_{B}[J])^{2}$$
(8)

For the phenomenological \bar{B}_q^k values obtained through the base functions without J-mixing it is assumed that the effective CF can be written as $V = \sum_{kq} \bar{B}_q^k C_q^k$ and that $\Delta E_B[J] = 0$. Considering the corrected Eq. (7), the first term in Eq. (8) can be clearly explained by the following expression:

$$TrP_0VP_0V = TrP_0H_{cf}P_0H_{cf} + TrP_0H_{cf}P_0H_{corr} + TrP_0H_{cf}P_0H_{corr} + TrP_0H_{corr}P_0H_{corr}$$
(9)

The last term in Eq. (9) can be obtained from Eq. (8) by entering $V = H_{corr}$ and using that $(\Delta \epsilon_{mix})^2 = (2J + 1)^{-1} \sum_{\Gamma} g_{\Gamma} (\Delta E_{\Gamma})^2$, which is the root-mean-square of the H_{corr} correction. Then,

$$TrP_0H_{corr}P_0H_{corr} = \sum_{\Gamma} g_{\Gamma}(\Delta E_{\Gamma})^2 + (2J+1)(\Delta E_B[J])^2$$
(10)

 ΔE_{Γ} is the corrections due J-mixing and g_{Γ} it is the degeneracy.

The second and three terms can be obtain through of the project operator and the proprieties that the H_{cf} is orthogonal in relations to functions $|J\Gamma\rangle = \sum_{M} |JM\rangle \langle JM| J\Gamma\rangle$ thus the trace is give as:

$$\begin{split} & \text{Tr}P_{0}H_{cf}P_{0}H_{corr} = \sum_{\Gamma\Gamma'} \langle J\Gamma | H_{cf} | J\Gamma' \rangle \langle J\Gamma' | H_{corr} | J\Gamma \rangle \\ & = \sum_{\Gamma} g_{\Gamma} E_{\Gamma}^{0} \Delta E_{\Gamma} \end{split} \tag{11}$$

 E_{Γ}^{0} is the energy level of the CF without J-mixing. TrP₀H_{corr}P₀H_{cf} have the same results. Therefore the $(\Delta \varepsilon)^{2}$ is found using the Eqs. (11) and (10) in the Eq. (9) and substitute in Eq. (8). Thus as has

$$(\Delta \varepsilon)^{2} = \frac{1}{2J+1} \sum_{k} \left| \langle J | C^{k} | J \rangle \right|^{2} S^{k} + \frac{2}{2J+1} \sum_{\Gamma} g_{\Gamma} E^{0}_{\Gamma} \Delta E_{\Gamma} + \frac{1}{2J+1} \times \sum_{\Gamma} g_{\Gamma} (\Delta E_{\Gamma})^{2}$$
(12)

From Eq. (1) ΔE_{Γ} have the same signal for all Γ if the mixing is only with one J. Using the propriety of the energy level without J-mixing $\sum_{\Gamma} g_{\Gamma} E_{\Gamma}^{0} = 0$ and the approximation $E_{\Gamma}^{0} = \Delta E_{B}/(2J + 1)$, one has

$$\left(\Delta\epsilon\right)^{2} \cong \frac{1}{2J+1} \sum_{k} \left| \langle J | C^{k} | J \rangle \right|^{2} S^{k} + \left(\frac{\Delta E_{B}[J]}{2J+1}\right)^{2}$$
(13)

In this case the J-mixing effect can lead to a decrease or increase in $(\Delta \varepsilon)^2$, and then in $\Delta E[J]^2$, depending on if J-mixing decreases or increases the magnitude of $\Delta E_B[J]$.

4. Applications to the Eu³⁺ ion

The Eq. (8) predicts that the theoretical value of the $(\Delta \varepsilon)^2$ from B_q^k without J-mixing (\bar{B}_q^k) is smaller than the experimental value due the value $\Delta E_B[J]$. This prediction is confirmed in Figure 1 for the ⁷F₂ of the Eu³⁺ ion for different crystals.

