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Abstract

This paper is concerned with a fractional PDE that interpolates semilinear heat
and wave equations. We show results on global-in-time well-posedness for small initial
data in the critical Morrey spaces and space dimension n ≥ 1. We also remark how
to derive the local-in-time version of the results. Qualitative properties of solutions
like self-similarity, antisymmetry and positivity are also investigated. Moreover, we
analyze the asymptotic stability of the solutions and obtain a class of asymptotically
self-similar solutions.
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1 Introduction

Differential equations of fractional order appear naturally in several fields such as
physics, chemistry and engineering by modelling phenomena in viscoelasticity, thermoe-
lasticity, processes in media with fractal geometry, heat flow in material with memory and
many others. The two most common types of fractional derivatives acting on time variable
t are those of Riemann-Liouville and Caputo.We refer the surveys [21, 22], [33] and [29] in
which the reader can find a good bibliography for applications on those fields.

Here we are interested in a semilinear integro-partial differential equation, which inter-
polates the semilinear heat and wave equations, and reads as

u(x, t) = u0(x) +
1

Γ(α)

∫ t

0
(t− s)α−1(∆xu(s) + |u(s)|ρu(s))ds, in x ∈ Rn, t > 0, (1.1)
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where n ≥ 1, 1 < α < 2, 0 < ρ < ∞, Γ(α) denotes the Gamma function and ∆x is
the laplacian in the x-variable. This equation is formally equivalent to the IVP for the
fractional partial differential equation (FPDE)

∂αt u = ∆xu+ |u|ρu, in Rn, t > 0, (1.2)
u(x, 0) = u0 and ∂tu(x, 0) = 0 in Rn, (1.3)

where ∂αt u = Dα−1
t (∂tu) and Dα−1

t stands for the Riemann-Liouville derivative of order
α− 1. For a Lebesgue measurable function f and k = bηc+ 1 with η ≥ 0 (b·c is the floor
function), we have that

Dη
t f =

1

Γ(k − η)

(
∂

∂t

)k ∫ t

0

1

(t− s)η+1−k f(s)ds.

Let {Gα(t)}t≥0 denote the semigroup of operators defined via Fourier transform by

Ĝα(t)f = Eα(−tα|ξ|2)f̂(ξ), (1.4)

where Eα(z) =
∑∞

k=0
zk

Γ(αk+1) is the Mittag-Leffler function. Taking α = 1 and α = 2, the

operator Gα(t) has symbol E1(−t|ξ|2) = e−t|ξ|
2

and E2(−t2|ξ|2) = cos(|ξ| t), respectively,
and (1.2) becomes the semilinear heat and wave equations. When 1 < α < 2 the semigroup
possesses mixed properties of the heat and wave semigroups (see (2.15)-(2.17)). In original
variables, the symbol Eα(−tα|ξ|2) corresponds to the fundamental solution Kα(x, t) of the
linear part of (1.2) (see [10]), that is,

Kα(x, t) =

∫
Rn
eix·ξEα(−tα|ξ|2)dξ. (1.5)

The problem (1.2)-(1.3) (or (1.1)) can be formally converted to the integral equation (see
[17])

u(x, t) = Gα(t)u0(x) +Bα(u), (1.6)

with

Bα(u)(t) =

∫ t

0
Gα(t− s)

∫ s

0
Rα−1(s− τ)|u(τ)|ρu(τ)dτds, (1.7)

where Rη(s) = sη−1/Γ(η). Throughout this paper a mild solution for (1.2)-(1.3) (or (1.1))
is a function u satisfying (1.6).

Fractional differential equations have attracted the attention of many authors. For
instance, with different definitions for ∂αt (or with the same one), the linear version
of (1.2) ∂αt u = ∆xu + f(x, t) (or other related linear FPDEs) have been studied in
[3],[6],[7],[8],[13],[10],[11],[12],[15],[16],[21],[35], where the reader can found results about
existence, uniqueness and asymptotic behavior of solutions in Lp-spaces or in spaces of
regular (continuous) functions, and results about fundamental solutions and their prop-
erties when f ≡ 0. In many of these references, the studied equation is presented in a
time-integral form (like (1.1)) which corresponds a time fractional derivative notion (see
e.g. [10],[11],[13],[35]). On the other hand, there are only a few results for the semilinear
equation (1.2) and there is a lack of results in comparison with semilinear heat and wave
equations. In this direction we mention the works [17],[27] in which the authors obtained
results on global existence for (1.2) with, respectively, small initial data in the critical

Lebesgue space L
nρ
2 and in a subset of the critical Besov space Ḃ

n
p
− 2
ρ

p,∞ (with p > nρ
2 ). The

local-in-time existence was also addressed in [17] regardless of the data size. Miao and
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Yang [27] used certain Lp-space-time estimates due to [17] and their results also provide
existence of self-similar solutions.

Models with fractional derivatives can naturally connect structurally different groups
of PDEs and their mathematical analysis may give information about the transition (or
loss) of basic properties from one to another. Two groups are the parabolic and hyperbolic
PDEs whose well-posedness and asymptotic behavior theory presents a lot of differences.
For instance, in Lp, weak-Lp, Besov-spaces, Morrey spaces and other ones, there is an
extensive bibliography for global well-posedness and asymptotic behavior for nonlinear heat
equations (and other parabolic equations), see e.g. [9], [19], [20], [24], [36] and references
therein. On the other hand, for nonlinear wave equations, although there exist results in
Lp [31, 34], weak−Lp [26, 18] and Besov spaces [32], there is no results in Morrey spaces.
The main reason is the loss of decay of the semigroup (and its time-derivative) associated
to the free wave equation, namely ( sin(|ξ|t)

|ξ|t )∨ and (cos(|ξ| t))∨. So, it is natural to wonder
what would be the behavior of the semilinear FPDE (1.2) in the framework of Morrey
spaces, which presents a mixed parabolic-hyperbolic structure.

