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Experimental Deterministic Coherence Resonance
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We demonstrate coherence resonance in a dynamical system without external noise. The experimen-
tal evidence is reported in the low frequency fluctuations of a chaotic diode laser with optical feedback.
The phenomenon is also verified numerically using the Lang-Kobayashi equations for a single solitary
mode laser, without noise terms. Fast deterministic dynamics plays the role of an effective exciting
noise, narrowing the resonance in the autonomous slow power drop cycles of the laser. This new result is
the natural extension of deterministic stochastic resonance and noise induced coherence resonance

predicted and observed in recent years.
DOI: 10.1103/PhysRevLett.93.144101

Stochastic resonance [1] and coherence resonance [2]
are phenomena where external noise, at the appropriate
amplitude, helps the occurrence of resonant responses in
activated dynamical systems. For the stochastic reso-
nances the systems are induced to improve their resonant
response to an external periodic drive signal. In an ap-
parent paradoxical effect, the presence of a good amount
of noise enhances the quality of the system signal, nar-
rowing the resonance and giving a better signal to noise
ratio at the external imposed frequency. Extensively dis-
cussed in the review by Gammaitoni et al. [1], the effect
was also demonstrated with deterministic noise [3].
Coherence resonances, originally proposed by Pikovsky
and Kurths [2], occur in dynamical systems that do not
need an external periodic driving. They have, into their
dynamics, an autonomous limit cycle at the borderline of
stability which is excitable by noise. Once excited, an
excursion of the system trajectory through this orbit takes
place, independent of the noise amplitude, for small
noise. Systems with homoclinic chaos also have been
shown to be in the category of excitable by external noise
and to present stochastic and coherence resonancelike
behaviors [4]. Other common excitable nonlinear systems
are the ones with delayed feedback, having trajectories
with fast and slow time evolution [5]. This is, for in-
stance, the case of diode lasers with optical feedback
from an external cavity [6—8]. The fast behavior is due
to unstable relaxation oscillations and the slow trajectory
envelope is an itinerary over unstable ruins of attractors.
For these reasons, coherence resonance was demonstrated
for the first time in the experiments by Giacomelli ef al.
[9] varying the amplitude of noise injected in the fixed
value of the pump current of a diode lasers with optical
feedback. Low frequency fluctuations (LFF), in the scale
of nanosecond to tens of microseconds occur as drops in
the laser averaged power. Other features characterizing
this laser as an excitable system have been studied re-
cently [10-12].

In this Letter we report coherence resonance excited by
fast oscillations intrinsic to the dynamical system, in-
stead of originating from an external noise source. This is
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possible in systems where a parameter produces different
variation for the amplitude of the fast dynamics as com-
pared to the variation produced in the relative position of
two fixed points, one attractor node and a nearby saddle,
which organize an excitable slow cycle [13]. This appears
to be the case for the diode laser with optical feedback.
Because of the considerable complexity of the solutions
of the laser equations, we cannot present the direct proof
of this argument. However, we give the indirect evidence
in what follows. Without external noise terms, the nu-
merical solutions for the laser equations give a coherence
resonance behavior as the internal parameter associated
to pump current is tuned. An optimal value will exist that
gives best “‘signal to noise,” as characterized by the
minimum of R = ¢/T, the normalized variance of the
average time between excitations cycles, defined by
Pikovsky and Kurths [2]. The excited cycles are the
deterministic LFE

The equations for the laser were first proposed by Lang
and Kobayashi (LK) [14] and have been largely studied
since [8]. They can be written as

‘2_’; = [G(N) - %}P(r) + 2/ P(t)P(t — 7) cos{(t)

P
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dt 2 Tp
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where the dynamical variables are P(r), the photon flux
density or the square of the optical field amplitude, ¢(¢),
the phase of the slow envelope of the field, and N(r), the
carrier density. The delayed feedback enters through the
field amplitude and phase at time (¢ — 7), with 7 being the
round-trip time of the external cavity. The carrier lifetime
is 7,, the photon lifetime is Tps and o, is the solitary laser
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FIG. 1. Calculated segments of laser power using Lang-
Kobayashi equations: (a) and (b) show the fast pulses within
a fraction of the round-trip time of the external cavity; (c) is the
long series averaged to simulate a 300 MHz filtering and
showing many LFF events. The parameters used were chosen
to give qualitative agreement with experiments: J/Jy, = 1.013,
k=22ns"!, and 7 = 6 ns.

frequency. The nonlinear optical gain is G(N) = Gy(N —
Ny)/(1 + €P), where G is the modal gain, N, is the
carrier density at transparency, and € is the gain satura-
tion coefficient. « is the linewidth enhancement factor, J
is the current density, and « is the feedback rate. The
solitary laser threshold current results from (3) as
T = (1/7)[No + 1/(GoT,)].