One has just shown that the shift in the barycentre of the energy of the ${}^{7}F_{1}$ level in a CF is due to two effects: J-mixing and changing in the spin–orbit interaction parameter. Considering these effects, the correction in the energy of the ${}^{7}F_{0}$ and ${}^{7}F_{1}$ levels are given by the Eq. (4). Thus, the position of the ${}^{7}F_{1}$ level in relation the ${}^{7}F_{0}$ level can be written as:

$$E_B[{}^7F_1] = E[{}^7F_1] + \delta(S^2) + \delta(S^{k \ge 4})$$
(14)

 $E[{}^{7}F_{1}]$ is the free ion energy position. $\delta(S^{2})$ and $\delta(S^{k \ge 4})$ are obtained by expanding the right side of Eq. (4). This leads to:

$$\delta(S^{2}) = \frac{1}{3} \left(\frac{|\langle^{7}F_{1}|C^{2}|^{7}F_{2}\rangle|^{2}}{E[^{7}F_{1}] - E[^{7}F_{2}]} + \frac{|\langle^{7}F_{1}|C^{2}|^{7}F_{3}\rangle|^{2}}{E[^{7}F_{1}] - E[^{7}F_{3}]} + \frac{3|\langle^{7}F_{0}|C^{2}|^{7}F_{2}\rangle|^{2}}{E[^{7}F_{2}]} \right) S^{2}$$

$$(15)$$

Then, $\delta(S^2) > 0$ and $\delta(S^{k \ge 4}) < 0$, this latter because the denominator in Eq. (4) is negative. Therefore, three cases in Eq. (14) can be analysed: firstly, for $\delta(S^{k \ge 4})$ small in comparison to $\delta(S^2)$. This can be found in sites with high symmetry, due to the fact that several B_a^k components are zero, or for high values of $E[^7F_1]$.

Figure 1. The $(\Delta \varepsilon)_{\text{theor}}/(\Delta \varepsilon)_{\text{Exp}}$ ratio for the $^7\text{F}_2$ level of the Eu³⁺ ion. The horizontal line shows the ideal theoretical prediction. The points show that, without J-mixing, the experimental values are lower than the theoretical prediction, according to Eq. (8). KY₃F₁₀ in Ref. [17], YOBr LaOI LaOBr and GdOBr in Ref. [20].

The degeneracy lifting of the 7F_1 level is due to non-vanishing crystal field parameters of rank 2, namely, B_q^2 . The value $(\Delta\epsilon)^2$ of the 7F_1 is given by: [10]

$$\left(\Delta\epsilon\right)^{2} = \frac{1}{\left(2J+1\right)} \left(\frac{\Delta E}{2}\right)^{2} (2+\alpha^{2}) \tag{16}$$

By using Eqs. (13) and (16) the maximum splitting of the ${}^{7}F_{1}$, ΔE , is given by:

$$\Delta E = \left[4 \frac{\left| \langle^7 F_1 | C^2 |^7 F_1 \rangle \right|^2}{(2 + \alpha^2)} S^2 + 4 \frac{\left(\Delta E_B \right)^2}{3(2 + \alpha^2)} \right]^{1/2}$$
(17)

 $\Delta E_{\rm B}$ is the change in the position of the barycentre of the ${}^{7}F_{1}$ level. Here is performance a new relation between S² and the maximum $\Delta \varepsilon$ splitting, however in Eq. (17) have relation also with $(\Delta E_{\rm B})^{2}$ due the J-mixing effect. The value of S² can be obtained through of the Eq. (17). Using a symmetric repartition, $\alpha = 0$, one obtains

$$S^{2} = \frac{1}{2} \frac{\Delta E^{2} - (2/3)(\Delta E_{B})^{2}}{|\langle^{7}F_{1}|C^{2}|^{7}F_{1}\rangle|^{2}}$$
(18)

Therefore, in the case of $\delta(S^{k \ge 4})$ negligible, and using the Eq. (18) in Eq. (15), and then in Eq. (14), one has

$$\Delta E_{b} = \frac{1}{6} \left(\frac{|\langle^{7}F_{1}|U^{2}|^{7}F_{2}\rangle|^{2}}{E[^{7}F_{1}] - E[^{7}F_{2}]} + \frac{|\langle^{7}F_{1}|U^{2}|^{7}F_{3}\rangle|^{2}}{E[^{7}F_{1}] - E[^{7}F_{3}]} + \frac{3|\langle^{7}F_{0}|U^{2}|^{7}F_{2}\rangle|^{2}}{E[^{7}F_{2}]} \right) \\ \times \frac{\Delta E^{2} - (2/3)(\Delta E_{B})^{2}}{|\langle^{7}F_{1}|C^{2}|^{7}F_{1}\rangle|^{2}}$$
(19)

