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1. Introduction

We consider the initial-boundary value problem (IBVP) for the Navier-Stokes equations in the
half-space R, with n > 3, which reads as follows:
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dtt — Au+(u-V)u+Vp=0 inRY, (11)
V.u=0 inRY, (1.2)

u(x,0) =up(x) inR], (1.3)

u(x,t)=a(x,t) ondR] x (0, 00), (1.4)

where the field u = (u1(x,t), ..., us(x, t)) is the velocity of the fluid, the function p(x,t) is
the pressure, and (u - V) = Z, 1u](dx) The data up(x) = (Up1(X),...,upn(x)) and a(x,t) =
(aq(x,t),ax(x,t),...,an(x,t)) stand for the initial and boundary values of the field u, respectively.
Throughout this paper, spaces of scalar and vector valued functions are abusively denoted in the
same way.

The existence of mild-type solutions for Navier-Stokes equations in the whole space R" have been
addressed by several authors, see e.g. [6,4,7,9,11-13,15,24,28] and references therein. In these works,
the reader can find existence results of small global mild solutions with rough initial data in critical

1
spaces such as: Lebesgue space L", Marcinkiewicz space L™°, homogeneous Besov space B"/ -

pseudomeasure space PM" !, Morrey space M n—p, BMO™!, and Besov-Morrey space /\f"/fool with
q € (n, 00).

From the point of view of critical spaces and semigroup theory, the case of the half-space do-
main R’} seems to be more difficult-to-treating than R". The basic reasons are the non-compact
boundary, the Stokes semigroup is not a convolution operator and derivatives do not commute with
the Stokes semigroup and Leray-Helmholtz projector. Moreover, one needs to obtain local versions of
spaces good-to-handling and, many times, to estimate boundary and trace operators in rough spaces.
In comparison with R", there are fewer existence results available in the literature.

Let us first review works about (1.1)-(1.4) dealing with homogeneous boundary condition (a = 0).
So far, existence results of global mild solution for (1.1)-(1.4) have only been proved in the following
critical spaces L*(R%) [14,25,27], L™*(R") [28] and the homogeneous Besov space B"/q Y®R) [3],
In [19], Saal studled (1.1)-(1.3) with a Robin boundary condition and obtained global solutions for
data ug € L"(R'}). Existence results in L* for the Stokes problem (linear case) have been obtained
by [5,22,18] with Dirichlet and Robin boundary conditions, respectively. Solonnikov [22] also proved
local-in-time existence for (1.1)-(1.4) with bounded and continuous initial data, which is (in gen-
eral) nondecreasing at infinity. We also mention the papers [8] and [23] (see also their references),
where the reader can found results on gradient estimates for the Stokes operator in Hardy spaces
and L! (R%), based on Ukai's formulas.

The case with rough data a # 0 is particularly challenging and presents further difficulties such
as:

e [t is not possible to use a Helmholtz type decomposition and define a suitable Leray-Helmholtz
projector;

e In general, one is not able to extend a # 0 to the interior of the domain and to reduce (by
subtraction) the problem to the corresponding homogeneous case a = 0;

e A semigroup approach based in a resolvent analysis is very difficult to employ. Indeed, this seems
not to be possible of performing.

In [16, Theorem 17], Lewis considered (1.1)-(1.4) with a # 0 and proved global existence of so-
lutions in mixed Lebesgue spaces LP(0, co; L) by taking small data ug € Lr1 NL2 cL"R}) and
ae Ld(O, oo; L"), where 1,12, p,q,1r,d £ 00, 11 <n <1y, ”T + H =1and 2 7 + E = 1. Indeed, he still
assumed further restrictions on these exponents and on the data ug, a. Assuming a, = 0 and using
the same formulation of [16], the author of [26] employed Besov spaces and showed existence of
global self-similar solution with both ug € B 1/2(R3 e B_1/4(R ) and supy-q t'/3[la(x, t)[| s z2, small
enough.

In this paper we prove existence, self-similar symmetry and asymptotic behavior of global solu-
tions for the IBVP (1.1)-(1.4) in the framework of Morrey spaces. The initial and boundary data are
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both assumed to belong to such spaces, which contain functions that may be strongly rough and
nondecreasing as |x| — co. More precisely, we consider small initial data ug belonging to the critical
Morrey space M ,_p(R.) and boundary data a as in (4.4). Let us recall that the inclusions

L'(RY) € L™ (RY) € Mpan—p(RY)

hold true. Also, there is no any inclusion relation between the critical spaces My, and BZ,/ggl (R7),
for g > n. Thus, in comparison to previous works, our existence results provide a new class of initial
data, even for the homogeneous case a = 0.

The half-space R’} is invariant by the homothety x — Ax, for every A > 0. So, it makes sense the
scaling

u(x, t) = up(x, t) = Au(Ax, Azt) (1.5)

and the concept of self-similar solutions in Rﬂ_ (invariant by (1.5)). This kind of symmetry is ob-
tained when the boundary data satisfies a(x, t) = ra(xx, A2t), for all A > 0, and ug is homogeneous
of degree —1. We employ a suitable integral formulation for (1.1)-(1.4) found in [16] (see (3.6)).
This equation is based on Green functions and Solonnikov formulas, while in [3,14,25,27,28] the
authors have used semigroup-mild formulations or Ukai’'s formulas. Notice that P in (3.6) is the
Leray-Helmholtz projector in R" applied to extension & whose domain is R". We analyze the in-
tegral formulation (3.6) considering a(x,t) and u(x,t) in time-weighted spaces ala Kato with indexes
chosen for their norms to be scaling invariant. As a consequence we obtain existence of self-similar
solutions (see Theorem 4.1).

