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Abstract

This paper is concerned with a fractional PDE that interpolates semilinear heat
and wave equations. We show results on global-in-time well-posedness for small initial
data in the critical Morrey spaces and space dimension n > 1. We also remark how
to derive the local-in-time version of the results. Qualitative properties of solutions
like self-similarity, antisymmetry and positivity are also investigated. Moreover, we
analyze the asymptotic stability of the solutions and obtain a class of asymptotically
self-similar solutions.
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1 Introduction

Differential equations of fractional order appear naturally in several fields such as
physics, chemistry and engineering by modelling phenomena in viscoelasticity, thermoe-
lasticity, processes in media with fractal geometry, heat flow in material with memory and
many others. The two most common types of fractional derivatives acting on time variable
t are those of Riemann-Liouville and Caputo.We refer the surveys [21, 22|, [33] and [29] in
which the reader can find a good bibliography for applications on those fields.

Here we are interested in a semilinear integro-partial differential equation, which inter-
polates the semilinear heat and wave equations, and reads as

1/t o . n
u(x,t) = uo(x) + 1"(04)/0 (t — )21 (Ayu(s) + [u(s)|[Pu(s))ds, in z € R", t >0, (1.1)
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where n > 1,1 < a < 2,0 < p < oo, I'(a) denotes the Gamma function and A, is
the laplacian in the z-variable. This equation is formally equivalent to the IVP for the
fractional partial differential equation (FPDE)

Ofu = Agu+ |ulPu, inR" ¢t>0, (1.2)
u(z,0) = up and dyu(z,0) =0 in R", (1.3)
where 9fu = D 1(yu) and D! stands for the Riemann-Liouville derivative of order

a — 1. For a Lebesgue measurable function f and k = [n] + 1 with n > 0 (|-] is the floor
function), we have that

Let {G4(t)}+>0 denote the semigroup of operators defined via Fourier transform by

Ga(t)f = Ba(=t"[€) F(©), (1.4)
where Eq(2) =Y 12, F(#k-&-l) is the Mittag-LefHler function. Taking @ =1 and a = 2, the

operator G (t) has symbol E;(—t[¢]?) = et and Eo(—1%[€]?) = cos(|€|t), respectively,
and (1.2) becomes the semilinear heat and wave equations. When 1 < a@ < 2 the semigroup
possesses mixed properties of the heat and wave semigroups (see (2.15)-(2.17)). In original
variables, the symbol E,(—t%|£]?) corresponds to the fundamental solution Ko (x,t) of the
linear part of (1.2) (see [10]), that is,

Kolz,t) = /n e TE B, (—tY]?)dE. (1.5)

The problem (1.2)-(1.3) (or (1.1)) can be formally converted to the integral equation (see

[17])
u(z,t) = Go(t)uo(x) + Ba(u), (1.6)

with

Ba(u)(t) = /0 Galt — s) /0 " Ru1(s — P)u(r)Pulr)drds, (1.7)

where R, (s) = s771/T'(n). Throughout this paper a mild solution for (1.2)-(1.3) (or (1.1))
is a function u satisfying (1.6).

Fractional differential equations have attracted the attention of many authors. For
instance, with different definitions for 9f* (or with the same one), the linear version
of (1.2) 9fu = Ayu + f(x,t) (or other related linear FPDEs) have been studied in
BLICLITTELI 30 [ 2], 5], 16],[21],[35], where the reader can found results about
existence, uniqueness and asymptotic behavior of solutions in LP-spaces or in spaces of
regular (continuous) functions, and results about fundamental solutions and their prop-
erties when f = 0. In many of these references, the studied equation is presented in a
time-integral form (like (1.1)) which corresponds a time fractional derivative notion (see
e.g. [LO],[L1],]13],[35]). On the other hand, there are only a few results for the semilinear
equation (1.2) and there is a lack of results in comparison with semilinear heat and wave
equations. In this direction we mention the works [17],[27] in which the authors obtained

results on global existence for (1.2) with, respectively, small initial data in the critical
2

Lebesgue space L'Z and in a subset of the critical Besov space Bﬁ oo’ (with p > %), The
local-in-time existence was also addressed in [17] regardless of the data size. Miao and



Yang [27] used certain LP-space-time estimates due to [17] and their results also provide
existence of self-similar solutions.