We show that the equation (1.6) is globally well-posedness for small initial data in the
critical Morrey space Mp,µ with µ = n − 2p/ρ. Such spaces contain strongly singular
functions and, for instance, they are lager than Lp and weak-Lp spaces in the critical case
p = nρ

2 (see (2.8)). There is no inclusion relation between Besov and Morrey space with
the same scaling. In Remark 3.2, we comment how to derive a local-in-time version of
our well-posedness result and discuss an alternative blow up scenario. We also investigate
qualitative properties of solutions such as self-similarity, antisymmetry (and symmetry)
and positivity (see Theorem 3.3). Moreover, we analyze the asymptotic stability of the
solutions and thereby a class of asymptotically self-similar solutions is obtained.

Let us comment some interesting technical points. Due to the semigroup property (2.17),
further restrictions appear in Theorem 3.1 in comparison with semilinear heat equations.
Making the derivative index α go from α = 1 to α = 2, the estimates and corresponding
restrictions become worse, and they are completely lost when α reaches the endpoint 2
(see Lemmas 4.2, 4.3 and 4.5). The proof of the pointwise estimate (4.2) shows that
the “worst parcel” in (2.17) is the term lα(ξ) (see (2.16)). In particular, notice that for
α = 1 (heat semigroup) the upper bound on parameter δ is not necessary, that is, one can
take δ ∈ [0,∞). Finally, based on above observations, our results and estimates suggest
the following: “the semilinear wave equation (α = 2) in Rn is not well-posed in Morrey
spaces”. The mathematical verification of this assertion seems to be an interesting open
problem.

The manuscript is organized as follows. Some basic properties about Morrey spaces and
Mittag-Leffler functions are reviewed in section 2. Our results are stated in section 3 and
their proofs are performed in section 4.

2 Preliminary

In this section some properties about Morrey spaces and Mittag-Leffler functions are
recalled.

2.1 Morrey spaces

The Morrey spaces and some basic properties of them are reviewed in the present
subsection. For further details on theses spaces, the reader is referred to [20, 30, 36, 38].
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Let Dr(x0) denote the open ball in Rn centered at x0 and with radius r > 0. For two
parameters 1 ≤ p <∞ and 0 ≤ µ < n, we define the Morrey spacesMp,µ =Mp,µ(Rn) as
the set of functions f ∈ Lp(Dr(x0)) such that

‖f‖Lp(Dr(x0)) ≤ C r
µ
p , for all x0 ∈ Rn, (2.1)

where C > 0 denotes a constant independent of x0, r and f . The space Mp,µ endowed
with the norm

‖f‖p,µ = sup
r>0,x0∈Rn

r
−µ
p ‖f‖Lp(Dr(x0)) (2.2)

is a Banach space. For s ∈ R and 1 ≤ p < ∞, the homogeneous Sobolev-Morrey space
Ms

p,µ = (−∆)−s/2Mp,µ is a Banach space with norm

‖f‖Ms
p,µ

=
∥∥∥(−∆)s/2f

∥∥∥
p,µ
. (2.3)

Taking p = 1, ‖f‖L1(Dr(x0)) stands for the total variation of f on Dr(x0) and M1,µ is a
space of signed measures. In particular, when µ = 0, M1,0 = M is the space of finite
measures. For p > 1,Mp,0 = Lp andMs

p,0 = Ḣs
p is the homogeneous Sobolev space. With

the natural adaptation in (2.2) for p =∞, the space L∞ corresponds toM∞,µ.
Morrey spaces present the following scaling

‖f(λx)‖p,µ = λ
−n−µ

p ‖f‖p,µ (2.4)

and
‖f(λx)‖Ms

p,µ
= λ

s−n−µ
p ‖f(x)‖Ms

p,µ
, (2.5)

where the exponent s− n−µ
p is called scaling index. We have that

(−∆)l/2Ms
p,µ =Ms−l

p,µ . (2.6)

Let us define the closed subspace ofMp,µ (denoted by M̈p,µ) by means of the property
f ∈ M̈p,µ if and only if

‖f(· − y)− f(·)‖p,µ → 0 as y → 0. (2.7)

This subspace is useful to deal with semigroup of convolution operators when the respective
kernels present a suitable polynomial decay at infinity. In general, such semigroups are only
weakly continuous at t = 0+ inMp,µ, but they are C0-semigroups in M̈p,µ, as it is the case
of {Gα(t)}t≥0. This property is important in order to derive local-in-time well-posedness
for PDEs (see Remark 3.2).

Morrey spaces contain Lebesgue and Marcinkiewicz spaces with the same scaling in-
dexes. Precisely, we have the continuous proper inclusions

Lq(Rn) ⊂ Lq,∞(Rn) ⊂Mp,µ(Rn) (2.8)

where p < q and µ = n(q − p)/q (see e.g. [28] or [1]).
In the next lemma, we remember some important inequalities and inclusions in Morrey

spaces, see e.g. [20, 36].
Lemma 2.1. Suppose that s1, s2 ∈ R, 1 ≤ p, q, r <∞ and 0 ≤ λ, µ, υ < n.