In spirit of [2], we analyze the asymptotic behavior of solutions and obtain a class of asymptotically
self-similar ones (see Theorem 4.2). In order to handle the integral formulation (3.6), we need to
prove linear estimates for certain extension, boundary and trace operators connected to the structure
of (3.6) (see Lemmas 3.1, 5.1, 5.2, 5.3). These three last lemmas seem to have an interest of its own.
The arising difficulties are naturally transferred to the proof of Theorem 4.2, because the arguments
used in some parts depend on those of the proof of existence theorem. Thus, the adaptation of the
stability arguments of [2] involves certain care and it is not straightforwardly performed.

The plan of this paper is the following. In the next section we summarize some basic definitions
and properties on Morrey spaces. The integral formulation for the IBVP (1.1)-(1.4) that we deal with
is described in Section 3. In Section 4 we define suitable time-functional spaces and state our results,
which are proved in Section 5.

2. Preliminaries

In this section we summarize some basic properties of Morrey spaces that we will need in this
work. For a deeper discussion on these spaces, see [11,24,17].

Let x = (¥, x;) € R~ x R with tangential component x' = (x1, ..., X,—1). In this paper, we use the
abusive notation f(x) = f(x', xy) for functions f defined on R’} or R". Henceforth, we consider either
2=R"or R =R"! xR,.

For 1 < p < oo and 0 < p <n, the Morrey space M, ;, = M, ;,(£2) is the space of all measurable
functions such that

_M
I fllmp 2y = sup 1 P fllrc2 xg) <00, (21)
Xoef2,r>0

where £2,(xg) ={x € £2; |x — xo| <r} C 2 is the intersection between 2 and the closed ball in R"
with center xo and radius r. The space M, , endowed with the norm || - My (52) is a Banach space
and Mp o =LP for p > 1. With the suitable interpretation of the integral in (2.1), My coincides
with the space of finite Radon measures on §2, and L*(£2) = Moo ;1 (£2) = Mp n(£2).
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We also define the weak Morrey space M 3 as the Banach space of measurable functions
whose norm is given by

_K
IfllMmpop@y = SUp 17 Pl fllroo( ) <00, (2.2)
X0€82,r>0

where LP-*° denotes the weak-LP space.

Define Ck - (§2) and MJ M(.Q) to be the set of all vectors u: 2 — R" such that V-u =0 and u;
belongs to Ck(Q) and Mg, (£2), respectively, for all i =1,...,n. Here C"(Q) is the set of com-
pact supported functions with derivatives of order k contmuous Also, we denote ||u]| Mg ®Y) =
maxi=1, .n lluill MR- The letter C will stand for generic positive constants that may change from
line to line or even within the same line.

In what follows we recall some useful inclusions and inequalities in Morrey spaces.

Lemma 2.1. Let 2 be either R" or Rl} = R 1 x Ry. Assume that 1 < p; < oo and 0 < u; < n, for all
i=1,2,3.

i) (Inclusion) Let p1 < py and =41 = = “2 . Then
(@ ( p1<p o

My, (82) T Mp, 1y (82). (2.3)

. " . 1 _ 1 U3 _ p2 | M1
(ii) (Hélder Inequality) IfE =2t p1 and o = T Py then

Ih1h2l My, iy (2) < Th MG, 1y (2 121 MG, 1y (2)- (2.4)

(iii) (Homogeneous functions) Let ¢ € L®(S"™ 1N ), 0 <d <nand 1 <r < n/d. Then p(x/|x|)|x|~% €
Mr,n—rd~

(iv) (Convexity) Let p1 < p3 < p2 and k € (0, 1) be such that - p —K + 55 (1 — k) and “3 %I{ +
%(1 — k). Then

1—«

1F UMy 3 (2) < CULF I, sy @) (1F 1M ey (29) (2.5)

Proof. The proofs of (i) and (ii) can found in [11, pp. 130-132] and a direct computation yields (iii).
A version of the item (iv), with norms (2.1) in place of (2.2) on the right side of (2.5), has been proved
for instance in [11, p. 132]. For the reader convenience, we prove (2.5). From interpolation properties
(see [10, Proposition 1.1.14, p. 8]), one has LP3(£2,(xg)) C LP1-*°(£2,(xg)) N LP2:°°(£2,(xp)) with

||f||LP3 (821 (X0)) X C||f||LP1 20 (2r(x0)) ”f”LP2 20 (2r(%0)) " (26)
B K
Now we obtain (2.5) by multiplying (2.6) by r~ P3 (10 and afterwards taking the supre-

mum over r >0 and xp € 2. O

Notice that the last proof is somewhat different from that of [11], because one cannot apply Holder
inequality (even in Lorentz spaces) in order to get (2.6).

The Riesz potential (—A)*% works well in Morrey spaces (see e.g. [24, Proposition 3.7]).

Lemma 2.2.let 0 <8 <n, 1 < pq < pa <00, 0< < n be such that § = ";—1“ — ";—2". There exists C > 0
such that
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1

|X|T_5 * HM - < C”f”Mp],M(JR"), (2'7)
P2.K

forall f e Mp, ; (R™).
We also recall a Sobolev trace type inequality in Morrey spaces (see [1, Theorem 5.1]).

Lemma23.let0<8<n0< u<n—1and1< q1<q2<oobesuchthatl<q1<(n W qpg =1=m

a2
q_1 —§. Then

1F (. 0) | any, o ey < (=207 2 fl| Moy (B ) (2.8)
where C > 0 is a constant independent of f.

