
A Local Search Algorithm Efficient for Sparse
Instances of the Linear Ordering Problem

Celso Satoshi Sakuraba and Mutsunori Yagiura

Department of Computer Science and Mathematical Informatics
Graduate School of Information Science, Nagoya University

Furocho, Chikusaku, Nagoya 464-8603, Japan
sakuraba@al.cm.is.nagoya-u.ac.jp

yagiura@nagoya-u.jp

Abstract: Given a directed graph with n vertices, m edges and costs on the edges,
the linear ordering problem consists of finding a permutation of the vertices such that
the total cost of the reverse edges is minimized. We present a local search algorithm
named LIST for the neighborhood of the insert operation, which can search the whole
neighborhood in O(n + m) time. Computational experiments show good results for
sparse instances when compared with another method proposed in the literature.

Keywords: linear ordering problem, local search

1 Introduction

Given a directed graph G = (V,E) with a vertex set V (|V | = n), an edge set E ⊆ V × V
and a cost cuv for each edge (u, v), the linear ordering problem (LOP) consists of finding a
permutation of vertices that minimizes the total cost of the reverse edges. We assume without
loss of generality that cuv > 0 holds for all (u, v) ∈ E and that if we regard G as an undirected
graph, it is connected (which implies m ≥ n − 1). For convenience, we also assume cuv = 0 for
all (u, v) /∈ E. Denoting the permutation by π : {1, . . . , n} → V , where π(i) = v (equivalently,
π−1(v) = i) signifies that v is the ith element of π, the total cost of the reverse edges is formally
defined as follows:

Cost(π) =
n−1
∑

i=1

n
∑

j=i+1

cπ(j)π(i). (1)

Another representation of the LOP consists of finding a permutation of n indices such that
when the rows and columns of an n × n matrix are permuted with it (n.b. the same permuta-
tion is used for rows and columns), the sum of the values in the upper triangle is maximized.
The equivalence of the two representations is immediate, e.g., by regarding the matrix as the
adjacency matrix of G, as can be seen in the example of Figure 1.

The LOP has a number of real world applications in various fields [5], among which the
most widely known is the triangularization of input-output matrices, which allows economists
to analyze the economical stability of a certain region. Known as an NP-hard problem [2], the
LOP has been vastly studied in the literature since the appearance of the first paper about it [3],

Figure 1: Graph and matrix representations of a solution of the LOP with cost 19+8=27

and many exact and heuristic methods have been proposed to solve it. Good literature reviews
about the LOP are given in [4] and [8].

Among the heuristic approaches, there are a number of proposed metaheuristics to handle
the LOP, such as tabu search [7], scatter search [1], variable neighborhood search [4] and genetic
algorithm [6]. Such metaheuristics make use of local search methods to refine the quality of
their solutions. Local search is a procedure that starts from an initial solution π0 and repeats
replacing it with a better solution in its neighborhood until no better solution is found. The
neighborhood of a solution π is the set of solutions that can be obtained by applying an operation
over π. A solution with no better solution in its neighborhood is called locally optimal.

The most widely known neighborhoods for the LOP are the ones given by the following
operations:

• insert : taking one vertex from a position i and inserting it after (before) the vertex in
position j for i < j (i > j);

• interchange: exchanging the vertices in positions i and j.

Huang and Lim [6] show that although any solution that can be improved by interchange

can be improved by insert, not every solution that can be improved by insert can be improved
by interchange. As expected, Schiavinotto and Stützle [8] affirm that interchange has experi-
mentally worse results than insert, and all the metaheuristic algorithms cited before make use
of the insert operation. The algorithms proposed in this work make use of the insert operation
as well.

Let π′ be the permutation obtained from a permutation π by inserting the vertex at position
i into position j. The difference in cost of this is given by:

Cost(π′) − Cost(π) =

j
∑

k=i+1

(cπ(i)π(k) − cπ(k)π(i)), i < j

i−1
∑

k=j

(cπ(k)π(i) − cπ(i)π(k)), i > j.

(2)

This cost difference can be calculated in O(n) time, which makes a straightforward search
through the insert neighborhood possible in O(n3) time, where a search through the neighbor-
hood denotes the task of finding an improved solution or concluding that no such solution exists
(i.e., the current solution is locally optimal). However, if we make the search in an ordered way,
taking one vertex at a time and sequentially calculating the cost of inserting it in consecutive
positions, the calculation can be made in constant order of time and the search through the
neighborhood can be done in O(n2) time. This result, presented by Schiavinotto and Stützle [8],
is the best one found so far concerning local search methods for the LOP.

Given the relevance of the insert neighborhood for the LOP, this paper presents an algorithm
for the search through it. This algorithm, named LIST, can make the search through the whole
neighborhood in O(m) time, where m = |E|. Computational results obtained by experiments
are presented and compared with other results in the literature.

The following section introduces the LIST algorithm, and Section 3 presents experimental
results obtained with its application. The last section presents the conclusions of our work.