Models with fractional derivatives can naturally connect structurally different groups
of PDEs and their mathematical analysis may give information about the transition (or
loss) of basic properties from one to another. Two groups are the parabolic and hyperbolic
PDEs whose well-posedness and asymptotic behavior theory presents a lot of differences.
For instance, in LP, weak-LP, Besov-spaces, Morrey spaces and other ones, there is an
extensive bibliography for global well-posedness and asymptotic behavior for nonlinear heat
equations (and other parabolic equations), see e.g. [9], [19], [20], [24], [30] and references
therein. On the other hand, for nonlinear wave equations, although there exist results in
LP |31, 34], weak—LP [26, 18] and Besov spaces [32], there is no results in Morrey spaces.
The main reason is the loss of decay of the semigroup (and its time-derivative) associated
to the free wave equation, namely (%)v and (cos(|¢]t))Y. So, it is natural to wonder
what would be the behavior of the semilinear FPDE (1.2) in the framework of Morrey
spaces, which presents a mixed parabolic-hyperbolic structure.

We show that the equation (1.6) is globally well-posedness for small initial data in the
critical Morrey space M, ,, with 1 = n — 2p/p. Such spaces contain strongly singular
functions and, for instance, they are lager than LP and weak-LP spaces in the critical case
p = " (see (2.8)). There is no inclusion relation between Besov and Morrey space with
the same scaling. In Remark 3.2, we comment how to derive a local-in-time version of
our well-posedness result and discuss an alternative blow up scenario. We also investigate
qualitative properties of solutions such as self-similarity, antisymmetry (and symmetry)
and positivity (see Theorem 3.3). Moreover, we analyze the asymptotic stability of the
solutions and thereby a class of asymptotically self-similar solutions is obtained.

Let us comment some interesting technical points. Due to the semigroup property (2.17),
further restrictions appear in Theorem 3.1 in comparison with semilinear heat equations.
Making the derivative index « go from a = 1 to a = 2, the estimates and corresponding
restrictions become worse, and they are completely lost when « reaches the endpoint 2
(see Lemmas 4.2, 4.3 and 4.5). The proof of the pointwise estimate (4.2) shows that
the “worst parcel” in (2.17) is the term [o(§) (see (2.16)). In particular, notice that for
a =1 (heat semigroup) the upper bound on parameter 0 is not necessary, that is, one can
take § € [0,00). Finally, based on above observations, our results and estimates suggest
the following: “the semilinear wave equation (o = 2) in R™ is not well-posed in Morrey
spaces”. The mathematical verification of this assertion seems to be an interesting open
problem.

The manuscript is organized as follows. Some basic properties about Morrey spaces and
Mittag-Leffler functions are reviewed in section 2. Our results are stated in section 3 and
their proofs are performed in section 4.

2 Preliminary

In this section some properties about Morrey spaces and Mittag-Leffler functions are
recalled.
2.1 Morrey spaces

The Morrey spaces and some basic properties of them are reviewed in the present
subsection. For further details on theses spaces, the reader is referred to [20, 30, 36, 38].



Let D,(zp) denote the open ball in R™ centered at xy and with radius r > 0. For two
parameters 1 < p < oo and 0 < p < n, we define the Morrey spaces M, , = M,, ,(R") as
the set of functions f € LP(D,(xo)) such that

HfHLP(Dr(xo)) < CT%, for all ¢ € R", (2.1)

where C' > 0 denotes a constant independent of zg,r and f. The space M, , endowed
with the norm

_ K
ppu= Sup T p||f||LP(Dr(xo)) (22)

r>0,x0ER™

I1f

is a Banach space. For s € R and 1 < p < oo, the homogeneous Sobolev-Morrey space
M, = (=A)~*/2M,,,, is a Banach space with norm

17llagg,, = =272 (2.3)

Taking p = 1, ||fl|1(D,(x)) Stands for the total variation of f on D, (7o) and My, is a
space of signed measures. In particular, when ;o = 0, Mo = M is the space of finite
measures. For p > 1, My o= LP and Mj ; = H; is the homogeneous Sobolev space. With
the natural adaptation in (2.2) for p = oo, the space L* corresponds to Mg .

Morrey spaces present the following scaling

1F O pye = A7 (1l (2.4)

and -
1O gy = X5 7@l (25

where the exponent s — % is called scaling index. We have that
(=AM, =MoL (2.6)

Let us define the closed subspace of My, , (denoted by Mp’“) by means of the property
f € My, if and only if

1 =9) = FOllpp = 0asy = 0. (2.7)

This subspace is useful to deal with semigroup of convolution operators when the respective
kernels present a suitable polynomial decay at infinity. In general, such semigroups are only
weakly continuous at ¢ = 07 in M, ,, but they are C-semigroups in Mp,”, as it is the case
of {Gu(t)}+>0. This property is important in order to derive local-in-time well-posedness
for PDEs (see Remark 3.2).