Typical segments of the laser power time dependence,
calculated with LK equations (3), are shown in Fig. 1. The
parameters were fixed at Gy = 3.2 X 107 % ns™!, N, =
1.5 X 108, wyr =0, a = 3.5, 1/7, =282 ns” !, 1/7, =
1.66 ns !, and e =5 X 107",

With a fourth order Runge-Kutta routine the equations
were integrated using time steps of &t = 10712, i.e.,
nearly 1/3 of the photon lifetime. This size of step was
enough to assure smooth ultrafast pulses as seen in
Fig. 1(a), for the bottom of a LFF and Fig. 1(b) for a
region within the maximum power range. These pulses
correspond to the fast chaotic mode-locked pulses pre-
dicted by von Tartwijk et al [7] and were observed
experimentally by Fischer et al [15] and by Vaschenko
et al. [16]. Averaging the numerical series to simulate a
filter with a 300 MHz bandpass, the fast pulsations cannot
be seen, but very distinct power drops, the LFE appear as
in Fig. 1(c). The variance of the fast intensity pulses was
determined as a function of the pump current. It grows
lineary for 0.98 < J/Jy;, < 1.06. Such a variance is not to
be confused with that of the time interval between LFFs.
This will be the amplitude of the effective deterministic
noise responsible for coherence resonance to be shown. We
emphasize that the numerical integrations were done
without noise terms. A calculation with a longer round-
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FIG. 2. Average time between LFF drops as a function of the

injection current, calculated with the Lang-Kobayashi model.

trip time needs longer computation time, and their results
are qualitatively similar to the results to be described.

Histograms for the time between LFF drops, T, were
calculated and the average time between drops and the
corresponding variance were obtained, as a function of
the pump current. The results for T are presented in Fig. 2.
As predicted many years ago [6,8], noise is not necessary
for the LFF to appear. However, with J/Jy < 1.00, the
absence of a noise term prevents the occurrence of longer
time intervals between drops [17,18]. This explains why,
in Fig. 2, T/ saturates near 30 for small pump currents.

The calculated normalized variance, R, is shown in
Fig. 3. This quantity is the indicator of oscillation regu-
larity [2]. This figure contains the main numerical result
of this Letter. It shows that the LFF pulses become more
ordered at an intermediate value of the pump current
parameter, when the normalized variance goes through
a minimum.

In their original work proposing coherence resonance,
Pikovsky and Kurths [2] show (their Fig. 3) the noise to
signal ratio, R, as a function of the external noise ampli-
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FIG. 3. Normalized variance of the time between LFF drops

in the Lang-Kobayashi model, as a function of the injection
current.
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FIG. 4. Experimental segment of laser intensity with LFF
power drops. The pump current was 23 mA and the round-trip
time was 7 = 6 ns.

tude, D, for fixed system parameters. The minimum in R
for an intermediate value of D is the signature of the
effect. In the corresponding experimental demonstration,
Giacomelli et al. [9] also give the same R as a function of
the noise amplitude (their Fig. 3). Here, without external
noise, we give R as a function of the system parameter
which is the pump current, J. As the current affects the
deterministic fast “effective noise” differently than it
affects the average time between drops, such a variation
of the current acts as a variation of the amplitude of the
effective noise. At first, the increase on the pump current
brings down the value of the variance much more than it
decreases the average time. The system becomes more
regular, with R dropping in value. After some value of
the control parameter is reached, a minimum is past, the
effective noise is too big and acts to disrupt the quality of
the resonance. This is the interpretation for deterministic
coherence resonance observed experimentally and de-
scribed next.