2.1. Heat semigroup in R"

The heat semigroup {G(t)};>o in R" is the family of convolution operators defined by G(t)¢ =
g(-,t) % @, where g(x,t) = (4rt)~"2e~*?/4t is the so-called Gaussian kernel. Note that

g(x,t) =A"g(xx,2%t), forallA>0, t>0andxeR". (2.9)

Despite of the strong continuity at ¢ > 0, the heat semigroup {G(t)};>o is only weak-continuous
in Mp, , as t — 0T. The reason is that the identity approximation does not work well in Mp, , with
0 < u < n, because it contains singular functions like the homogeneous ones.

In the sequel we recall an estimate for the heat semigroup in R” found in [11, Lemma 2.1].
Lemma24.let1<q <q2 <00, 0< u<n, y = ”;—1“, V) = ";—2” and let k be a multi-index. There exists
C > 0 such that

[VXG®uol up,. , ery < CE B0V~ ug gy, e, (2110)

k
forallug € Mgy, n(R™) and t > 0. The statement still holds true with (—Ay) 7 in place of V)’f.
3. An integral formulation for (1.1)-(1.4)
Before stating an integral formulation for (1.1)-(1.4), we recall an extension to R" of vector func-

tions defined in R’.. From [20, Lemma 1, p. 182], there is a continuous function v : [1,00) — R
satisfying

¥(s)=0(s"N) ass— oo, forall N, (3.1)
and
o0 o0
/w(s)ds:l and /skt//(s)ds:O, forall k e N.
1
Let u = (ur,up,...,up) € My ,(RY) and define the extension u = (uy,ua,...,uUp), for a.e. x e R",

by
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ui(x', xn), if X, > 0,
ui(x', x,) = [ =29)ui(x, (1 = 29)x) ¥ (s)ds, ifxy<Oandi=1,2,....,n—1, (3.2)
[T uix, (1= 28)x0) ¥ (5) ds, ifx, <Oandi=n,

when the integrals in (3.2) converge.

Lemma 3.1. Assume that 1 < p < 00,0 < u <n and let u be as in (3.2). If u € M ;,(R"}) and div(u) =0
in S'(RY) then it € My, (R") and div(u) = 0 in S’'(R"). Moreover, there exists C > 0 such that

il Ay, ey < Cllttlag,,, i) (33)
forallu e My, (RY).

Proof. The change of variables (x', (2s — 1)x;) — (¥, x,) yields

2s — 1) |ui(x, 2s — 1)xy) , <C@2s— = [[ui (', %)

”/\/1;,,,1(11@"+ ||Mp<p.(R1).

Thus, fori=1,2,...,n—1, we have

o0

/(] —25)u;(x, (25 — Dxa) Y (s)ds

1

|2 (X' x0) Vo< | o, oy =

Mpu(RY)

< /(25 — D ui(x. 2s — Dxn) ||MP.M(RH+)|1//(5)| ds
1

o0
_l-on
< f@s= 0" ol ds il g )
1

= Cllu; ”MP,M(R'D’ (34)
because of (3.1) and 2s — 1 > 1 when s > 1. Similarly, one obtains

oo

|ttn (X', Xn) 1 <0} HMP.MUR”) < C/(Zs -1)"
1

1-u
P |y )| dsllunll as,,, ) = Clltnllag, ey (3:5)

Since [|ulix,>0yll M, RY = ||U||Mp,,L(R”+)v the estimate (3.3) follows from (3.4)-(3.5). In view of (3.2),
a simple computation shows that div(u) =0 when div(u) =0. O

For the velocity field u, the problem (1.1)-(1.4) can be formally transformed into the following
integral equation (see [16, p. 759]):

u=B(u, 1)+ K[B@@,u)|o] + Kla] + G(t)iio — K[(G(t)ito) |, ] (3.6)

where
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t t
B(u,u)(x,t) = — / Gt —9s)Pu-Vu)(s)ds = — / V.-Gt —s)Pu®u)(s)ds, (3.7)

0 0
the operator P is the Leray-Helmholtz projector in R" and ¢(x)|o = ¢(x, 0) stands for the restriction

of ¢ to IR, = R Let x= (¥, xy) and f(x,t) = (f1(x, 1), f2(x, 1), ..., fa(x,t)). The above operator K
can be regarded as (see [16] and [21, p. 36])

Kifl1= (qu, JLUFL Y K2 lfil - Y K, j[m) +PLfal (38)
L — -
with
t
Ko 161%, 0 = Ko 161X s . ) = / / Lij(X = y.xn. £ — )¢ (v, 5)dyds, (39)
0 Rn-1

fori,j=1,2,...,n, and P[fnl = (P1lfal, P2lfnl, ..., Paulfa]) where

Pilfal(x.t) = / Pi(x, y) fu(y.0)dy. (3.10)

IR
The kernel P; is given explicitly by

n n d 1
P'(X,J’)Z—(”—z)ﬂiir(—)— Y (3.11)
! 2) 9% [(x1 — y1)2 + - + (%n — yn)2]5 7!

where x € R%, y € dR", and I'() stands for the gamma function. In particular, we have the esti-
mate

C
i < . .
|Pj(x,y)| < TR I (3.12)
The kernel L; j(x', xn, t) = L; j(x,t) in (3.9) is given by
Li i(x,t) = —26; o8 (x t) 277 / / L dyndy’ (3.13)
ij = z] BX] 8yn X|” Yndy .
and satisfies (see [21, Theorem 3, p. 41])
Li j(Ax, 2%) =271 j(x, ), forallA>0, t>0, xeR", (314)
and
C C
|Li j(x.0)| < (3.15)

O2(x2+ 072~ (2(X2 422+ /2’
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forallt>0,xeR", and i, j=1,2,...,n. Taking » =t~/ in (3.14), it follows that

Li j(x,t) = t_nziL,',j(t_l/zx, 1), forallt>0, xeR". (3.16)

One can write the integral equation (3.6) in the following shortly way:

u=N(u,u)+ Kla] + L(up), (3.17)

where

N(u,u)=B(, i) + K[B(@, i)]o] and L(ug) = G(t)iig — K[(G(D)ilo)],]- (3.18)

Remark 3.1. The pressure p can be formally recovered by applying div in (1.1) and solving the resulting
equation for p in the sense of distributions.