Morrey spaces contain Lebesgue and Marcinkiewicz spaces with the same scaling in-
dexes. Precisely, we have the continuous proper inclusions

LY(R™) C L(R™) C M,,(R™) (2.8)

where p < ¢ and p = n(q — p)/q (see e.g. [28] or [1]).
In the next lemma, we remember some important inequalities and inclusions in Morrey
spaces, see e.g. [20, 30].

Lemma 2.1. Suppose that s1,50 € R, 1 < p,q,7r <00 and 0 <\, u,v < n.
(i) (Inclusion) If p < q and *JF = "%)‘ then

Mgy CT My, (2.9)



(ii) (Sobolev type embedding) If p < q, s2 > s1 and sg — % =51 — % then

M2, C M, (2.10)

(iit) (Hoélder inequality) If % = % + é and 7 = % + % then fg € M,,, and

1£gllrw < £ 1A llgllg - (2.11)

(iv) (Homogeneous function) Let Q € L®(S"™ 1), 0 <d <n and 1 < r < n/d. Then
Qz/|z])]z]~ € My p—ar-

We finish this subsection by recalling estimates for certain multiplier operators on My
(see e.g. |23, 24, 30]).

Lemma 2.2. Let m,s € R, 1 < p < oo and 0 < pp < n and F(§) € C2+1(R™\{0}).
Assume that there is A > 0 such that

o°F
Tgk@

‘ < g, (2.12)

for all k € (NU{0})™ with |k| < [n/2] + 1 and for all £ # 0. Then the multiplier operator
F(D) on 8'/P is bounded from Mg, to My ™ and the following estimate hold true

IED) llpgym < Cllfllagg,, (2.13)

where C' > 0 is a constant independent of f, and the set S,/P is the one of equivalence
classes in S’ modulo polynomials with n variables.

2.2 Mittag-Leffler function

This part is devoted to review basic properties for Mittag-Lefller functions, the symbol
Eq(—t*|€]?) and the fundamental solution K, (see (1.5)). These can be found in [10] and
[17], when n = 1 and n > 2, respectively.

The Mittag-Leffler function E,(z) is defined via power series by

o Zk
EJA:E%WM+D, (2.14)

where I'(«) is the Gamma function. In what follows, we recall some functions which is
useful to handle the symbol of the semigroup G, (t) (see (1.4)). For 1 < a < 2, let us set

2 im 2 in
a(§) = [§laea, ba(§) =[flae o, for £ € R, (2.15)
and in(am) |§|2 a—1,—s
(=4 T Jo TrmdrTes@nrErds  HE#0 016
a(§) ) . (2.16)
1-2 if € =0.

Lemma 2.3. Let 1 < a <2 and Ky be as in (1.5). We have that

Fa(~IEP) = ~(exp(aa(€)) + exp(ba(€))) +La(¢) (217)



and
K,

k
ox;

n+k o 2
(x,t) =\ W/Ca()\x,)\at), (218)

for all X > 0. Moreover, Kqo(x,t) > 0, Py(|z],1) = alq(x,1) is a probability measure, and

1
a5 )| 1y = = for all t > 0. (2.19)

Proof. Except for (2.18), all properties contained on the statement can be found in
[10] and [17] when n = 1 and n > 2, respectively.
In order to prove (2.18), we use Fourier inversion and (1.5) to obtain

K,
oxk

7

(@t) = [ e S(ig) Ba(tleRyds = 7 [ o i ) Bl

Rn

k
(n+k) %(i, 1). (2.20)

:t‘;(n+k)/ Y i B () — &
§ (—iyi)"Eo(—yl*)dy ot Vi

The desired identity follows by taking A = 1/4/t* in (2.20).

3 Functional setting and results

We shall employ the Kato-Fujita method (see [19]) to integral equation (1.6), which
should be understood in the Bochner sense in Morrey spaces.

