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Abstract: Isochrony and time leadership was studied in the synchronized
excitable behavior of coupled chaotic diode lasers. Each unit of the system
had chaos due to feedback with a fixed delay time. The inter-units coupling
signal had a second, independent, characteristic time. Synchronized ex-
citable spikes present isochronous, time leading or time lagging behavior
whose stability is shown to depend on a simple relation between the
feedback and the coupling times. Experiments on the synchronized low
frequency fluctuations of two optically coupled semiconductor lasers and
numerical calculations with coupled laser equations verify the predicted
stability conditions for synchronization. Synchronism with intermittent
time leadership exchange was also observed and characterized.
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1. Introduction

Many dynamical systems in nature have chaos due to feedback.A characteristic time,τF , as-
sociated to the feedback is therefore embedded in the systemresponse. As two or more of
such systems are coupled, another independent time,τC, corresponding to the time of flight
of the coupling signal, enters in the dynamical descriptionof the global system. We present
here how the relation between these two times determines thepossible time delays in chaos
synchronization. New features of time leadership competition in synchronized chaos between
coupled pairs of systems with feedback are found when feedback and inter-coupling times have
the same order of magnitude. Experimental and numerically,the stability of isochronous chaos
synchronism for identical systems occurs only for specific relations between these times. We
also show that time delayed and time advanced synchronism aswell as synchronism with inter-
mittent leadership exchange are also quantitatively determined by the ratio of these times. Our
case is made with pairs of semiconductor diode lasers. However, the properties of synchroniza-
tion in complex systems extends far beyond physical devices[1], reaching the subject of neural
sciences [2].

The study of synchronism with chaotic lasers spreads for more than a decade [3, 4, 5, 6, 10].
Of relevant interest for applications are the results on thesynchronization of semiconductor
lasers [11, 12] for encrypted communication. With optical feedback diode lasers can present
chaos in the form of very fast output power fluctuations, at a time scale of picoseconds. Super-
imposed on these, irregular power drops occur in a much slower time scale (order of hundreds of
nanoseconds and longer) corresponding to the so called low frequency fluctuations (LFF) [13].
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The LFF drops in single lasers are a current subject of studies and have been associated to spikes
of excitable systems [14, 15, 16]. Coupled diode lasers showtime advanced and time lagging
synchronization via unidirectional coupling in master-slave configuration [17, 18] and in mu-
tually coupled systems [19, 18, 20]. Symmetrically coupledpairs of lasers, without feedback,
were shown to have unstable isochronous chaotic pulsation [19, 21, 22]. In the experiments and
calculations with coupled lasers without feedback, the time leading lasers always appears with
its power drops displaced by one unit of the coupling time,τC. The use of intermediate relay-
ing system was demonstrated to give stable isochrony [23, 24]. Isochronous synchronization
has also been investigated [24, 25, 26] for lasers with feedback with the studies focused on the
fast laser fluctuations. Differently, herein we study the synchronization of the low frequency
fluctuations (LFF), known to appear at the scale of hundreds of nanoseconds and slower. Thus,
in our case the dynamics in the coupled systems is much fasterthan the synchronized events
which have the properties of excitable spikes. So, our results refer to synchronism of excitable
dynamical systems.

2. Experimental setup

The schema of the experiments is given in figure 1. Optical feedback was created in each laser
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Fig. 1. Experimental setup for the synchronization of Low Frequency Fluctuations in opti-
cally coupled laser.

by a retro-reflecting external mirror. Their feedback return times,τF1 andτF2, were set equal
to within 1% precision (both named from hereonτF ). The time of travel of the coupling signal
between the lasers,τC, was independently controlled with respect toτF . Small changes in either
of the times, on the scale of fraction of nanoseconds do not alter the properties of the synchro-
nism. Thus the results, like the LFF phenomenon in single laser with feedback, are robust with
respect to optical phase changes. A consequence of such behavior is that our observations are
consistent with the synchronization of excitable systems [27]. These authors show how uni-
directionally coupled excitable systems can presents one of the systems always with a lower
threshold for excitability. Their coupled systems synchronize to an external common signal. In
our case the coupled systems have fast fluctuations and so, noexternal source of excitation is
necessary.