 $\Delta E_{\rm b} = {\rm E_{cf}}[^7{\rm F}_1] - {\rm E}[^7{\rm F}_1]. \quad \Delta E_{\rm b} \text{ is also equal to the difference} \\ \Delta E_{\rm B} - \Delta E_{\rm B}[^7{\rm F}_0]. \text{ From Eq. (4) only in the first term (k = 2) } \Delta E_{\rm B} \text{ is proportional to } \Delta E_{\rm B}[^7{\rm F}_0]. \text{ Thus } \Delta E_{\rm B} \text{ can be written in terms of } \Delta E_{\rm b} \text{ as follows:}$

$$\Delta E_{\rm B} = \left(1 - \frac{|\langle^7 F_1 | \mathbf{U}^2 | ^7 F_2 \rangle|^2 (\mathbf{E}[^7 F_0] - \mathbf{E}[^7 F_2])}{|\langle^7 F_0 | \mathbf{U}^2 | ^7 F_2 \rangle|^2 (\mathbf{E}[^7 F_1] - \mathbf{E}[^7 F_2])}\right)^{-1} \Delta E_{\rm b}$$
(20)

Using the value of $|\langle {}^{7}F_{1}|U^{2}|{}^{7}F_{J}\rangle|^{2}$, $E[{}^{7}F_{2}] = 1024 \text{ cm}^{-1}$, and $E[{}^{7}F_{3}] = 1800 \text{ cm}^{-1}$ given in Ref. [15], as the barycentre energy positions of each respective manifold, the Eq. (20) leads to $\Delta E_{B} = 2.4\Delta E_{b}$ and the Eq. (19) can be written as:

$$\Delta E_{\rm b} = 2.0 \times 10^{-4} \Big[\Delta E^2 + (2.4 \times (2/3) (\Delta E_{\rm b})^2 \Big]$$
(21)

Figure 2. The increasing in the maximum splitting of the ${}^{7}F_{1}$ level due to the increase in barycentre position. The experimental data are from the KYF₄ (stars) and KLuF₄ (squares) crystals [17]. The solid line is the theoretical prediction.

Solving for ΔE with ΔE_b the solution with physical meaningful is

$$\Delta E = (2/5) \left[31250 (\Delta E_{\rm b}) - 10 (\Delta E_{\rm b})^2 \right]$$
(22)

In order to test this prediction, one enters the hypothetical values $E[^{7}F_{1}] = 360 \text{ cm}^{-1}$ (in the case of the Eu^{3+} : KYF_{4} and Eu^{3+} : $KLuF_{4}$ crystals and $E[^{7}F_{1}] = 356 \text{ cm}^{-1}$ (in the case of Eu^{3+} doped calcium diborate glass) lead to very satisfactory predictions (Figures 2 and 3).

The second case is for $\delta(S^2)$ small compared to $\delta(S^{k\ge4})$. This occurs when $E[^7F_1]$, S^4 and S^6 are large. Therefore, the change in ΔE_B [Eq. (12)] due to S^2 is small. So, the J-mixing contributes to a decrease in the barycentre energy position. For instance, in Figure 3 it is shown that $E[^7F_1] = 447 \text{ cm}^{-1}$ while $\Delta \varepsilon (^7F_1) = 0$ for Eu³⁺ in zinc oxyfluorotellurite glass [19]. This is being predicted for the first time. In Ref. [19], as a function of excitation energy, it is observed *repulsion* between neighbouring levels J. Figure 3 shows both cases: $\delta(S^2) > \delta(S^{k\ge4})$ calculated via Eq. (21) and $\delta(S^2) < \delta(S^{k\ge4})$. In Ref. [21], now as a function of an external magnetic field, it is observed

Figure 3. Increase and decrease in the barycentre energy with increasing maximum ${}^{7}F_{1}$ level splitting. The circles are the experimental data of the Eu^{3+} ions in calcium diborate glasses [18]. The squares are experimental data the Eu^{3+} in the zinc oxyfluorotellurite glass [19]. The solid line is the theoretical prediction [Eq. (22)].

and simulated repulsion between neighbouring levels with the same irreps. In very low site symmetries all Stark sublevels are described by similar irreducible representations (irreps) [3].