(i) (Inclusion) If p ≤ q and n−µ
p = n−λ

q then

Mq,λ ⊂Mp,µ (2.9)
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(ii) (Sobolev type embedding) If p ≤ q, s2 ≥ s1 and s2 − n−µ
p = s1 − n−µ

q then

Ms2
p,µ ⊂Ms1

q,µ (2.10)

(iii) (Hölder inequality) If 1
r = 1

p + 1
q and υ

r = λ
p + µ

q then fg ∈Mr,υ and

‖fg‖r,υ 6 ‖f‖p,λ‖g‖q,µ. (2.11)

(iv) (Homogeneous function) Let Ω ∈ L∞(Sn−1), 0 < d < n and 1 ≤ r < n/d. Then
Ω(x/|x|)|x|−d ∈Mr,n−dr.

We finish this subsection by recalling estimates for certain multiplier operators onMs
p,µ

(see e.g. [23, 24, 36]).

Lemma 2.2. Let m, s ∈ R, 1 < p < ∞ and 0 ≤ µ < n and F (ξ) ∈ C [n/2]+1(Rn\{0}).
Assume that there is A > 0 such that∣∣∣∣∂kF∂ξk (ξ)

∣∣∣∣ ≤ A |ξ|m−|k| , (2.12)

for all k ∈ (N ∪ {0})n with |k| ≤ [n/2] + 1 and for all ξ 6= 0. Then the multiplier operator
F (D) on S ′/P is bounded fromMs

p,µ toMs−m
p,µ and the following estimate hold true

‖F (D)f‖Ms−m
p,µ
≤ C ‖f‖Ms

p,µ
, (2.13)

where C > 0 is a constant independent of f , and the set S ′/P is the one of equivalence
classes in S ′ modulo polynomials with n variables.

2.2 Mittag-Leffler function

This part is devoted to review basic properties for Mittag-Leffler functions, the symbol
Eα(−tα|ξ|2) and the fundamental solution Kα (see (1.5)). These can be found in [10] and
[17], when n = 1 and n ≥ 2, respectively.

The Mittag-Leffler function Eα(z) is defined via power series by

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, (2.14)

where Γ(α) is the Gamma function. In what follows, we recall some functions which is
useful to handle the symbol of the semigroup Gα(t) (see (1.4)). For 1 < α < 2, let us set

aα(ξ) = |ξ|
2
α e

iπ
α , bα(ξ) = |ξ|

2
α e−

iπ
α , for ξ ∈ Rn, (2.15)

and

lα(ξ) =

{
sin(απ)

π

∫∞
0

|ξ|2sα−1e−s

s2α+2|ξ|2sα cos(απ)+|ξ|4ds if ξ 6= 0

1− 2
α , if ξ = 0.

(2.16)

Lemma 2.3. Let 1 < α < 2 and Kα be as in (1.5). We have that

Eα(−|ξ|2) =
1

α
(exp(aα(ξ)) + exp(bα(ξ))) + lα(ξ) (2.17)
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and
∂kKα
∂xki

(x, t) = λn+k ∂
k

∂xki
Kα(λx, λ

2
α t), (2.18)

for all λ > 0. Moreover, Kα(x, t) ≥ 0, Pα(|x|, 1) = αKα(x, 1) is a probability measure, and

‖Kα(·, t)‖L1(Rn) =
1

α
, for all t > 0. (2.19)

Proof. Except for (2.18), all properties contained on the statement can be found in
[10] and [17] when n = 1 and n ≥ 2, respectively.

In order to prove (2.18), we use Fourier inversion and (1.5) to obtain

∂kKα
∂xki

(x, t) =

∫
Rn
eix·ξ(−iξi)kEα(−tα|ξ|2)dξ = t−n

α
2

∫
Rn
e
ix· y√

tα (−it−
α
2 yi)

kEα(−|y|2)dy

= t−
α
2

(n+k)

∫
Rn
e
i x√

tα
·y

(−iyi)kEα(−|y|2)dy = t−
α
2

(n+k)∂
kKα
∂xki

(
x√
tα
, 1). (2.20)

The desired identity follows by taking λ = 1/
√
tα in (2.20).

3 Functional setting and results

We shall employ the Kato-Fujita method (see [19]) to integral equation (1.6), which
should be understood in the Bochner sense in Morrey spaces.

In what follows, we perform a scaling analysis in order to choose the correct indexes for
Kato-Fujita spaces. A simple computation by using (1.2) shows that the indexes k1 = 2/ρ
and k2 = 2/α are the unique ones such that the function uλ given by

uλ(x, t) = λk1u(λx, λk2t) (3.1)

is a solution of (1.2), for each λ > 0, whenever u is also. The scaling map for (1.2) is
defined by

u(x, t)→ uλ(x, t). (3.2)

Making t→ 0+ in (3.2) one obtains the following scaling for the initial condition

u0(x)→ λ2/ρuλ(x). (3.3)

Solutions invariant by (3.2), that is

u(x, t) = uλ(x, t) for all λ > 0, (3.4)

are called self-similar ones. Since we are interested in such solutions, it is suitable to
consider critical spaces for u(x, t) and u0, i.e., the ones whose norms are invariant by (3.2)
and (3.3), respectively.

Consider the parameters

µ = n− 2p/ρ and β =
α

ρ
− αn− µ

2q
, (3.5)
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and let BC((0,∞), X) stands for the class of bounded and continuous functions from
(0,∞) to a Banach space X. We take u0 belonging to the critical space Mp,µ and study
(1.6) in the Kato-Fujita type space

Hq = {u(x, t) ∈ BC((0,∞);Mp,µ) : tβu ∈ BC((0,∞);Mq,µ)}, (3.6)

which is a Banach space with the norm

‖u‖Hq = sup
t>0
‖u(·, t)‖p,µ + sup

t>0
tβ‖u(·, t)‖q,µ. (3.7)

Notice that the norm (3.7) is invariant by scaling transformation (3.2).
From Lemma 2.1, a typical data belonging toMp,µ is the homogeneous function

u0(x) = Ω(
x

|x|
) |x|−

2
ρ (3.8)

where 1 ≤ p < nρ
2 and Ω is a bounded function on sphere Sn−1. We refer the book [14,

chapter 3] for more details about self-similar solutions and PDE’s.
Our well-posedness result reads as follows.