The experiments were done with two SDL 5401GaAlAssemiconductor lasers, named here
as Laser 1 and Laser 2, both with solitary threshold current of 21 mA and emitting at 805
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nm. They were thermally stabilized to 0.01 K and could be temperature tuned to have their
optical frequencies within 2 Ghz separation. The feedback time of the lasers wasτF = 10ns
and the strength were measured by the threshold reduction parameter,ξ which is the percentual
variation of the threshold pump current as we consider the laser with and without feedback
[13]. Symmetrical optical coupling between the lasers was produced with 50% beam splitters
as shown in figure 1. The time of flight of the light between the lasers was varied between 5 and
20 ns. The threshold reductions due to cross input power wereused to quantify the coupling
strengths whose contribution to our studies will be detailed elsewhere. Manipulating the laser
currents and temperatures, LFF synchronism was obtained where to each power drop in laser 1
corresponds a drop in laser 2 and vice versa.

3. Results

Typical experimental segments of the power output of the twolasers, with three events of the
synchronized low frequency fluctuations (LFF) drops, are shown in figure 2. Each laser intensity
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Fig. 2. Segment of experimental time series of the power of (a) laser 1 and (b) laser 2, show-
ing the low frequency synchronism and including the interchange of time delay between
the lasers.τF = 10 ns andτC = 10 ns.

was detected by a 1.5 GHz bandwidth photodiode. Simultaneous data series were acquired with
a two channel digital oscilloscope having a bandwidth of 1 GHz and a maximum sampling rate
of 5 GSamples/second. One of the lasers could always be the time leader by setting its pump
current or its optical frequency [19] higher. However, as careful tuning of the laser currents and
optical frequencies is made, within the same long LFF synchronized time series the LFF drops
of laser 1 can appear isochronous, leading or lagging these of laser 2. Such were the conditions
of figure 2 where the time leadership is interchanged betweendrops one and three, while the
second LFF drops are isochronous. Using long pairs of data series, coarse grained to a 1nstime
resolution [16], we measured∆Ti= T1i −T2i , the delay between the LFF dropi of laser 1 and
laser 2.

The main result of this work is to show that, within any LFF synchronized evolution, for any
pair of excited drops the allowed delays are given by

∆Ti = mi · τC−ni · τF (1)

wheremi 6= 0 andni are small integers. Here we only give indications ofmi = ±1 but prelim-
inary results with very long numerical series show rare events with mi > 1. Equation 1 covers
various previously studied cases in the literature and confirms novel observations. For instance,
with the lasers having no feedback,τF = 0, it verified that isochrony is not allowed [19]. Other
cases with feedback but forbidding isochrony are given below. The equation determines∆Ti
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when one laser is always leading or lagging which happens fora single pair(mi ,ni) through
the whole time series. Furthermore, it is also valid for cases with varying values of(mi ,ni)
within the same series, obtained from symmetrical and nearly symmetrical systems. The LFF
synchronism then appears with intermittent switching of the time delay that can interchange
the leading subsystem. The evidence of equation 1 as a property of the LFF synchronism was
obtained inspecting many different feedback and coupling delay times in experimental and nu-
merical series. The origin of equation 1 is present in the intensity cross-correlation functions
of the fast fluctuations of coupled lasers. These correlations, obtained with sub-nanosecond
resolution, show recurrent narrow spikes (width of hundredof picoseconds) at positions and
intervals given by Eq. 1.