In what follows, we perform a scaling analysis in order to choose the correct indexes for
Kato-Fujita spaces. A simple computation by using (1.2) shows that the indexes k1 = 2/p
and ko = 2/« are the unique ones such that the function uy given by

uy(z,t) = Nru(\z, Ak2¢) (3.1)

is a solution of (1.2), for each A > 0, whenever u is also. The scaling map for (1.2) is
defined by
u(z,t) = up(z,t). (3.2)

Making ¢ — 0% in (3.2) one obtains the following scaling for the initial condition
uo(z) — NPuy(x). (3.3)
Solutions invariant by (3.2), that is
u(z,t) = uy(z,t) for all A > 0, (3.4)

are called self-similar ones. Since we are interested in such solutions, it is suitable to
consider critical spaces for u(z,t) and ug, i.e., the ones whose norms are invariant by (3.2)
and (3.3), respectively.

Consider the parameters

o n—pup
p=n—2p/pand f=— —« , 3.5
/ "ot (35)



and let BC((0,00),X) stands for the class of bounded and continuous functions from
(0,00) to a Banach space X. We take uy belonging to the critical space M, , and study
(1.6) in the Kato-Fujita type space

H, = {u(x,t) € BC((0,00); M,,,) : tPu € BC((0,00); My 1)}, (3.6)
which is a Banach space with the norm

lullzr, = sup [luC, £)llp + sup t?llu(- 1) g, (3.7)
>0 t>0

Notice that the norm (3.7) is invariant by scaling transformation (3.2).
From Lemma 2.1, a typical data belonging to M, , is the homogeneous function

X _2
ug(x) = Q(m) I (3.8)
where 1 < p < % and Q is a bounded function on sphere S"=1. We refer the book [14,
chapter 3] for more details about self-similar solutions and PDE’s.
Our well-posedness result reads as follows.

Theorem 3.1 (Well-posedness). Let 0 < p < 00, 1 <a <2, 1<p< =, and p =
n —2p/p. Suppose that "p%” - % < 2 and
1 1
L AP L P (3.9)
ap+l q « p—1
(1) (Existence and uniqueness) There exist € >0 and § = §(e) such that if ||uo|lp, < 0

then the equation (1.1) has a mild solution w € H,, which is the unique one in the
ball Dy = {u € Hy; Hu||Hq < 2e}. Moreover, u — ug in D'(R™) ast — 0T

(ii) (Continuous dependence on data) Let Iy = {ug € Mpy;llull,, < 6}. The data-
solution map is Lipschitz continuous from Ty to Do..

Remark 3.2.

(i) With a slight adaptation of the proof of Theorem 3.1, we could treat more general
nonlinearities. Precisely, one could consider (1.1) and (1.2) with f(u) instead of
ulul?, where f € C(R), f(0) =0 and there is C > 0 such that

F(a) = )] < Cla—bl(lal + [bl°), for all a,b € R.

(ii) (Local-in-time well-posedness) A local version of Theorem 3.1 holds true by replacing
the smallness condition on initial data by a smallness one on existence time T > 0.
Here we should consider the local-in-time space

Hyr = {u(z,t) € BO((0,T); My,) : lim sup 7 [[u(-,#)llq, = 0}, (3.10)

t—0t

and ug € My, such that limsup,_,q+ t7||Ga(t)uollq, = 0. In particular, this condi-
tion is verified when ug belongs to My, (see (2.7)). Thus we need to restrict our-
selves to the suitable subspace My, ,, G M, ,, which is the mazimal closed one where
the group of translation is continuous (see [20, Lemma 3.1]). As already pointed in
subsection 2.1, the main reason for that is the semigroup {Gq(t)}i>0 is not strongly
continuous at t = 0% on M, ,.



(iii) (Alternative blow up) The subspace Mp,# does mot contain, in particular, homoge-
neous functions and so we are not able to obtain local solutions for arbitrary data
ug € My, as in Theorem 3.1 by means of the approach employed in the present pa-
per. These data correspond to self-similar solutions (see Theorem 3.3 below). How-
ever, in view of item (ii) of this remark, if up € Mp,u then the local-in-time version
of Theorem 3.1 gives a solution u € C([O,Tmax);./\/lp,“), where Thax > 0 s the maxi-
mal existence time. Moreover, an alternative blow up holds true, that is, there holds
either Tinax = 00 or else lim; ;. H“('vt)”/v(p,u = 00 With Tax < 00. We refer the
reader to [2, /, 25] for more results about blow up (self-similar or not) for nonlinear
diffusion equations.

Let O(n) be the orthogonal matrix group in R™ and let G be a subset of O(n). A function
h is said symmetric and antisymmetric under the action of G when h(z) = h(Mz) and
h(z) = —h(Mzx), respectively, for every M € G.

Theorem 3.3. Under the hypotheses of Theorem 3.1.