Theorem 3.1 (Well-posedness). Let 0 < ρ < ∞, 1 < α < 2, 1 < p < nρ
2 , and µ =

n− 2p/ρ. Suppose that n−µ
p −

n−µ
q < 2 and

1− 1

α

ρ

ρ+ 1
<
p

q
<

1

α
and

ρp

p− 1
< q <∞. (3.9)

(i) (Existence and uniqueness) There exist ε > 0 and δ = δ(ε) such that if ‖u0‖p,µ ≤ δ
then the equation (1.1) has a mild solution u ∈ Hq, which is the unique one in the
ball D2ε = {u ∈ Hq; ‖u‖Hq ≤ 2ε}. Moreover, u ⇀ u0 in D′(Rn) as t→ 0+

(ii) (Continuous dependence on data) Let I0 = {u0 ∈ Mp,µ; ‖u‖p,µ ≤ δ}. The data-
solution map is Lipschitz continuous from I0 to D2ε.

Remark 3.2.

(i) With a slight adaptation of the proof of Theorem 3.1, we could treat more general
nonlinearities. Precisely, one could consider (1.1) and (1.2) with f(u) instead of
u |u|ρ, where f ∈ C(R), f(0) = 0 and there is C > 0 such that

|f(a)− f(b)| ≤ C|a− b|(|a|ρ + |b|ρ), for all a, b ∈ R.

(ii) (Local-in-time well-posedness) A local version of Theorem 3.1 holds true by replacing
the smallness condition on initial data by a smallness one on existence time T > 0.
Here we should consider the local-in-time space

Hq,T = {u(x, t) ∈ BC((0, T );Mp,µ) : lim sup
t→0+

tβ‖u(·, t)‖q,µ = 0}, (3.10)

and u0 ∈ Mp,µ such that lim supt→0+ t
β‖Gα(t)u0‖q,µ = 0. In particular, this condi-

tion is verified when u0 belongs to M̈p,µ (see (2.7)). Thus we need to restrict our-
selves to the suitable subspace M̈p,µ  Mp,µ which is the maximal closed one where
the group of translation is continuous (see [20, Lemma 3.1]). As already pointed in
subsection 2.1, the main reason for that is the semigroup {Gα(t)}t≥0 is not strongly
continuous at t = 0+ onMp,µ.

7



(iii) (Alternative blow up) The subspace M̈p,µ does not contain, in particular, homoge-
neous functions and so we are not able to obtain local solutions for arbitrary data
u0 ∈ Mp,µ as in Theorem 3.1 by means of the approach employed in the present pa-
per. These data correspond to self-similar solutions (see Theorem 3.3 below). How-
ever, in view of item (ii) of this remark, if u0 ∈ M̈p,µ then the local-in-time version
of Theorem 3.1 gives a solution u ∈ C([0, Tmax);Mp,µ), where Tmax > 0 is the maxi-
mal existence time. Moreover, an alternative blow up holds true, that is, there holds
either Tmax = ∞ or else limt→T−max

‖u(·, t)‖Mp,µ
= ∞ with Tmax < ∞. We refer the

reader to [2, 4, 25] for more results about blow up (self-similar or not) for nonlinear
diffusion equations.

Let O(n) be the orthogonal matrix group in Rn and let G be a subset of O(n). A function
h is said symmetric and antisymmetric under the action of G when h(x) = h(Mx) and
h(x) = −h(Mx), respectively, for every M ∈ G.
Theorem 3.3. Under the hypotheses of Theorem 3.1.

(i) (Self-similarity) If u0 is a homogeneous function of degree −2
ρ , then the mild solution

given in Theorem 3.1 is self-similar.

(ii) (Symmetry and antisymmetry) The solution u(x, t) is antisymmetric (resp. symmet-
ric) for t > 0, when u0 is antisymmetric (resp. symmetric) under G.

(iii) (Positivity) If u0 6≡ 0 and u0(x) ≥ 0 (resp. u0(x) ≤ 0) then u is positive (resp.
negative).

Remark 3.4. (Special examples of symmetry and antisymmetry)

(i) The case G = O(n) corresponds to radial symmetry. Therefore, it follows from Theorem
3.3 (ii) that if u0 is radially symmetric then u(x, t) is radially symmetric for t > 0.

(ii) Let Mx = −x be the reflection over the origin and let IRn be the identity map. The
case G = {IRn ,M} corresponds to parity of functions, that is, h(x) is even and odd
when h(x) = h(−x) and h(x) = −h(−x), respectively. So, from Theorem 3.3 (ii), we
have that the solution u(x, t) is even (resp. odd) for t > 0, when u0(x) is even (resp.
odd).

The next theorem gives a criterion for the asymptotic stability of solutions and provides
a class of asymptotically self-similar solutions.
Theorem 3.5. Under the hypotheses of Theorem 3.1. Let u and v be two global mild
solutions for (1.1) given by Theorem 3.1, with respective data u0 and v0. We have that

lim
t→+∞

‖u(·, t)− v(·, t)‖p,µ = lim
t→+∞

tβ‖u(·, t)− v(·, t)‖q,µ = 0 (3.11)

if and only if

lim
t→+∞

(‖Gα(t)(u0 − v0)‖p,µ + tβ‖Gα(t)(u0 − v0)‖q,µ) = 0. (3.12)

Remark 3.6. (Asymptotically self-similar solutions) In Theorem 3.5, let v0 = u0 + ϕ
with ϕ ∈ C∞0 (Rn) small enough and suppose that u0 is a function homogeneous of degree
−2
ρ . We have that ϕ = v0 − u0 satisfies (3.12) and then the solution v(x, t) converges in

the sense of (3.11) to the self-similar solution u as t → +∞, i.e., it is asymptotically
self-similar.
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4 Proofs of theorems

We start by recalling an elementary fixed point lemma whose proof can be found in [9].