The experimental verification of the effect was ob-
tained with an SDL 5401 GaAlAs diode laser, thermally
stabilized to 0.01 K, emitting at 850 nm and with solitary
threshold current of 17.5 mA. A feedback mirror of high
reflectivity ( > 90%) is placed 0.9 and 2.25 m from the
laser creating an external cavity with 6 and 15 ns round-
trip times, respectively. A collimator and a lens were
placed within the cavity to reduce the beam divergence.
The intensity output is detected by a 1.5 GHz bandwidth
photodiode, and the data series, collected with a
Tektronix TDS3032B 300 MHz oscilloscope and, for
very long time series with a 12 bits A/D digital acquis-
ition system running at 100 MHz, and connected directly
to a computer memory. Different feedback levels, pump
current, and external cavity length were used and the
dynamics was qualitatively similar to the one reported
by Sacher et al [19]. Figure 4 shows an experimental
segment of the laser output with LFF events. The simi-
larity to the calculated result shown in Fig. 1(c) is evident.

From an experimental time series with more than 10*
LFF events, at each value of the pump current, the aver-
age time between events 7 = (f;41) — 1;), and the vari-
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FIG. 5. Experimental average time between LFF drops as
function of the injection current.

ance o were determined. From these, the experimental
normalized variance R = o /T were obtained. Figure 5
shows the experimental T as a function of the pump
current, measured for a feedback level corresponding to
a threshold reduction of 13.8% and with round-trip time
of 7= 6 ns. Such dependence on current is similar to
what has been observed by Sukow et al. [20]. For currents
below 18.6 mA, T decreases with a large slope. This must
be due to spontaneous emission and external noise and is
not observed in the LK calculations presented in Fig. 2.
For higher currents, the experimental T decreases with
current similar to LK calculations, but the ratio J/Jy, is
much larger than in numerical LK results. Such quanti-
tative discrepancies, which remains to be studied, do not
affect our observation of the experimental coherence
resonance, obtained with a normalized quantity.

The corresponding normalized variance, R, is pre-
sented in Fig. 6. The spike drop at low currents is due to
nondeterministic noise. Nondeterministic stochastic
noise, with quantum and classical origin, is known to
contribute to LFF at very low currents and helps regu-
larization of the ultralow frequency fluctuations [17,18]. It
is worth remembering that after the current is above
threshold the laser has its upper level population clamped
to the threshold value (on the average) and so the average
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FIG. 6. Experimental normalized variance of the time be-
tween LFF drops as a function of the injection current, for a
feedback delay of 6 ns.
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FIG. 7. Experimental normalized variance of the time be-
tween LFF drops as a function of the injection current, for a
feedback delay of 15 ns.

spontaneous emission noise remains with constant am-
plitude [8]. Deterministic noise from the mode-locked
pulsation goes on growing with current. After the value
of 18.6 mA the variation of R with current changes
indicating that the effects of the deterministic chaotic
fast mode-locked pulses take over. Beyond that value the
deterministic coherence resonance manifests as the mini-
mum in R at 21 mA.

Consistent with the results shown from Lang-
Kobayashi equations, within the experimental determi-
nistic range, R keeps decreasing and the LFF coherence
resonance begins to broaden only after an optimal value
of the current is reached. Thus the experimental reso-
nance narrowing occurs totally within the deterministi-
cally dominated chaotic operation of the laser. Let us
emphasize that a quantitative comparison of the LK re-
sults with the real laser is not possible because the laser
here has shown traces of multimode (internal cavity) in
its optical spectra during LFF operation.

Changing the external feedback return time and the
degree of feedback amplitude modifies the position of the
minimum, but for a wide range of values the shape of the
R dependence always shows the coherence resonance.
Figure 7 shows R for 7 = 15 ns and threshold reduction
of 10.6% in the feedback amplitude. The minimum now
occurs for pump current of 20 mA, again within a current
range where deterministic chaos dominates the LFF dy-
namics. Measurements of the different current depen-
dence for the fast pulsations and the slow averaged LFF
events will be published elsewhere along with further
properties of the laser, relevant to quantitative character-
ization of deterministic excitation phenomena in the dy-
namical system.

To conclude, we have demonstrated that coherence
resonance occurs in deterministic systems without exter-
nal noise. Experimentally, the effect appears in the de-
terministic chaotic low frequency fluctuations of a diode
laser, optically fed back by a distant external mirror.
Numerically, the effect is predicted calculating solutions
for the single mode model of Lang-Kobayashi. The nor-
malized variance of time intervals between LFF power
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drops was shown to decrease, passing through a mini-
mum value, as the pump current is increased. This is an
indication that the fast time scale dynamics of the laser
acts as a noise source for the slow evolution of the average
laser power. A similar effect must occur in other natural
systems where the deterministic chaotic dynamics con-
sists of fast variables driving nonlinear terms of coupled
slow variables.
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