4. Functional setting and results

In this section we state our results for the IBVP (1.1)-(1.4) in Morrey spaces. Before stating them,
we give some notations and define suitable time-dependent function spaces where (1.1)-(1.4) will be
handled.

The Navier-Stokes equation (1.1) presents the following scaling for u

u(x, t) = up(x, t) = ru(ix, Azt). (41)

The map (4.1) induces in a natural way a scaling for the initial data ug(x) and boundary data a(x, t),
namely

Up(X) = Up s (x) = Aug(Ax) and a(x,t) — ax(x, t) = ra(rx, A%t). (4.2)

One of our aim is to obtain existence of self-similar solutions in Morrey spaces for (1.1)-(1.4), that
is, solutions invariant by (4.1). For that matter, we need to study (1.1)-(1.4) in function spaces whose
norms are invariant by (4.1) and (4.2). Recall that the notation BC((0, c0), Y) stand for the class of
bounded continuous functions from interval (0, co) into the Banach Y.

Let 2 <p,q<oo, 1 <r<oo,u:n—p,a:%—%,and ﬁ:%—"j;“.WedeﬁnetheBanach
space

Hq = {u is measurable; t*u(x, t) € BC((0, 00), Mg , (R"))},
with norm given by

_ @y
”u”Hq = fli(lz))t ”Ll( ,6) ||Mq,M(R§r)' (4.3)

Let us also define the boundary-data space ﬁr by the set of measurable vectors a = (ay, ..., ay) such
that

tPa(x, t) € BC((0, 00), My, (R"")) and
t%an(x, t) € BC((0, 00), M(p—1)q/p.. (R" 1)) (44)
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which is a Banach space with norm

”a”ﬁr = iglg tﬁ “a('v t) ”MrYM(Rn—l) + iglg ta ”an('v t) ||Mq%1#(Rn—l)~ (45)

Notice that (4.3) and (4.5) are invariant by (4.1) and (4.2), respectively.
From now on, a solution for (3.6), or equivalently (3.17), will be called a mild solution for IBVP
(1.1)-(1.4). Now we can state our existence result.

Theorem4.1.Let2<p<q”TTl <r<q<oo,u:n—p>0anduoeM M(R ).

(i) (Existence and uniqueness) There exists € > 0 and § = §(¢) (8 = Ce) such that, if H”O”Mp.u(Ri) <8 and
llallg, < & then the IBVP (1.1)-(1.4) has a global mild solution u € Hq, which is unique one in the closed
ball {u € Hg; |lulln, < 2¢}. The data-solution map [ug, a] — u is locally Lipschitz continuous.

(ii) (Self-similarity) Assume that ug(x) and a(x, t) are invariant by (4.2), that is, ug is homogeneous of de-
gree —1 and a(x, t) = xa(Ax, A%t) forall . > 0,t > O and a.e. x € IR"} . Then the solution obtained through
item (i) is self-similar, that is, u(x, t) = Au(Ax, A2t), forall A > 0,t > 0 and x € RZ.

We also prove an asymptotic stability result which shows that certain perturbations of the initial
data ug(x) and boundary data a(x, t) go to zero as t — +oo. In particular, it implies the existence of
an attractor-basin around each self-similar solution.

Theorem 4.2 (Asymptotic stability). Assume the hypotheses of Theorem 4.1. Recall that w, denotes the n-th
coordinate of a vector w. Let u and v be mild solutions given by Theorem 4.1 and corresponding to the boundary
and initial data a, ug and b, vy, respectively. If

Jim e |G O@o = V0| vy, , n) = Jim [ ([GO @0 = Vo)) o] oo ,,le#(ﬂa"fl):O’ (4.6)
tlggo t|[G© o — Vo)] lo |’M,,M(Rn*1) =0, (4.7)

and
tgn;otauan(-,t)—bn(-,r)Hqup]_ @y =AM 7 laC. 0 =0y @y =0, (48)

then

g B
Jim ¢ uC.t)=v(, 0 ||Mq_u(m) =0. (4.9)

Remark 4.1 (Basin of attraction). Let u be a self-similar solution with data ug(x) and a(x, t). Take
vo(x) = Up(x) + @ (x) and b(x, t) =a(x. t) + ¥ (x,t) with ¢ = (@1, @2, ..., @) and ¥ = (Y1, V2. ..., ¥n)
being smooth compacted small vector functions. Consider the mild solution v with data vg(x) and
b(x,t). Then the perturbed mild solution v is attracted to the self-similar solution u in the sense
of (4.9), because we have

I 1600 ) = I NCOD oy, e

= Jim (GO o] s, -1, =0

rlirf,‘o e mC. 0 HM p1 (R T tllno]otﬂ [vc.0 HMr.M(RHA) =0.

P
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5. Proof of results

In this section we give the proofs of the results stated previously. We start by providing key esti-
mates on Morrey spaces for some linear operators appearing within integral equation (3.6).