Let us proceed presenting our experiments along with the numerical-theoretical results ex-
tracted from a system of differential equations that describe two mono-mode lasers with optical
feedback and optical coupling. The model correspond to a setof modified equations for the
lasers with feedback [28], including symmetrical optical coupling and assumed to have optical
frequence detuningΩ = ω2−ω1:

dEi(t)
dt

=
(1+ iα)

2

[

G(Ni)−
1
τp

]

Ei(t)+ κEi(t − τF)exp(iφi)

+γE j 6=i(t − τC)exp(−iΩ j)(t − τC) (2)

dNi(t)
dt

= Ji −
Ni(t)

τs
−G(Ni) |Ei(t)|

2 , (3)

wherei, j = 1,2, Ω1 = +Ω, Ω2 = −Ω and each laser gain is given by

G(Ni) =
G0(Ni −N0)

1+ ε |Ei(t)|
2 (4)

The definition of the various parameters and their typical values are well discussed in the litera-
ture [13, 15]. For each laser,E j is the radiation field amplitude ,ωi is the optical frequency,α is
the factor describing amplitude to phase conversion, G is the amplifying gain,Nj(t) the carriers
inversion population,τp the photon lifetime of the internal laser cavity,τs the carriers lifetime,
Jj the threshold normalized pump currents andN0 the inversion population for medium trans-
parency. Each feedback field has an amplitude coefficientκ and feedback timeτF . The optical
couplings are linearly additiveE field with coefficientγ and time delayτC for the field of one
laser to reach the other one. Physical causality demands that bothτF andτC be positive. The
fixed phases of each laser areφi . Their contribution to the LFF events and the lasers synchro-
nizations is not significant [7, 10]. Conversely, the optical frequency detuning can play a major
role in the synchronization [18, 7, 10].

With a fourth order Runge-Kutta algorithm numerical data series were obtained forEi(t)
and these gave the normalized intensity series|Ei(t)|2. The time scales in the integrations and
the equations parameters, if not stated otherwise, were fixed as:dt = 1 ps, 1/τp = 282 ns−1,
N0 = 1.5×108, ε = 5×10−7, κ = γ = 22 ns−1, 1/τs = 1.66 ns−1. The times,τF andτC, are in
the nanosecond range.

Calculations with zero frequency detuning and equal parameters and pump currents (Ji =
1.013), corresponding to symmetrical systems, produced numerical time series with leadership
exchange, again in agreement with the experiment. Segmentsof these data series are shown
in figure 3, to be compared with the experimental segments in figure 2. Calculation with one
laser having sufficiently higher pump current gives synchronized LFF with the laser of higher
pump current always leading in time, as observed in the experiments. More on the sensitivity
of the calculated dynamics with respect to changes on the parameters of equations 3, will be
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Fig. 3. Typical segment of the numerical time series of (a) laser 1 and (b) laser 2 LFF power
drops under synchronized condition. Notice that the first drops are isochronous while time
leadership was interchanged between drops two and three.τF = 10 ns andτC = 10.05 ns.

discussed below. Let us emphasize that no stochastic terms are used in the equations. The
apparent random time distribution of the LFF events in each laser as well as the time leadership
switching in the synchronism is due to the excitable nature of LFF as discussed in [14, 16]. If
this excitable nature of LFF occurs for single lasers with feedback it also will be manifest as
the fast fluctuations of one laser excites the LFF of the other, in a coupled scheme. It must be
observed that the current argument do not eliminate the controversial possibility of the main
origin of LFF in single lasers as due to external noise or internal fast fluctuations.

Numerical time series with∼ 104 pairs of drops were coarse grain filtered [16] with a 1 ns
time constant, and used to extract histograms of time delaysbetween the drops. The switching
of leadership from symmetrical systems was also examined and no correlation was found be-
tween consecutive values of∆Ti , up to second order conditional probability. This is indication
of a Markov process, obtained despite the fact that the data came from deterministic numerical
equations with recurrence timesτF andτC. Such result is consistent with an interpretation of a
pair of excitable systems created by high dimensional chaoswith largely different time scales.
The ultrafast pulses (scale of hundreds of picoseconds) existing in each laser acts as excitation
pulses to trigger the LFF drops. The time difference (Ti+1−Ti ≫ τF ,τC) among the LFF drops
of each of the two lasers appear as stochastic without memory[16]. The experimental data show
the same lack of correlation for the delay times of LFF synchronism in symmetrical conditions.
The histograms associated to the data series of figures 2 and 3, are shown in figure 4.