(i) (Self-similarity) If ug is a homogeneous function of degree —%, then the mild solution
given in Theorem 3.1 is self-similar.

(i) (Symmetry and antisymmetry) The solution u(x,t) is antisymmetric (resp. symmet-
ric) for t > 0, when ug is antisymmetric (resp. symmetric) under G.

(iii) (Positivity) If ug Z 0 and ug(x) > 0 (resp. up(x) < 0) then u is positive (resp.
negative).

Remark 3.4. (Special ezamples of symmetry and antisymmetry)

(i) The case G = O(n) corresponds to radial symmetry. Therefore, it follows from Theorem
3.3 (ii) that if ug is radially symmetric then u(x,t) is radially symmetric for t > 0.

(ii) Let Mx = —x be the reflection over the origin and let Ign be the identity map. The
case G = {Ign, M'} corresponds to parity of functions, that is, h(x) is even and odd
when h(x) = h(—x) and h(x) = —h(—x), respectively. So, from Theorem 3.3 (ii), we
have that the solution u(x,t) is even (resp. odd) for t > 0, when ug(z) is even (resp.
odd).

The next theorem gives a criterion for the asymptotic stability of solutions and provides
a class of asymptotically self-similar solutions.

Theorem 3.5. Under the hypotheses of Theorem 3.1. Let u and v be two global mild
solutions for (1.1) given by Theorem 3.1, with respective data ug and vy. We have that

i 1) — o = 1 Bll(-- 1) — v(- -
tl;gl@llﬂ( ) = (5 )]lpu tl}_rgloot [u(-,t) = v(, t)llgu =0 (3.11)
if and only if
lim ([|Ga(t)(uo = 00) lpsu + t°[|Ga(t) (o — v0)llgu) = O- (3.12)

t—+00

Remark 3.6. (Asymptotically self-similar solutions) In Theorem 3.5, let vog = ug + ¢
with p € CP(R™) small enough and suppose that ug is a function homogeneous of degree
—%. We have that ¢ = vg — ug satisfies (3.12) and then the solution v(x,t) converges in
the sense of (3.11) to the self-similar solution u as t — +o00, i.e., it is asymptotically
self-similar.



4 Proofs of theorems

We start by recalling an elementary fixed point lemma whose proof can be found in [9].

Lemma 4.1. Let (X, || -||) be a Banach space and 0 < p < oco. Suppose that B : X — X
satisfies B(0) = 0 and

1B(z) = B(2)|| < Kllz = 2[[(llz]|” + [|=[|”)-

Let R > 0 be the unique positive root of 2071 K R —1=0. Given0 <e < Randy € X
such that ||y|| < e, there exists a solution x € X for the equation x = y+ B(x) which is the
unique one in the closed ball Dy. = {z € X;||z|| < 2e}. Moreover, if ||y|| < e and T € Do,
satisfies the equation & =y + B(Z) then

1
l — [ <
1

WH?J—QH- (4.1)

4.1 Linear estimates

The aim of this subsection is to derive estimates for the semigroup G, (t). For that matter
we will need pointwise estimates for the fundamental solution I, in Fourier variables.

Lemma 4.2. Let 1 <a <2 and 0 <6 < 2. There is C := C(«a,d,n) > 0 such that
[ Euie)]| <l (4.2
ock - ’ '

for all k € (NU{O}™ with |k| < [n/2] + 1 and for all £ # 0.

Proof. In view of (2.17), the symbol E,(—|£|?) is composed by two parcel, namely

1a(6) = = expl(€] 7 %) + - exp(gle ) (4.3
and
- Sin(OHT) 00 ‘§|2 a—1 e~5
O e o

_ sin am) /OO exp(—|£|%sé)
0

ds, 45
s2 4+ 2scos(am) + 1 s (45)

where the change s — \§|§sé was used from (4.4) to (4.5). For 6 > 0, we have that

I6° 2a(€)]| = OO+ 165+ exef cos( D)
<Cle M. (4.6)

i

On the other hand,

A [|§\ la( 0/ ,5) ds
ok 52+ 25 cos a?T) +177



where
9(€5) = (1" ~M + g1~ "“‘1|5|<* s+ (¢ T g2 52 e g R 5
= I (1€ + Iel7 1% 7 + 117 €12 57 + 4 1€ | DM 5 ) exp(—Jgs]7)

5 245 d45 24
— 53 e ()gsé +‘§5% +‘55% T +‘§52 )exp(|gsé|i)
< Cs3 g7
Therefore,

_3
2

(6)]| < C g™ / d
'85’9 “5’ © ' € s2 + 23 cos(am) + 1 %

<Clegl™™, (4.7)
because 0 < 2. Now the estimate (4.2) follows from (4.6) and (4.7).