5.1. Linear estimates
In the following lemma we prove estimates for the boundary integral operator X defined in (3.8).
Lemma5.1. Let 1 < q1 < < 00,0 < 1 <n—1besuch that

—1- “i—p 1
s=" p_z ko2, (5.1)
a1 q2 q2

and let n < 22L5 - 21@. There exists a positive constant C > 0 (independent of ¢ ) such that

- )
fljg £ K j[1C, ) ”qu,ﬂ(Ri) < Ciggt 2w ) (-, t) ”Mql.u(R”")’ (5.2)

foralli,j=1,2,...,n.

Proof. Recall the notation £2;(xg) = {x € R.; |x — xo| <r} and let [£2,(xo)]’ stand for the projection
of £2;(xo) onto R, = {x € R, : x, =0)}. Since £2;(xg) C [£2;(x0)]" x (0, 00), we have that

[Ki 181 O 2., 101y < K581 200 0) [ 102 2, 5001 ¢ 0,000

= ” ”’Civf[‘z’]("/’ Xn, t) HL‘IZ((O,OO).dxn) ”Lq2([.(2r(X0)]’,dx’)’ (53)

for each fixed t > 0. Take 0 <6 <1 in such away thatn—1-8=(1-0)(n — é). Using Minkowski
inequality for integrals and (3.15), we estimate

t
”’Ci,j[‘ﬁ]("/’ Xn, t) ”L‘D((O,oo),dxn) < / / HLIEJ'(X/ — ¥, Xn, t =5)p(y, ) HL‘ZZ((O,oo),dxn) dyds
0 rn—1

¢
= / / ILij(X =y, .t =5)| 192 ((0,00),dxn) 6. S)| dyds

0 Rn-1
t
gc/’/ 2.9 —dyds (5.4)
0 ot E=V2(X =y +t—sh? 22

t
<Cl/(t—s)7%7%mféq[ /‘4——Jf53i9L——fdy]dg (5.5)
0

1
w — y 100

Rn—1

where we have used (z1 + z2) ™% < (z1) ™ (z5) *(1=9 in passing from (5.4) to (5.5). It follows from
definition (2.1) and estimate (2.7) that
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_K ,S
" / bl
| lx =y 00 w)
Rn—=

oy, )|
AP (1-6)(n—21) 1
w2l dx) L — | 3 My (RI-1)

g C”d)(, S) ”MqL/L(R"’I)’ (56)

for all r > 0. Notice that the hypotheses on parameters imply d =7n — (”_211]_ 2q2 By <1 and 1 5+
%(n — qlz) < 1. Now we use (5.3), (5.5) and (5.6) to obtain
_n B
12 ||Ki jlo1x, O a0, oy ST K jlglx 0 L%((o,oo),dxn)Hmz(m,(xo)]/,dx’)

¢

—1_0m-1
<C =9 409y, oy B (57)
0
¢

1_6¢6 1
—3=50-35) —d d
<Cf(t—s) 2 27 @’s ds[su s .S - ]
/( ) 5>I(:)) ||¢( )”MQpM(R 1)

0
— 22 gyp s 5.8
- I:il:lgs Hd)(.’s)”Mq],M(Rn_l)]' ( . )
Taking in (5.8) the supremum over all r > 0 and xo € R", and afterwards over t > 0, we deduce (5.2),
because
1 6 1 1 —1-6+5
——=n—-——)—-d==+ —d
q2 2 2
8 1 n—-1l-pu n—p
=——4—+ - —n=-n. O
2 2q 241 2q>

In the sequel we derive estimates for the operators ;1 and />, defined by

1(x', ) // V- 8l1(X — 2, zn.t = 5) f(Z, 24, 5) dz, dZ dis, (5.9)
0 Rn
Falel(x,t) = G(t)go / f X =7, z0,t)9(Z, 27) dZ dzy, (5.10)
—0o0 Rn—1

where g(x, t) = (4t)"/2e~*?/4t is the heat kernel in R".

Lemma5.2.let0<n <1/2,0< u <n—1and 1 <dy <dy < oo be such that % - "7};“ < 1. There
exists C > 0 (independent of f and ¢) such that
—Cght =t am=- oy
[FLFIC O g,y < CE 8 72073 spe|£C.0] gy oy (51D
~( ="
| F2lo]-, D) ||Md2 L@y SCt M el My, e (5.12)

forallt > 0.
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Proof. We only give the proof of (5.11) because (5.12) follows by similar arguments. Since g is a
radial function and in view of (2.9), we have

|71 Lf1(x, 0)] // X =2, z0,t —=5)| f(Z, 20, 5)|dZ dz, ds

0 R"

t
= / h(x',0,t,s)ds, (5.13)
0

where § = |V, - g| is a positive radial function satisfying §(Ax’, Ax,, A2t) = A=+ g(x’, x,, t) and

hx,t,s) =h(X', xp,t,s) = / (X — 7. xn—zn,t —5)| f(Z, 20, 5)| dZ dzy. (5.14)
Rn

In the following we estimate the integral (5.13) in three steps, where the first two ones will used to
handle (5.14).
First step (case dy < o0). Let 0 <8 < 1, d3, dg and « € (0, 1) be such that

1 - 1 1
l<dy<-<ds<dy<ds<oo and p_t Ketl Ka—x). (515
) dy ds dyg

Choose <ds,dg < ;“ in a way that d; <ds <ds, dy <dg <d4 and

n—-1-pu n—p n—-1—-u n—p
= ) d = —34. 5.16
a3 ds " ds (516

Now, we can use (2.5) and afterwards the trace inequality (2.8) to estimate

[n(x',0,t,s) <C|n(x,0,t,s) *

”Mdz.;/,(Rn_I) ”Md .oc,/l.(Rn 1)”h(x 0 t s ||Md oo;l.(Rn 1)

H( Ax)zh(x t S) ||Md (R" H( Ax)zh(x t 5) || (R”) (517)