For the case when S^4 and S^6 are comparable to S^2 , as S^4 and S^6 have opposite sign in comparison to S^2 , the barycentre may not change appreciably and the maximum splitting will remain linear with S².

5. Conclusions

The levels of the Eu³⁺ ion have been revisited by considering the I-mixing effect using first order perturbation theory without approximations. A reduction in the ⁷F_I level splitting is predicted and the barycentre energy position can become lower. This latter is in the opposite sense when compared to the shift due to the spin-orbit coupling. The relation between the ${}^{7}F_{1}$ level splitting and the S² strength parameter shows that the I-mixing contributes to reduce the splitting. In sites with high symmetry the I-mixing can be negligible depending on the energy separation between neighbouring Stark levels. The prediction of lowering the barycentre energy position with increasing ΔE is being made for the first time. Very satisfactory predictions is found between theory and experiment to all analysed systems.

Acknowledgments

The authors deeply acknowledge the CAPES, CNPq and INAMI (Brazilian agencies) and FAPITEC (state agency) for financial support.

References

- [1] S.V. Eliseeva, J.-C.G. Bunzli, Chem. Soc. Rev. 39 (2010) 189.
- [2] G.K. Liu, in: G.K. Liu, B. Jacquier (Eds.), Spectroscopic Properties of Rare Earths in Optical Materials, Tsinghua University Press & Springer-Verlag (Berlin), Eidelberg, 2005, p. 1.
- [3] C. Görller-Walrand, K. Binnemans, Rationalization of crystal-field parametrization, in: K.A. Gschneidner Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Farths vol 25 Elsevier Amsterdam 1996 A.M. Srivastava, Opt. Mater. 31 (2009) 881.
- W.W. Zhang, M. Yin, X.-D. He, Y.Q. Gao, J. Alloys Compd. 509 (2011) 3613. [5]
- [6] M.A. Couto dos Santos, Chem. Phys. Lett. 455 (2008) 339.
- [7] B.G. Wybourne, Spectroscopic Properties of Rare Earths, John Wiley, New York, 1965
- [8] P. Caro, J. Chem. Phys. 65 (1976) 89.
- [9] C.-G. Ma, M.G. Brik, V. Kiisk, T. Kangur, I. Sildos, J. Alloys Compd. 509 (2011) 3441
- [10] F. Auzel, O.L. Malta, J. Physique 44 (1983) 201.
- [11] O.L. Malta, E. Antic-Fidancev, M. Lemaitre-Blaise, A. Milicic-Tang, M. Taibi, J. Allovs Compd. 228 (1995) 41.
- K. Binnemans, C. Görller-Walrand, Chem. Phys. Lett. 75 (1995) 245. [12]
- [13] B.R. Judd, Operator Techniques in Atomic Spectroscopy, Mc Graw-Hill, New York, 1963.
- [14] A. Messiah, Quantum Mechanics, vol. 2, North Holland Pub. Co., Amsterdam, 1970
- [15] W.T. Carnall, H. Crosswhite, H.M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3, Argonne National Laboratory, Argonne, IL, USA, 1978.
- [16] C. Cascales, A. de Andrés, J. Sánchez-Benitez, J. Phys. Chem. A 112 (2008) 1464.
- [17] N.M. Khaidukov, X. Zhang, J.-P. Jouart, J. Lumin. 72 (1997) 213.
- [18] V. Lavin, U.R. Rodríguez-Mendoza, I.R. Martín, V.D. Rodríguez, J. Non-Cryst. Solids 319 (2003) 200.
- [19] P. Babu, K.H. Jang, H.J. Seo, C.K. Jayasankar, J. Appl. Phys. 99 (2006) 053522.
 [20] J. Hölsa, P. Porcher, J. Chem. Phys. 6 (1982) 76.
- [21] M.A. Couto dos Santos, P. Porcher, J.-C. Krupa, J.-Y. Gesland, J. Phys. Condens. Matter 8 (1996) 46.