With τF = 10 ns andτC = 10 ns, equation 1 withmi = ±1 andni = ±1, predicts∆Ti =
0,±10nsand±20ns. Indeed, the histograms show that isochrony occurs, along with time lead-
ership exchange events. The major probabilities are for events with∆Ti = 0 and± 10 ns, with
few events at±20 ns and some in±30 ns on the experimental data. It is important to mention
that for the calculations with totally symmetrical lasers,(figure 4 (b)),τC 6= τF (τC = 10.05 ns)
a small difference (τF = 10 ns andτC = 10.05 ns) was necessary to give the non isochronous
events. In fact such differences which are intrinsically present in the experiments change dra-
matically the amplitude of the peaks in the histograms but have minor effect on the values of the
allowed delays in synchronized LFF. The robustness of the relation between delay times and
the condition of LFF synchronization according to equation1 was also inspected for small, up
to 10%, of relative variations ofτF andτC. The sensitivity of the amplitudes of the histograms
with some of the lasers parameters is very stong. Within the equal optical frequency calcula-
tions we could observe the dependence on the lasers currents, as given in figures 4 (b) and (c).
As the pump currents were made different, the laser with higher current begins to dominate,
presenting earlier LFF drops.
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Fig. 4. Histograms of the time delays between LFF pulses of the two synchronized lasers
with τF = 10 ns andτC = 10 ns(a) experimental, (b) numerical calculated with no optical
detuning and equal parameters and (c) numerical with laser 2and 1 having currents 1.014
and 1.013 above threshold, respectively.

Another typical experimental and numerical set of histograms, wheremi andni change within
the same synchronized evolution, is shown in figure 5. This isa case of symmetrical system
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Fig. 5. Histograms from experimental (a) and numerical (b) series for the time delays be-
tween LFF drops of the two synchronized lasers:τF = 10 ns andτC = 15 ns. These delay
values do not allow isochrone events, according to Eq. 1

where the laser parameters are equal but the values for time of coupling and feedback, were
chosen to give unstable isochrony:τC = 15 ns andτF = 10 ns. Accordingly, in equation 1 these
values prevent∆Ti = 0, as seen by direct substitution of small integers(mi = ±1). Thus, in a
large time scale synchronism of the LFFs holds, but there is always a finite time lead between
the two lasers. The leadership can be exchange but events of simultaneous drops are excluded. A
special case of this condition is the original paper by Heil it et al. [19] describing non isochrony
in the synchronized LFF of two diode lasers without feedbackand optically coupled.

WhenτC ≫ τF we verified numerically that equation 1 still holds. The value ofmi is always
±1 whileni assumes a large range of values. Isochrony is absent and the dominant events occur
with ni = 0, corresponding to delays of±τC. Nonsymmetrical systems, as mentioned above,
also follow equation 1. A calculation with the two lasers having the same currentJi = 1.013
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is given in figure 6 (a) while figure 6 (b) shows what happens when laser 1 has its current
augmented toJ1 = 1.025. The laser with higher current is always the time leader,even though
sometimes its leading time jumps betweenτC andτC − τF . These events correspond to LFF
drops withmi = 1 andni = 0 changing tomi = 1 andni = +1 along the dynamical evolution
with synchronized LFF excitation spikes.

-15 -10 -5 0 5 10 15
∆T

i
 (ns)

0

10

20

30

P
ro

ba
bi

lit
y 

(x
10

-2
)

(b)
0

5

10
(a)

Fig. 6. Histograms of the numerical delay times between synchronized LFF drops of the
lasers withτF = 10 ns andτC = 15 ns and showing the effect of asymmetric conditions in
the pump currents. In (a).Ji = 1.013 for the two lasers and in (b)J1 = 1.025 andJ2 = 1.013,
making Laser 1 the time leader.