From Lemma 2.4, we have that

| (~A0zhxt, ) gy, @y < H /[(—Ax)%g](x—z,r—s)|f(z’,zn,s)|dzds
5.1 i Md5,/A(Rn)

I
<ce—s T 109 (518)
and similarly,
|(—A0%hxt,5))| <C—s TG TR p( )| (5.19)
X *T Mde,ﬂ(Rn) = ’ Mdl,u(Rn)' ’

Inserting (5.18)-(5.19) into (5.17) and using (5.15)-(5.16), we obtain
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—k [P (gl “ZTT;‘>J—(1—:<>1#+(“;T;‘—“;TQ‘>J”

|n(x,0.t,s) ||Md21#(R,,,l) <C(t—5s) f,s) ||Md L®Y)
_ 148 n—p n— 1 u n—1-p
—C(t—s) (= +2d )+ ( +3 I+ (1) (A1 W, T2 )Hf( S)“Md @
1ok _n 1*#)
=Ct—s) > & % “f("s)“Md],M(R"r (5.20)

Second step (case da = oo). We obtain from Jessen inequality that

h(x,0,t,5)|" <C(t—s)*%<‘7’1*1>/g(x’—z/,zn,t—s)\f(z/,zn,s)y"1 dzpdz,  (521)
RTI

because f]Rn E(X — 7 ,zn,t —S)dzadz = C(t —s)"V/2. Let xg € R’} and [£2;(x0)]" be the projection of
£2;(xo) onto AR’ . Consider

p(r.x,s)= / |f(x’—z’,zn,s)|d1 dz dz,

|z|<r

and note that
p(r.x,s) <[ f(.s) ”C/lslAdW(R")’ forallr, x,s. (5.22)

An integration by parts in (5.21) yields

|h(x',0, t,s)|d1 gC(t—s)_%(dl_”/g(x/—z’,zn,t—s)|f(z’,z,1,s)|al1 dz, d7Z
R
[o.¢]
=C(t—s)_%(d1_])/g(r t—s)d[p(r.x.s)]
0

<C(t—s)~2@-D /|8rg(r, t—9)|p(r.x,s)dr. (5.23)
0

It follows by inserting (5.22) into (5.23) that

o0
h(x,0,t,5)|" < C(t—s)*%(d1*1>/\a,g(r,t—s)\rﬂdr Hf("s)Hi\lAd],M(Rw

o0

<C(t—s)"2h=" /\3rg(r Hlrtdr | £e.9|%, dp.. (RY)

0

_lg,_n—p d
=Ce=97 MO, @y
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which, after taking supremum over x' € R"~!, implies

_1_n-u
Ih(x.0.t,s) HLN(R”*1,dx/) SCE=9) 2 M| f(.9) ”Mdl_M(JR”)' (5.24)

Third step. Integrating (with respect to s) either (5.20) when d; < oo or (5.24) when d; = oo, we
get

t
A0 g ey <€ R 0.09) gy oy
0

t

_(lyn-p_ n—l-p
<C f =) 2T £y dS (5.25)
0
t

—(dqnon_n-iop
< C/(t —5) Gt o )5_2'7 dSSUpSZn ||f("5)“/v1d (RM)
5s>0 T
0

,(1+M,”—17—M),2n+]
—ct 2t T f‘:gtznuf("t)||Md1,,L(R")’ (5.26)

which is (5.11). O
The next lemma provides estimates for the integral operator (3.10).

Lemma5.3.Letn > 0,1 < qq <q2<ooand0§u<n—1besuchthatn_;—]_“=";—zl‘.Forj:l,Z,...,n,
we have

iglgt" |Pilo1¢. ) Hqu.mM) < Ci‘:Ef" loC. 0 HMW(RH), (5.27)

where C > 0 is independent of ¢.

Proof. Firstly observe that £2,(xg) = {x € R; |x —xo| <1} C [£2r(X0)] x (0, 00). It follows that

|Pjlolx, ) ”qu((zr(xo)) <|Pilolx. o 192 ([$2, (x0) ] % (0,00))
=[|Pil61x. 0| 0 ((0,00),dxn) | oo ([$2r (x0)V . dx)" (5.28)

From (3.10) and (3.12), we get

|Pillx, t)”qu((O,oo),dxn) < / P, J’)‘f’(yvt)”qu((o,oo),dxn)dy
Rn—l

= [Pix, ») ||Lq2((0,oo),dxn)|¢(y’ t)|dy
Rn—l

<c [ gy, (5.29)

1

n—1---
Rn-1 |X/ - J/| 42
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n—1-—p n—lfu 1

Since o = ;> We can use Lemma 2.2 to estimate
_K t ot
. ” f 6001 o, . H / 0.0 dyH
L2(2reoldx) =y T My ®
< C”(p(’ t)”MqP/L(Rﬂi]). (530)
Therefore

_n
i‘g 1| Pilg1c. 0| May (B = 11103 tn[ sup or @ | Pilg1C. 0| 1o, (Qr(XO)):I

Xo€RY >

o
< sup tn[ sup 1@ ||| Pilg1C, b) “qu ((0,00),dxn) “qu ([Qr(xo)]’,dx’):l

t>0 xo€R , >0

< Cil:gt” (CICYo) PV (531)

because of the estimates (5.28), (5.29) and (5.30). O

5.2. Estimates for the operators N and L

The next lemmas provide estimates for the linear and bilinear term of (3.17) given in (3.18):
L[uo] = G(tilg — K[(G(t)ilo)|,] and N(u,u) = B(ii, ut) + K[B(@, i)o]. (5.32)