In the sequel we prove key estimates on Morrey spaces for the semigroup {Gq () }+>0.

Lemma 4.3. Let1§a<2,1<p§q<oo,0§,u<n,(md%—%<2. There
exists C' > 0 such that

1Ga®fllgp < CCFET (48)
for all f € My,
Proof. Let 6 = * £ — £, f(z) = f(Az) and hq(z,t) defined through ha(€,t) =
£|° Eq(—|¢[?t®). Consider the multiplier operators
F(D)f = [(~8)2Ga(D)If = ha(-1) = /().
([-2)3Ga®]f) (@) = " (hals1) * frasz ()2 ()

6]

— ¢ (F(D)(fya/2))yar2 (), (4.9)

where the symbol of F(D) is |¢]° Eo(—|¢[?). Lemma 4.2 implies that F(£) satisfies (2.12)
with m = 0. Then, we use (2.4) to obtain

a

[(F(D) (frarz))yerell,, =127 ||F< )(Fro2)l
<o sUs Hfta/zu
= ot 2B ],
= Cllfl,,- (4.10)

Now, using Sobelev embedding (2.10), and afterwards (4.9), we obtain

1Ga(®) 1l < IGalt) fllass
= [aieawy]|
=t [(FD) (o)),

n—up
,%<T77

<t 11l

10

o) exp(—fést )



because of (4.10).
n

Using Lemma 4.3 we can estimate the Hy-norm in of the linear part in (1.6) by using
the initial data ug € M, ,.

Lemma 4.4. Let 1 < a<2,0<p<oo, 1 <p< T p<g<oo, p=n—2p/pand

"p%“ — "—;“ < 2. There exists L > 0 such that
1Ga(t)uollm, < Liluollpu (4.11)

for all ug € My, ,.
Proof. It follows from (4.8) that
P B (n=p_n—u)
sup [|Ga(t)uollpu +supt”[|Ga()uollgu < C { uollpu +supt™ 2> 0 lug|lp,.
t>0 t>0 t>0
= Clluollp.p,

and then we get (4.11).

m
4.2 Nonlinear estimates
Firstly, let us recall the nonlinear parcel in (1.6) given by
Ba(u)(t) = /Ot Go(t —s) /05 Ro—1(s — 7)|u(7)|Pu(r)drds. (4.12)

Before estimating B, we recall a real number inequality. Given p > 0, there is C' > 0 such
that
la]al? = blb]?| < Cla —b|(Ja|” + [b]?), for all a,b € R. (4.13)

Lemma 4.5 (Nonlinear estimate). Under the assumptions of Theorem 3.1. There is a
positive constant K such that

|Ba(u) = Ba(v) 1, < Klu—vlla,(lulf, +vi%,), (4.14)
for all u,v € Hy.

Proof. The proof is performed in two steps.
First step. We start by estimating the norm || - [|4,,. Thanks to Lemma 4.3, Holder
inequality (2.11) and the inequality (4.13), we obtain

| B(uw)(t) = B0)(t) [l < / [Galt — s) /s Ra—1(s = 7)[f(u(7)) = f(v(7))]dT|g,uds
0 0
< C/o (t—g)’YlH/O Ro—1(s —1)[f(u(1)) — f(v(T))]dTHﬁ’uds

< C/o (t—s)m /Os Ro—1(s —71)||f(u(r)) = f(v(T)) ’MdeS

[

t S
<c /0 (t— sy /0 Raca(s — )t — gyl

g 011G, )drds,

(4.15)
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whete Ra(s) = s /T(a), f(u(r) = lu(r)[Pu(r) and 71 = §(2=£ — A=i) — —apizh.
Now we define 6(s) by

_ /0 "Raca(s — Dllu(r) — o) lanllul)E,0 + o2, )dr

= /0 Ro-1(s = 7)m 2018 u(r) —v(m) lqu(rllu(r)lly . + 77 o (r)15 ) dr

(4.16)
and rewrite (4.15) as
t
[1B(u) (1) = BV)(8)llgn < C/O (t —5)"6(s)ds. (4.17)
The function 6(s) can be estimated as
06) < [ Bacsls = e 20 Vi fu— ol (ully, + o). (419

Making the change of variables 7 = zs and afterwards s = tw, we get

t s t 1
/ (t—s)™ / Ro_1(s —7)7 P drds = C’/ (t— s)’“sﬂ/ (1 —2)0 278t dzds
0 0 0 0
(4.19)

1
= OVl / (1 —w)"wVdw, (4.20)
0

where 9 =a—1—3(p+1) and

B 1=8p-Blp+1) = 5.