Optical frequency detuning between the lasers was investigated in numerical solutions. The
results for coupled lasers as in Eq. 3 verifies the previous results established in master-slave
diode lasers synchronization [18, 19, 7]: With other parameters equal, the laser with higher
optical frequency is advanced in time. Our new results, for bidirectional coupling also shows
the higher optical frequency laser leading the synchronized LFF drops, even when there is
intermittent fluctuation in the advanced time difference. This is shown in figure 7. A striking
difference is observed in the amplitudes of the histograms forΩ/2π = +1 GHz andΩ/2π =−1
GHz, even though the∆Ti delays remain at the same positions in the two cases. The two sets of
histograms are calculated from time series that are not symmetrical in their fast fluctuations as
we changed the signal ofΩ. This is the reason for the histograms not to be perfectely mirrored
with respect to zero detuning (the peak at−5 ns is not reproduced with the same amplitude at
+5 ns).

The physical origin of the intermittent interchange of delays in the synchronized lasers of
our experiments may be attributed to the excitable nature ofLFF in single diode lasers with
feedback. According to Giudiciet al. [14], the LFF power drops in a diode laser with optical
feedback have the features characteristic of an excitable system driven by external noise. The
LFF spikes can also be interpreted as the excited spike induced by the fast fluctuations (hundred
picoseconds) contained in the deterministic dynamics of these lasers [15, 16]. The case of two
lasers synchronization treated as a pair of of excitable systems using a common external noise
source has also been studied by Cisak it et al. [27]. Considering the fast fluctuations of each
laser as the equivalent noise that triggers their LFFs, the optical coupling makes each laser be
subject to both fluctuations and so their LFFs will be excitedby a correlated source of equivalent
noise. Such fluctuations are correlated with peaks that depend on the feedback times and the
inter-units delay time. Thus synchronized LFF drops can occur excited by fluctuantions which
give an apparent random distribution to their delay times; these delay times allways happening
at the peaks of the fast correlation.
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two histograms

4. Conclusion

To summarize, from experiments with coupled diode lasers with feedback, corroborated by the
numerical solutions of the corresponding rate equations, we discovered that the delay time in
the synchronization of coupled excitable systems with feedback is controlled by a simple rela-
tion between feedback time and inter-coupling time. The dynamics may have one of the systems
with a fixed time leadership or have its leading time switching values by discrete steps depend-
ing on the values of the coupling and feedback times. Nearly symmetrical systems can also
have intermittent time leadership exchange always maintaining the excitable spikes synchro-
nized in the large time scale. A simple equation that specifythe intercombinations of feedback
and coupling time to give the allowed values of delay in the synchronized dynamics was in-
troduced. Coupled asymmetrical systems also follow the conditions for the allowed delay time
between events. The various parameters of the systems strongly influence the probability of
specific delays, distorting the histogram amplitudes, but,within the same range of variation,
have no effect on the values of the allowed time delays. Our results extend the previous [19]
determination of the symmetry breaking and instability of expected isochrony in the synchro-
nism of identical coupled chaotic systems without feedback. It also adds to the recently studied
properties of isochronal synchronism presented in [25] and[9], who emphasize the potential ap-
plication of these properties for encrypted communication. Effects of pump current and optical
frequency detuning have been shown to follow observations reported for coupled diode lasers
when at least one do not have optical feedback [18, 19]. It must be cautioned, however, that
a throughly exploitation of the many parameter space of the two lasers, which is beyond this
work, is lacking to characterize the range of validity of theobservations near symmetrical lasers
operation. A formal mathematical treatment of the stable and unstable fast dynamics chaotic
synchronization with delays having integer combinations between feedback and coupling time
will be presented elsewhere. The phenomenon of selection condition in time delays is bound to
appear generically in mutually coupled dynamical systems and to have applications in schemes
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of encrypted communications.
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