Lemma 5.4. Let 1 <p<{q(p D rl<q<oo0,0<u<n—1and p=n— . There exist C1, Co > 0 such

that
|Kta],, < Cillal,. (533)
| £(uo) ||H Calluoll m, w1 (5.34)
forallae Hy and ug € Mp,uRD).
Proof. An application of (5.2) with (1,q1,q2) = («, 1, q) yields
supt® | Ki jlaj1¢, 0| ny < Csupta_(niériﬂ_nzqt at-, 0| .
t>0 TR M R t>0 T M BT
1_n=1-u
=Csuptz™ 2z |a(-,t) .-
=0 ” ”MW(R 1y
< Clallg,. (5.35)

for every i,j=1,2,...,n. In order to treat the operator P, we use (5.27) with (1,q1,q2) =
(a,q%,q) to obtain

fggt“ ||7>j[an](~,t)||MW<R¢) <C§30pt“ lanC- 0] 0 RECIE < Cllallg,., (5.36)

P

for every j=1,2,...,n. In view of (3.8), the estimates (5.35) and (5.36) imply (5.33).
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Now we deal with (5.34). For that matter, we use (2.10) with (k, q1,q2) = (0, p, q) to obtain
- _ o _
[c®ao] = supe® [c®o] s, , g,
o -
giggt HG(t)UOHMq,M(Rn)
<C sup Lt o |l m,, . (R
>

< Clluoll vy, m)» (5.37)

because of (3.3). Moreover, it follows from (5.12) with ¢ = ug, (dy,dz) = (p, @) and (dq,dy) =
(p,r) that

_ _(l_mny
Supta H (G(t)uo)‘ou/\/[ 1 (Rr-Ty < Csuptat ( X )”uOHMP,M(R“) <C”u0”MpM(R1)
t>0 q(p,%),/t t>0 ’
and
B T Be=G="5 g
supt [ (G@uo0)lo]l s, ,, en1) < Csuopt e 272 ol m, @ < Clivoll gy, @?)-
t> ? t>
These two last estimates together with (5.33) imply

K1) o]l < CIEOT) oIz, < Cltolg 52 (538)
We finish the proof by observing that (5.34) follows at once from (5.37) and (5.38). O

Lemma5.5. let2 < p < q(pp%]) <(q<00,0< u<n—2andp=n— [ There exists a constant K > 0 such

that
IV @, < Kllulig V1, (5.39)
forallu,v e Hg.
Proof. Recall that
N(u,v) = B(il, V) + K[B(, ¥)|o]. (5.40)

First step. Here we deal with the parcel B(ii, v) of A(u,v). It follows from the semigroup esti-
mate (2.10) and Hélder inequality (2.4) that

t
[B@ DO ) < /HV CE= AN gy e 8
0

n—p _ n—p

t
_lnop_nopy 1
gc/(t—s) 2T [ @we o), @) 4
2K
0
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t

<C / €= 9" u®) | g,y [VO | g, ) 95 (5.41)
0

t

1.2
< C/(t—s)“ s "‘dsilgt“ lu® ”Mq,M(Rﬁr) fglgt“ v ||Mq7,l(R”+)
0

< CE fullp VI i, (5.42)

because [y (t — )~ 's72%ds = t~%[B(1 — 2, )] where B(-,-) is the Beta function.
Second step. Now we turn to the boundary term C[B(u, v)|p]. For that matter, we use (5.11) with
f=u®vVvand (,d,d2) = (, %,q"Tﬂ) to obtain

(3@ D10,

p—1 (Rn—1) <
=L

S T el e U YV B 2 _ _
scom 2 Sugt “lzevic.o ”Ma] u(R™)
t> ’

—(Rep ol oy 1y — _
< Ct q 2q oa—3 il:g ta Hu(-’ t) ” My (RY) il:op ta HV(-, t) ” My (RY)

<Ct™™ i‘i‘g t*Juc,0) ”/\Aw(m) f‘j‘g v ”Mq_,L(R';)’ (5.43)

where above we have used that % = %—l—% and Holder inequality (2.4). Moreover, letting § < —q(p; D .

r < q and taking (n,d1,d>) = (o, % r)and f=u® v in (5.11), it follows that

” [B(l_l, ‘7)|0](7 t) ||Mr.p.(R”71) <

SR el T ol e R, VRN -
gct ( q 2r +20 Z)Supt2a||[u®v]('7t)“/\/[q @®n)
t>0 5.1

n—

—(-2a-"5 4 20— }) i v
< ORI sup 10 g, a0y BP0 gy, o

< Ct7Psupt®|u(-,t . t* vt . 5.44
SCPsupt®u. 0]y, g, SRV C 0], ) (5.44)
The estimates (5.43) and (5.44) together are equivalent to

|1B@@, 9o < CllullugIvH,-
From (5.33) we get
| C[BG@. Dlo] |, < C|B@. Mlo|7, < Clilu,lIvia,- (5.45)

In view of (5.40), the estimate (5.39) follows from (5.42) and (5.45). O
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5.3. Proof of Theorem 4.1
Part (i) - Global existence. From Lemma 5.4, we have that
|KClal + Lluo]| he S Crllally, + Calluoli, , )
<(C1+0)8=e, (5.46)
provided that

R
T C+G

luoll g, e ) Ny, <

Consider the ball De = {u € Hg; |ulln, < 2¢} endowed with the complete metric Z(-,-) defined by
Z(u,v)=|lu — v|n,. For some & > 0, we wish to show that the map

@) :=N(u,u)+ Kla] + L[up] (5.47)

is a contraction on (D3, Z). Using the bilinearity of A/ and Lemma 5.5, we obtain

[ow 0wy, = IN@w -Nw. v,
S R P T
< Kllu = viing (Il + 1vIn,)
<4eK|u — V||Hq, (5.48)

for all u, v € Dy. Moreover, it follows from (5.46) and Lemma 5.5

ey, =|Klal+ Lo |, + |V w],
<e+ 1<||u||§,q <& +4Ke?