Lemma 4.1. Let (X, ‖ · ‖) be a Banach space and 0 < ρ <∞. Suppose that B : X → X
satisfies B(0) = 0 and

‖B(x)−B(z)‖ ≤ K‖x− z‖(‖x‖ρ + ‖z‖ρ).

Let R > 0 be the unique positive root of 2ρ+1KRρ − 1 = 0. Given 0 < ε < R and y ∈ X
such that ‖y‖ ≤ ε, there exists a solution x ∈ X for the equation x = y+B(x) which is the
unique one in the closed ball D2ε = {z ∈ X; ‖z‖ ≤ 2ε}. Moreover, if ‖ȳ‖ ≤ ε and x̄ ∈ D2ε

satisfies the equation x̄ = ȳ +B(x̄) then

‖x− x̄‖ ≤ 1

1− 2ρ+1Kερ
‖y − ȳ‖. (4.1)

4.1 Linear estimates

The aim of this subsection is to derive estimates for the semigroupGα(t). For that matter
we will need pointwise estimates for the fundamental solution Kα in Fourier variables.

Lemma 4.2. Let 1 ≤ α < 2 and 0 ≤ δ < 2. There is C := C(α, δ, n) > 0 such that∣∣∣∣ ∂k∂ξk [|ξ|δ Eα(−|ξ|2)
]∣∣∣∣ ≤ C |ξ|−|k| , (4.2)

for all k ∈ (N ∪ {0})n with |k| ≤ [n/2] + 1 and for all ξ 6= 0.

Proof. In view of (2.17), the symbol Eα(−|ξ|2) is composed by two parcel, namely

Iα(ξ) =
1

α
exp(|ξ|

2
α e

iπ
α ) +

1

α
exp(|ξ|

2
α e−

iπ
α ) (4.3)

and

lα(ξ) =
sin(απ)

π

∫ ∞
0

|ξ|2sα−1e−s

s2α + 2|ξ|2sα cos(απ) + |ξ|4
ds (4.4)

=
sin(απ)

απ

∫ ∞
0

exp(−|ξ|
2
α s

1
α )

s2 + 2s cos(απ) + 1
ds, (4.5)

where the change s 7→ |ξ|
2
α s

1
α was used from (4.4) to (4.5). For δ > 0, we have that∣∣∣∣ ∂k∂ξk [|ξ|δ Iα(ξ)
]∣∣∣∣ ≤ C(|ξ|δ−|k| + |ξ|δ+

2|k|
α ) exp(|ξ|

2
α cos(

π

α
))

≤ C |ξ|−|k| . (4.6)

On the other hand, ∣∣∣∣ ∂k∂ξk [|ξ|δ lα(ξ)
]∣∣∣∣ ≤ C ∫ ∞

0

g(ξ, s)

s2 + 2s cos(απ) + 1
ds,
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where

g(ξ, s) =
(
|ξ|δ−|k| + |ξ|δ−(|k|−1) |ξ|(

2−α
α

) s
1
α + |ξ|δ−(|k|−2) |ξ|(

2−α
α

)2 s
2
α + ...+ |ξ|δ |ξ|(

2−α
α

)|k| s
|k|
α

)
exp(−|ξs

1
2 |

2
α )

= |ξ|−|k|
(
|ξ|δ + |ξ|δ |ξ|

2
α s

1
α + |ξ|δ |ξ|(

2
α

)2 s
2
α + ...+ |ξ|δ |ξ|(

2
α

)|k| s
|k|
α

)
exp(−|ξs

1
2 |

2
α )

= s−
δ
2 |ξ|−|k|

(∣∣∣ξs 1
2

∣∣∣δ +
∣∣∣ξs 1

2

∣∣∣ 2α+δ
+
∣∣∣ξs 1

2

∣∣∣ 4α+δ
+ ...+

∣∣∣ξs 1
2

∣∣∣ 2|k|α +δ
)

exp(−|ξs
1
2 |

2
α )

≤ Cs−
δ
2 |ξ|−|k| .

Therefore, ∣∣∣∣ ∂k∂ξk [|ξ|δ lα(ξ)
]∣∣∣∣ ≤ C |ξ|−|k| ∫ ∞

0

s−
δ
2

s2 + 2s cos(απ) + 1
ds,

≤ C |ξ|−|k| , (4.7)

because δ < 2. Now the estimate (4.2) follows from (4.6) and (4.7).

In the sequel we prove key estimates on Morrey spaces for the semigroup {Gα(t)}t≥0.

Lemma 4.3. Let 1 ≤ α < 2, 1 < p ≤ q < ∞ , 0 ≤ µ < n, and n−µ
p −

n−µ
q < 2. There

exists C > 0 such that

‖Gα(t)f‖q,µ ≤ Ct−
α
2

(n−µ
p
−n−µ

q
)‖f‖p,µ, (4.8)

for all f ∈Mp,µ.