2 The LIST Algorithm

The LIST algorithm proposed here uses a doubly linked list data structure corresponding to a
solution of the problem. One list is built for each vertex (represented in the head of the list),
and each cell of the list except for the head represents a vertex adjacent to it. Cells in a list
are ordered according to the order of the current solution. The information kept in each cell
(except for the head) is the index of the vertex and the cost of the edge connecting it with the
vertex represented in the head of the list. These costs are represented as negative if the edge is a
reverse one and as positive otherwise, as shown in Figure 2. The total memory space necessary
to keep this data structure is O(m).

Figure 2: The linked lists of the LIST algorithm for solution π = (v2, v1, v4, v3)

2.1 Construction of the lists

To build the whole LIST structure from a given list of edges (u, v) and an initial permutation π0,
we first sort the edges in the nondecreasing order of π−1

0 (u), breaking ties with the nondecreasing
order of π−1

0 (v). That is, the sorting is made such that groups containing edges incident from the
same vertex are ordered according to π0, and edges inside each group are ordered by the index
of the vertex they are incident to according to π0 as well (see (2) in Figure 3). This sorting can
be done in O(m) time using radix sort. Note that the given list of edges may include parallel
edges (edges that are incident from the same vertex and incident to the same vertex).

In the second step, we create for each vertex u a list of vertices v satisfying (u, v) ∈ E.
Each cell of this list contains the index of the vertex v and the value of cuv, where cuv is the

sum of the costs of parallel edges from u to v if there are such edges. To create such lists, we
start from empty lists and insert cells one by one to the tail of each list according to the order
they are sorted, where the information of parallel edges (that appear consecutively in the sorted
list of edges) are merged in this stage by summing up their costs instead of creating duplicate
cells with the same v. Then the resulting linked list for each head u maintains the order of the
permutation π0 (see (3) in Figure 3).

Figure 3: Procedure to build the data structure of Figure 2 (π0 = (v2, v1, v4, v3))

Then, we sort the edges (u, v) in nondecreasing order of π−1
0 (v), breaking ties with the

nondecreasing order of π−1
0 (u) (see (4) in Figure 3). For each edge (u, v), following the order

the edges are sorted, we subtract cost cuv from the cell corresponding to (v, u) in the list with
head v if such a cell exists; otherwise, we create a new cell for (v, u) with cost −cuv and insert
it at the appropriate position according to π0 in the list of v (see (4) in Figure 3). By keeping
a pointer to the position of the cell u most recently created or modified, this step can be done
in O(m) time.

Finally, we add a head to the list corresponding to each vertex at the appropriate position
according to π0. The head is inserted by visiting the list from its leftmost cell until we reach the
desired position, with each cell visited in the way having its cost multiplied by −1. The initial
LIST data structure built by the steps in Figure 3 is the one shown in Figure 2.

Consequently, the LIST data structure can be constructed from scratch in O(m) time for a
given permutation π0 and a list of edges with their costs.

2.2 Neighborhood search

From the data structure of LIST corresponding to a solution π, we can easily calculate the
difference in the total cost generated by inserting a vertex u in the position of an adjacent
vertex v. Supposing that u is before v in π, we start from the head of the list corresponding
to u and follow the list to the right until we find the cell corresponding to v, keeping the sum
of the costs of the cells visited, including the cost of v itself. This sum is the difference in cost
caused by inserting u in the position of v.

Using this calculation, the difference in cost generated by inserting a vertex u in the position
of a vertex corresponding to the cell right next to the head of the list of u can be calculated in
constant order of time just by taking the cost of that cell. By repeating this process following the
sequence of the list of u and adding the cost of the next cell to the difference in cost calculated
for the current cell, we can calculate the costs of all solutions obtainable by inserting u into
those positions of adjacent vertices in O(du) time, where du is the degree of u (i.e., the number
of edges incident to and from u). Note that it is not necessary to compute the costs of those
solutions generated by inserting u into other positions, since the cost of such a solution must be
the same as one of the solutions whose cost is computed in the above procedure. Hence, we can
find a better solution (or can conclude that there is no such a solution) in O(

∑

u∈V du) = O(m)
time.

If a permutation with smaller cost than π is found by inserting a vertex u into a new position,
it is necessary to update the related parts of the data structure. This update is made by the
following operations:

• For the list having u as its head, change its head position to the new one and change the
sign of the costs in the cells between the initial and the new positions of the head.

• For the list of each vertex adjacent to u, find the cell corresponding to u and update its
position. If the new position is after (before) and the initial position is before (after) the
list head, multiply the cost of the moved cell by −1.

The first operation takes O(du) time, and the second one takes O(dv) time for each v adjacent
to u. As the sum of du and the values of dv for those adjacent vertices v is not more than
∑

v∈V dv = 2m, the update of the data structure can be done in O(m) time.
The updated graph of Figure 2 after the insertion of v4 into position 1 and the corresponding

linked lists are presented in Figure 4. Observe that there is no change in the list of v1, which is
not adjacent to v4

Figure 4: Solution in Figure 2 after the insertion of v4 into position 1

To evaluate the computation necessary to search the neighborhood, we use the following
definition proposed by Yagiura and Ibaraki [9]:

Definition. The necessary computation to determine a move in a neighborhood is called one-
round. This computation includes finding an improved solution in the neighborhood and updating

all the necessary data structures, or concluding that there is no better solution in the neighbor-

hood.