19+’}/1+1:a—1—ﬁ(p+1)—apn2q

The convergence of the beta functions appearing in (4.19) and (4.20) follows at once from
the hypotheses on parameters. Therefore

/0 t(t —s)m /0 ) Ro_1(s — )7 P drds = Ct=P. (4.21)

It follows from (4.17), (4.18) and (4.21) that
iggtﬁﬂB(u)(t) = B)Ollgp < Kallu = vlla, (lully, + lvI%,)- (4.22)
Second step. Here we deal with the norm || - ||, .. Notice that we can choose r > 1 such

that % = % + ﬁ. Then
| B(u)(t) — B(v) t)||pu
<C’/ (t—s)7 Ro—1(s = 7) llu = v| (Jul” + [v]?)||,, drds
0

<c / (t—s) / R (s = )l = vl ([l + 0], drds (4.23)
/ (t—s) / Rt = )7 llu = vllpu (77 [l + 7202, )drds

<c / (¢ a7 [ (5= r) 2 drds fu = ol ully, + ol (4.24)

= K [lu—lla, (lullf, + lvI%,), (4.25)
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where vy = %("p%“ — 8) = pB — a = 1, and we have proceeded similarly to (4.19) from
(4.24) to (4.25).
In view of (3.7), the inequalities (4.22) and (4.25) together imply the desired estimate
(414) with K = K7 + K.
]

4.3 Proof of Theorem 3.1

Part (i): Let R = (ﬁ)%,0<6<RaHd5:%,whereL>0andK>0arethe
constants obtained in Lemmas 4.4 and 4.5, respectively. Taking y = G4 (t)ug, Lemma 4.4
yields

lyllz, = 1Ga(t)uoll s, < Lluoll,, <e,

because ||ug||p,, < . Thanks to the inequality (4.14), we can take X = H, in Lemma 4.1
and conclude that there exists a global mild solution u € H, for (1.1), which is the unique
solution satisfying [lul| 5 < 2e.

The convergence u(t) — ug in D'(R™) follows similarly from standard arguments found,
for instance, in [37].

Part (ii): Let w,v be two mild solutions with initial data wg,vy belonging to Zp,
respectively. We can use (4.1) and Lemma 4.4 to estimate

1
lu—vlln, < 755 1Ga(to = Ga(t)vollp.s
1
= T gerigeen I Ga(t) (o = vo)lpu
L

< THKE,JHUO — vollp,us

as desired.

4.4 Proof of Theorem 3.3

Part (i): Let ®(z,t) = Go(t)up. Using that ug is homogeneous of degree —% and (2.18),
it is not to difficult to check that

Oz, 1) = By(z,) = A\r d(Aa, A\ t),

for every A > 0. Also, we have that [By(u, u)]x = Ba(uy,uy), for all A > 0,where [Q(x, )]\

2
stands for Ar Q(Az, )\ét). It follows that wu) is a solution for (1.6) because u is a solution.
Due to the norm in Hy is scaling invariant, we have that |lux[|y, = [lully, < 2e. From the
uniqueness result contained in Theorem 3.1 (i), it follows that

u(z,t) = up(z,t), for every A > 0,

that is, u is self-similar.
Part (ii): Let M € G and wy be antisymmetric. Using that M is orthogonal, the

property ug(Mx) = —up(x) can be expressed in Fourier variables as
~ug(€) = [uo(Mx)]"(€) = uo(M ™€) (4.26)
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Again denoting ®(z,t) = G4 (t)up, we obtain from (4.26) that
[@(Mz,)]N(€) = Ea(—t*|M~1¢[*)uo(M~'¢)
= —Ea(—t*[¢[*)uo(€)