Proof. Let δ = n−µ
p −

n−µ
q , fλ(x) = f(λx) and hα(x, t) defined through ĥα(ξ, t) =

|ξ|δ Eα(−|ξ|2tα). Consider the multiplier operators

F (D)f = [(−∆)
δ
2Gα(1)]f = hα(·, 1) ∗ f(·),(

[(−∆)
δ
2Gα(t)]f

)
(x) = t

−δ α2 (hα(·, 1) ∗ ftα/2(·))t−α/2 (x)

= t
−δ α2 (F (D)(ftα/2))t−α/2 (x), (4.9)

where the symbol of F (D) is |ξ|δ Eα(−|ξ|2). Lemma 4.2 implies that F (ξ) satisfies (2.12)
with m = 0. Then, we use (2.4) to obtain∥∥(F (D)(ftα/2))t−α/2

∥∥
p,µ

= t
−α

2
(n−µ

p
) ‖F (D)(ftα/2)‖p,µ

≤ Ct−
α
2

(n−µ
p

) ‖ftα/2‖p,µ
= Ct

−α
2

(n−µ
p

)
t
α
2

(n−µ
p

) ‖f‖p,µ
= C ‖f‖p,µ . (4.10)

Now, using Sobelev embedding (2.10), and afterwards (4.9), we obtain

‖Gα(t)f‖q,µ ≤ ‖Gα(t)f‖Mδ
p,µ

=
∥∥∥(−∆)

δ
2Gα(t)f

∥∥∥
p,µ

= t
−δ α2 ∥∥(F (D)(ftα/2))t−α/2

∥∥
p,µ

≤ Ct
−α2 (

n−µ
p −n−µq )

‖f‖p,µ ,
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because of (4.10).

Using Lemma 4.3 we can estimate the Hq-norm in of the linear part in (1.6) by using
the initial data u0 ∈Mp,µ.

Lemma 4.4. Let 1 ≤ α < 2, 0 < ρ < ∞, 1 < p ≤ nρ
2 , p ≤ q < ∞, µ = n − 2p/ρ and

n−µ
p −

n−µ
q < 2. There exists L > 0 such that

‖Gα(t)u0‖Hq ≤ L‖u0‖p,µ, (4.11)

for all u0 ∈Mp,µ.

Proof. It follows from (4.8) that

sup
t>0
‖Gα(t)u0‖p,µ + sup

t>0
tβ‖Gα(t)u0‖q,µ ≤ C

(
‖u0‖p,µ + sup

t>0
t
β−α

2
(n−µ

p
−n−µ

q
)‖u0‖p,µ

)
= C‖u0‖p,µ,

and then we get (4.11).

4.2 Nonlinear estimates

Firstly, let us recall the nonlinear parcel in (1.6) given by

Bα(u)(t) =

∫ t

0
Gα(t− s)

∫ s

0
Rα−1(s− τ)|u(τ)|ρu(τ)dτds. (4.12)

Before estimating Bα we recall a real number inequality. Given ρ > 0, there is C > 0 such
that

|a |a|ρ − b |b|ρ| ≤ C|a− b|(|a|ρ + |b|ρ), for all a, b ∈ R. (4.13)

Lemma 4.5 (Nonlinear estimate). Under the assumptions of Theorem 3.1. There is a
positive constant K such that

‖Bα(u)−Bα(v)‖Hq ≤ K‖u− v‖Hq(‖u‖
ρ
Hq

+ ‖v‖ρHq), (4.14)

for all u, v ∈ Hq.

Proof. The proof is performed in two steps.
First step. We start by estimating the norm ‖ · ‖q,µ. Thanks to Lemma 4.3, Hölder

inequality (2.11) and the inequality (4.13), we obtain

‖B(u)(t)−B(v)(t)‖q,µ ≤
∫ t

0
‖Gα(t− s)

∫ s

0
Rα−1(s− τ)[f(u(τ))− f(v(τ))]dτ‖q,µds

≤ C
∫ t

0
(t− s)γ1‖

∫ s

0
Rα−1(s− τ)[f(u(τ))− f(v(τ))]dτ‖ q

ρ+1
,µds

≤ C
∫ t

0
(t− s)γ1

∫ s

0
Rα−1(s− τ)‖f(u(τ))− f(v(τ))‖ q

ρ+1
,µdτds

≤ C
∫ t

0
(t− s)γ1

∫ s

0
Rα−1(s− τ)‖u− v‖q,µ(‖u‖ρq,µ + ‖v‖ρq,µ)dτds,

(4.15)
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where Rα(s) = sα−1/Γ(α), f(u(τ)) = |u(τ)|ρu(τ) and γ1 = α
2 (n−µq −

n−µ
q/(ρ+1)) = −αρn−µ2q .

Now we define θ(s) by

θ(s) =

∫ s

0
Rα−1(s− τ)‖u(τ)− v(τ)‖q,µ(‖u(τ)‖ρq,µ + ‖v(τ)‖ρq,µ)dτ

=

∫ s

0
Rα−1(s− τ)τ−β(ρ+1)τβ‖u(τ)− v(τ)‖q,µ(τβρ‖u(τ)‖ρq,µ + τβρ‖v(τ)‖ρq,µ)dτ,

(4.16)

and rewrite (4.15) as

‖B(u)(·, t)−B(v)(·, t)‖q,µ ≤ C
∫ t

0
(t− s)γ1θ(s)ds. (4.17)

The function θ(s) can be estimated as

θ(s) ≤
∫ s

0
Rα−1(s− τ)τ−β(ρ+1)dτ ‖u− v‖Hq(‖u‖

ρ
Hq

+ ‖v‖ρHq). (4.18)

Making the change of variables τ = zs and afterwards s = tω, we get∫ t

0
(t− s)γ1

∫ s

0
Rα−1(s− τ)τ−β(ρ+1)dτds = C

∫ t

0
(t− s)γ1sϑ

∫ 1

0
(1− z)α−2z−β(ρ+1)dzds

(4.19)

= Ctϑ+γ1+1

∫ 1

0
(1− ω)γ1ωϑdω, (4.20)

where ϑ = α− 1− β(ρ+ 1) and

ϑ+ γ1 + 1 = α− 1− β(ρ+ 1)− αρn− µ
2q

+ 1 = βρ− β(ρ+ 1) = −β.