Using this definition and the analysis presented above, we can state the following:

Theorem. The worst case one-round time for the LIST algorithm is O(m). The data structure

for a given permutation can be built in O(m) time as well.

3 Computational Results

The performance of the LIST algorithm was evaluated using a set of randomly generated in-
stances. Instances of sizes (number of vertices) between 500 and 8000 were prepared, and five
values of density (probability that an edge between any two vertices exists) were considered. For
each instance class (combination of size and density), five instances were generated by randomly
choosing edge costs from the integers in the interval [1, 99] using Mersenne Twister presented in
http://www.math.sci.hiroshima-u.ac.jp/˜m-mat/MT/SFMT/index.html.

To a better evaluation of LIST, we compare its one-round time with that of the method
described in Schiavinotto and Stützle [8], which will be referred here as SCST. Codes were
written in C language and tests were conducted on a Intel Xeon with a 3.0 GHz processor and
8GB RAM.

Table 1 presents the results. Values in the table denote the average one-round time in seconds
to search the whole neighborhood of the insert operation.

Table 1: LIST Algorithm Results
density 1% 5% 10% 50% 100%

n SCST LIST SCST LIST SCST LIST SCST LIST SCST LIST

500 0.0031 0.00006 0.0029 0.0009 0.0029 0.0017 0.0027 0.0135 0.0028 0.0404
1000 0.0363 0.00023 0.0355 0.0012 0.0353 0.0082 0.0348 0.0809 0.0347 0.1900
2000 0.1891 0.00104 0.1859 0.0243 0.1846 0.0561 0.1821 0.3606 0.1806 0.8599
3000 0.4466 0.00751 0.4384 0.0636 0.4357 0.1351 0.4288 0.8594 0.4271 2.0401
4000 0.8371 0.01975 0.8306 0.1207 0.8238 0.2557 0.8998 1.5324 0.8872 4.6174
8000 4.7873 0.09619 4.7200 0.5111 4.7350 1.0851 4.7516 8.6897 4.8053 23.0210

As expected, although the results of SCST does not change much against the density, the
values for LIST changes significantly. LIST is faster than SCST for sparser instances, with
density between 1 and 10%. However, for the instances with density 50%, LIST takes around
twice the time of SCST.

4 Conclusions

In this paper, we studied local search algorithms for the linear ordering problem, developing an
algorithm to make the search in the neighborhood of insert operation faster for sparse instances.

The data structure of the LIST algorithm proposed uses O(m) memory space, and the whole
data structure for it can be built in O(m) time. One-round time of the LIST algorithm is O(m),
and computational experiments with random instances showed good results for sparse instances
with density up to 10% when compared to the results of an algorithm presented in the literature.

LIST does not present much difficulties in its implementation, and can be easily used as a part
of metaheuristic algorithms, being strongly recommended for sparse instances.

As for future works, we intend to develop algorithms that can obtain good results even for
dense instances and use these algorithms as parts of metaheuristics and other methods to obtain
better results for the LOP.

Acknowledgments

The authors are grateful to Professor Takao Ono for his valuable comments in implementation
issues. This research is partially supported by a Scientific Grant-in-Aid from the Ministry of
Education, Culture, Sports, Science and Technology of Japan and by The Hori Information
Science Promotion Foundation.

References

[1] V. Campos, F. Glover, M. Laguna, R. Mart́ı, An experimental evaluation of a scatter
search for the linear ordering problem, Journal of Global Optimization 21 (2001) 397–414.

[2] S. Chanas, P. Kobylasński, A new heuristic algorithm solving the linear ordering
problem, Computational Optimization and Applications 6 (1996) 191–205.

[3] H.B. Chenery, T. Watanabe, International comparisons of the structure of production,
Econometrica 26 (1958) 487–521.

[4] C.G. Garcia, D. Pérez-Brito, V. Campos, R. Mart́ı, Variable neighborhood search
for the linear ordering problem, Computers & Operations Research 33 (2006) 3549–3565.

[5] M. Grötschel, M. Jünger, G. Reinelt, A cutting plane algorithm for the linear
ordering problem, Operations Research 32 (1984) 1195–1220.

[6] G.F. Huang, A. Lim, Designing a hybrid genetic algorithm for the linear ordering problem,
Genetic and Evolutionary Computation - GECCO 2003, proceedings (2003) 1053–1064.

[7] M. Laguna, R. Mart́ı, V. Campos, Intensification and diversification with elite tabu
search solutions for the linear ordering problem, Computers & Operations Research 26

(1999) 1217–1230.

[8] T. Schiavinotto, T. Stützle, The linear ordering problem: Instances, search space
analysis and algorithms, Journal of Mathematical Modelling and Algorithms 3 (2004) 367–
402.

[9] M. Yagiura, T. Ibaraki, Analyses on the 2 and 3-flip neighborhoods for the MAX SAT,
Journal of Combinatorial Optimization 3 (1999) 95–114