== (.%‘ ) t) (5)7
which shows that G, (t)ug is antisymmetric for each fixed ¢ > 0. Similarly, we can show
that B, (u) is antisymmetric whether u is also. So, employing an induction argument, one
can prove that each element wu; of the Picard sequence

ui(x,t) = ®(x,t) (4.27)
ug(z,t) = ®(x,t) + Bol(ug—1)(z,t), k=2,3,--- (4.28)
is antisymmetric. Since ux — u in Hy, then the sequence (4.27)-(4.28) also converges (up
a subsequence) a.e. x € R" and t > 0. It follows that u(z,?) is antisymmetric for ¢t > 0,
because pointwise convergence preserves antisymmetry. We finish this part by observing
that the proof of the symmetric property is analogous.
Part (iii): We will only prove the statement concerning positive solutions, because the
one about negative solutions follows similarly.
Let uy be the sequence (4.27)-(4.28). From Lemma 2.3, we have that
ui(z,t) = Go(t)ug = Kal(:,t) * ug,

with positive kernel K (z,t) > 0. Hence if ug > 0 with ug # 0 a.e. in R™ then u;(x,t) > 0
in R”, for each t > 0. Moreover, B,(u) > 0 whenever u(x,t) > 0. Therefore, an induction
argument on k shows that wug(z,t) > 0, for all £ € N. We have already seen in the last proof
that (up a subsequence) up — u a.e. © € R™ and ¢t > 0. Therefore the limit u(z,t) > 0
a.e. x € R™ and t > 0. But, since u verifies (1.6), we get

u=wui(x,t) + Ba(u) > ui(z,t) >0,

for a.e. z € R™ and ¢ > 0.

4.5 Proof of Theorem 3.5

We only show that (3.12) implies (3.11), because the converse statement follows analo-
gously. Subtracting the integral equations verified by » and v, and then taking the norms
t7]] - llgu and | - [[p, we obtain

t[u(-,t) = o( t)llgys < 7)1 Galt) (uo = v0)llgy + 7| Ba () = Ba(v) g
= t7)|Ga(t)(uo — v0)[lgu + 11 (1) (4.29)

and

[u,t) = v(, O)lpp < [[Galt)(uo — vo)
< ||Ga(t)(uo — vo)

lp + | Ba () — Ba(v)||p,u
|p,,u + Ix(1). (4.30)

Recalling that [lul|z, < 2e and [Jv]| 5, < 2¢, and the inequality (4.15), we can estimate the
term I;(t) as

L) < Ctﬁ/o (t— s /0 Ror(s — 7)||u(r) — o(r)

lq.ull [w(T)? + [o(7)["llg pdrds

t s
< 192(26)°C / (t— s / Ro (s — )7 20D, (7)drds, (4.31)
0 0
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where 31(7) = t#|lu(r) — v(7)|lq and 71 = —ap” L. Similarly, in view of (4.23), the
integral I5(t) can be estimated as

t s
I(t) < (2p+lsp)0/ (t— 5)72/ Ro_1(s — 7)77PP%y(1)drds, (4.32)
0 0
where Xo(7) = ||u(7) — v(7)||p,n and v2 = pf — a.

Now setting ¥(7) = X1 (7) + X2(7) and making the changes 7 = sz and s = to in (4.31)
and (4.32), we get

1
L(t) + L(t) < (20°717)C / o)1 g L=Blet1) / R 1(1 — 2)2 BN (t02) dzdo+
0
1
H(2rH ) / (1 o) 2g01-50 / Roi(1— 2)2 P75 (tox)dzdo.  (4.33)
0 0

Notice that limsup,_,, ., X(t) < oo because u,v € Hy;. We claim that

IT := limsup () = 0, (4.34)

t—4o00

which is equivalent to (3.11). To see this, we take limsup,; . ., in (4.33) to get

limsup([[; (t) 4 Io(t)] < (2°TteP) C/ (1 — o) 1=+ 4o lim sup (/ Ro_1(1—2) (”+1)E(t0z)dz>

t——+o0 t——+o00

t——+o0

1
< (210 ( / (1 —o)nge =8ty / R 1(1 —z)z—/3<P+1>dz> Il
0

1
+ (2°F1er ( (1—0)2e" 1 Prdy / Ra_1(1 — z)z—ﬁpdz> IT
0

= (K1 + K3) (2T eI (4.35)

+ (20T 1eP) C/ 0)20° 1=PPdg lim sup </ Ro_1(1—2)z 6p2(taz)dz>
0

Thanks to the inequalities (4.29), (4.30), (4.35) and the hypothesis (3.12), we obtain
)

1T < lim sup (7| Ga (t) (uo — 0)[lgu + | Ga(t) (10 = v0)[lp,u) + limsup[I1(t) + Lo(#)]

t—+00 t—+o00
<0+ (K + Ko)(2°HeP)T
= (2°TeP KOII (4.36)

which leads us to II = 0, because 2°T1eP K < 1.
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