The convergence of the beta functions appearing in (4.19) and (4.20) follows at once from
the hypotheses on parameters. Therefore∫ t

0
(t− s)γ1

∫ s

0
Rα−1(s− τ)τ−β(ρ+1)dτds = Ct−β. (4.21)

It follows from (4.17), (4.18) and (4.21) that

sup
t>0

tβ‖B(u)(t)−B(v)(t)‖q,µ ≤ K1‖u− v‖Hq(‖u‖
ρ
Hq

+ ‖v‖ρHq). (4.22)

Second step. Here we deal with the norm ‖ · ‖p,µ. Notice that we can choose r > 1 such
that 1

r = 1
p + 1

q/ρ . Then

‖B(u)(t)−B(v)(t)‖p,µ

≤ C
∫ t

0
(t− s)γ2

∫ s

0
Rα−1(s− τ) ‖|u− v| (|u|ρ + |v|ρ)‖r,µ dτds

≤ C
∫ t

0
(t− s)γ2

∫ s

0
Rα−1(s− τ)‖u− v‖p,µ(‖u‖ρq,µ + ‖v‖ρq,µ)dτds (4.23)

=

∫ t

0
(t− s)γ2

∫ s

0
Rα−1(s− τ)τ−ρβ ‖u− v‖p,µ(τρβ‖u‖ρq,µ + τρβ‖v‖ρq,µ)dτds

≤ C
∫ t

0
(t− s)γ2

∫ s

0
(s− τ)α−2τ−ρβdτds ‖u− v‖Hq(‖u‖

ρ
Hq

+ ‖v‖ρHq) (4.24)

= K2 ‖u− v‖Hq(‖u‖
ρ
Hq

+ ‖v‖ρHq), (4.25)
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where γ2 = α
2 (n−µp −

n−µ
r ) = ρβ − α = γ1, and we have proceeded similarly to (4.19) from

(4.24) to (4.25).
In view of (3.7), the inequalities (4.22) and (4.25) together imply the desired estimate

(4.14) with K = K1 +K2.

4.3 Proof of Theorem 3.1

Part (i): Let R =
(

1
2ρ+1K

) 1
ρ , 0 < ε < R and δ = ε

L , where L > 0 and K > 0 are the
constants obtained in Lemmas 4.4 and 4.5, respectively. Taking y = Gα(t)u0, Lemma 4.4
yields

‖y‖Hq = ‖Gα(t)u0‖Hq ≤ L ‖u0‖p,µ ≤ ε,

because ‖u0‖p,µ ≤ δ. Thanks to the inequality (4.14), we can take X = Hq in Lemma 4.1
and conclude that there exists a global mild solution u ∈ Hq for (1.1), which is the unique
solution satisfying ‖u‖Hq ≤ 2ε.

The convergence u(t) ⇀ u0 in D′(Rn) follows similarly from standard arguments found,
for instance, in [37].

Part (ii): Let u, v be two mild solutions with initial data u0, v0 belonging to I0,
respectively. We can use (4.1) and Lemma 4.4 to estimate

‖u− v‖Hq ≤
1

1− 2ρ+1Kερ
‖Gα(t)u0 −Gα(t)v0‖p,µ

=
1

1− 2ρ+1Kερ
‖Gα(t)(u0 − v0)‖p,µ

≤ L

1− 2ρ+1Kερ
‖u0 − v0‖p,µ,

as desired.

4.4 Proof of Theorem 3.3

Part (i): Let Φ(x, t) = Gα(t)u0. Using that u0 is homogeneous of degree −2
ρ and (2.18),

it is not to difficult to check that

Φ(x, t) = Φλ(x, t) = λ
2
ρΦ(λx, λ

2
α t),

for every λ > 0. Also, we have that [Bα(u, u)]λ = Bα(uλ, uλ), for all λ > 0,where [Ω(x, t)]λ

stands for λ
2
ρΩ(λx, λ

2
α t). It follows that uλ is a solution for (1.6) because u is a solution.

Due to the norm in Hq is scaling invariant, we have that ‖uλ‖Hq = ‖u‖Hq ≤ 2ε. From the
uniqueness result contained in Theorem 3.1 (i), it follows that

u(x, t) ≡ uλ(x, t), for every λ > 0,

that is, u is self-similar.
Part (ii): Let M ∈ G and u0 be antisymmetric. Using that M is orthogonal, the

property u0(Mx) = −u0(x) can be expressed in Fourier variables as

−û0(ξ) = [u0(Mx)]∧(ξ) = û0(M−1ξ) (4.26)
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Again denoting Φ(x, t) = Gα(t)u0, we obtain from (4.26) that

[Φ(Mx, t)]∧(ξ) = Eα(−tα|M−1ξ|2)û0(M−1ξ)

= −Eα(−tα|ξ|2)û0(ξ)

= −Φ̂(x, t)(ξ),

which shows that Gα(t)u0 is antisymmetric for each fixed t > 0. Similarly, we can show
that Bα(u) is antisymmetric whether u is also. So, employing an induction argument, one
can prove that each element uk of the Picard sequence

u1(x, t) = Φ(x, t) (4.27)
uk(x, t) = Φ(x, t) +Bα(uk−1)(x, t), k = 2, 3, · · · (4.28)

is antisymmetric. Since uk → u in Hq, then the sequence (4.27)-(4.28) also converges (up
a subsequence) a.e. x ∈ Rn and t > 0. It follows that u(x, t) is antisymmetric for t > 0,
because pointwise convergence preserves antisymmetry. We finish this part by observing
that the proof of the symmetric property is analogous.

Part (iii): We will only prove the statement concerning positive solutions, because the
one about negative solutions follows similarly.

Let uk be the sequence (4.27)-(4.28). From Lemma 2.3, we have that

u1(x, t) = Gα(t)u0 = Kα(·, t) ∗ u0,

with positive kernel Kα(x, t) ≥ 0. Hence if u0 ≥ 0 with u0 6≡ 0 a.e. in Rn then u1(x, t) > 0
in Rn, for each t > 0. Moreover, Bα(u) ≥ 0 whenever u(x, t) ≥ 0. Therefore, an induction
argument on k shows that uk(x, t) > 0, for all k ∈ N.We have already seen in the last proof
that (up a subsequence) uk → u a.e. x ∈ Rn and t > 0. Therefore the limit u(x, t) ≥ 0
a.e. x ∈ Rn and t > 0. But, since u verifies (1.6), we get

u = u1(x, t) +Bα(u) ≥ u1(x, t) > 0,

for a.e. x ∈ Rn and t > 0.

4.5 Proof of Theorem 3.5

We only show that (3.12) implies (3.11), because the converse statement follows analo-
gously. Subtracting the integral equations verified by u and v, and then taking the norms
tβ‖ · ‖q,µ and ‖ · ‖p,µ we obtain

tβ‖u(·, t)− v(·, t)‖q,µ ≤ tβ‖Gα(t)(u0 − v0)‖q,µ + tβ‖Bα(u)−Bα(v)‖q,µ
:= tβ‖Gα(t)(u0 − v0)‖q,µ + I1(t) (4.29)

and

‖u(·, t)− v(·, t)‖p,µ ≤ ‖Gα(t)(u0 − v0)‖p,µ + ‖Bα(u)−Bα(v)‖p,µ
≤ ‖Gα(t)(u0 − v0)‖p,µ + I2(t). (4.30)

Recalling that ‖u‖Hq ≤ 2ε and ‖v‖Hq ≤ 2ε, and the inequality (4.15), we can estimate the
term I1(t) as

I1(t) ≤ Ctβ
∫ t

0
(t− s)γ1

∫ s

0
Rα−1(s− τ)‖u(τ)− v(τ)‖q,µ‖ |u(τ)|ρ + |v(τ)|ρ‖q,µdτds

≤ tβ2(2ε)ρC

∫ t

0
(t− s)γ1

∫ s

0
Rα−1(s− τ)τ−β(ρ+1)Σ1(τ)dτds, (4.31)
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where Σ1(τ) = tβ‖u(τ) − v(τ)‖q,µ and γ1 = −αρn−µ2q . Similarly, in view of (4.23), the
integral I2(t) can be estimated as

I2(t) ≤ (2ρ+1ερ)C

∫ t

0
(t− s)γ2

∫ s

0
Rα−1(s− τ)τ−βρΣ2(τ)dτds, (4.32)

where Σ2(τ) = ‖u(τ)− v(τ)‖p,µ and γ2 = ρβ − α.
Now setting Σ(τ) = Σ1(τ) + Σ2(τ) and making the changes τ = sz and s = tσ in (4.31)

and (4.32), we get

I1(t) + I2(t) ≤ (2ρ+1ερ)C

∫ 1

0
(1− σ)γ1σα−1−β(ρ+1)

∫ 1

0
Rα−1(1− z)z−β(ρ+1)Σ(tσz)dzdσ+

+(2ρ+1ερ)C

∫ 1

0
(1− σ)γ2σα−1−βρ

∫ 1

0
Rα−1(1− z)z−βρΣ(tσz)dzdσ. (4.33)

Notice that lim supt→+∞Σ(t) <∞ because u, v ∈ Hq. We claim that

Π := lim sup
t→+∞

Σ(t) = 0, (4.34)

which is equivalent to (3.11). To see this, we take lim supt→+∞ in (4.33) to get

lim sup
t→+∞

[I1(t) + I2(t)] ≤ (2ρ+1ερ)C

∫ 1

0
(1− σ)γ1σα−1−β(ρ+1)dσ lim sup

t→+∞

(∫ 1

0
Rα−1(1− z)z−β(ρ+1)Σ(tσz)dz

)
+ (2ρ+1ερ)C

∫ 1

0
(1− σ)γ2σα−1−βρdσ lim sup

t→+∞

(∫ 1

0
Rα−1(1− z)z−βρΣ(tσz)dz

)
≤ (2ρ+1ερ)C

(∫ 1

0
(1− σ)γ1σα−1−β(ρ+1)dσ

∫ 1

0
Rα−1(1− z)z−β(ρ+1)dz

)
Π

+ (2ρ+1ερ)C

(∫ 1

0
(1− σ)γ2σα−1−βρdσ

∫ 1

0
Rα−1(1− z)z−βρdz

)
Π

= (K1 +K2)(2ρ+1ερ)Π. (4.35)

Thanks to the inequalities (4.29), (4.30), (4.35) and the hypothesis (3.12), we obtain

Π ≤ lim sup
t→+∞

(tβ‖Gα(t)(u0 − v0)‖q,µ + ‖Gα(t)(u0 − v0)‖p,µ) + lim sup
t→+∞

[I1(t) + I2(t)]

≤ 0 + (K1 +K2)(2ρ+1ερ)Π

= (2ρ+1ερK)Π (4.36)

which leads us to Π = 0, because 2ρ+1ερK < 1.
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