<2s, (5.49)

provided that u € D, and 4Ke < 1. In view of (5.48)-(5.49), the map @ : Dy, — Dy is a contraction
and has a fixed point in Dy, which is the unique solution u for the integral equation (3.6) satisfying
lullp, < 26

Next, let u, i € Dy, satisfy (3.6) with respective initial-boundary data (ug,a), (iig,a). Because
4K e < 1, the Lipschitz continuity of the data-solution map follows at once from

Il =i, < [Kla—all, + [ Cluo — ol |, + [NV w) —N@. D),
< Cilluo — tolla, , @n) + Calla —allg, +4Kelu —ullH,.
Part (ii) - Self-similarity. First we recall that homogeneous functions of degree —1 belong to the
Morrey space M, , (R7) when p =n — i (see Lemma 2.1). Because Theorem 4.1 (i) has been proved

by means of a fixed point argument, the solution u is the limit in Hq of the following Picard interac-
tion:

ui(x,t) =Klal+ Lug]l and ugq =uq + N (ug, ug) (5.50)
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where K, £, N are given in (3.8) and (3.18). Note that the extension operator (3.2) preserves homo-
geneity and scaling. Then, using that ug is homogeneous of degree —1 and a(x, t) = Aa(ix, At2), one
can show that

up(t,x) = auq (Ax, A%t), (5.51)

that is, u(t,x) is invariant by (4.1). Moreover, it is not difficult to prove that A'(u,u) is invariant
by (4.1) whenever u is also. The latter fact, property (5.51) and an induction argument yield

uk(x, t) = Aug(rx, A%t) forallk e N. (5.52)

Since the norm || - ||y, is invariant by (4.1) and uy — u in Hg, it follows from (5.52) that u is self-
similar. O

5.4. Proof of Theorem 4.2

Subtracting the integral equations satisfied by u(x,t) and v(x,t), and afterwards taking the norm
|- ”M‘HI«(RQI»)' we obtain

tuc. 0 —ve. 0 ”Mq#(]R'_}_) < % Llug — vol(-. 1) ”Mq#(m) +1t*|[Kla = b)C. ) ”Mq,#(m)
+t*||B@@, 0)(-, t) — B(V, V) (-, t) ”Mq’“(m)
+t*||K[B@, w)lo] (-, t) — K[B(¥, V)lo] (-, ) ||Mq_u(m)
i=Io(t) + I1(&) + L2(D) + I3(0). (5.53)
Working as in the proofs of (5.7) for K; j and (5.31) for P; with (1,41, q2) = (@, r,q) and (17,q1,q2) =

(a, q%, q), respectively, one can obtain

I1(t) =t%| Kla — b](-, t) ||Mq,M<R1>

n n
< Ct® (Z”pj[an — bl t)HMq_H(RD + Z |K<i. jla = b1C, £) |}MW(R1)>

j=1 i,j=1

< C(fa Han(w t) = bn(, t)H/\/[ p—1 (RT)
a5

t

+ta /(t _5)7%7%("*%)”(1(.’5) — b(.,s) “Mr/,_(R”_l)d5>
0

7

:C(ta Han(',t)—bn("t)HM p—1  (RAT)
=L

1

+/(1 —s)—%—%m—%)sfﬁ(ts)ﬂ lac-, ts) — b(-, ts) HMW(RM)dS), (5.54)
0

where, in the last integral, we have used the change of variable s — st. Moreover,



M.E de Almeida, L.C.F. Ferreira / J. Differential Equations 254 (2013) 1548-1570 1567

lo@®) <t*[G®io — VoI, O oy, ny + 1 [K[GO W0 = V0)lo] - O oy, )

<6®H0 = V010 g, en) + CENCO@0 = 0] o, ,

Q=M

+C / (=572 2057 (15) | G (t5) o — V0o, rr, U5 (5.55)

and

L) <t*|B@ — v, @) (-, 1) ||MW(R1) +tY|B(v,a — V(- t) ”Mmm)
t

<t /(t g m g [s*] @ - 7)) M |acs) HMq.M(Rn)
0

+5%v(s) “Mq,ﬂ(Rﬂ)sa @ =) ”Mq,,L(Rn)] ds

1

<48C/(1 — )" g2 (g [ =) p, , e, 45 (5.56)
0

because ||v|ln,, lulln, < 2¢. For I3, we have

I3(t) <t*||K[B@ — v, D)|o] (. t) ||Mq1#(m) +t*|K[B@, u = V)lo] (-, 1) ||Mqvﬂ(m)

<Ct ”[B(L_’_‘_/’L_’)]n|o("t)u =) 1 (R” 1)

e /(r — ) 38D [B(ii — V. i)lo] (- 5) (p—t

+Ce[[B.a =] [y 0] o o1 B

p By

+Cte /(r =) T IO [BE, &~ Do), g, ) 85 (5.57)

Using (5.25) with (dy,dy) = (%,q"’%]) and (dq,dz) = (4,1), the right hand side of (5.57) can be
bounded by

et [ =97 GOy, o 1= DOy, a0, 5

+cr“/(t—s)”"("”)m(s)der
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t

+Ct® /(t - 5)_%_% H v(s) HMq,u(R”) ” (- D)(S)H/qu.u(Rn) ds
0

t
o U]
+ Ct (t—s) 2 2V d'Ih(s)ds
0

1

<4eC f (1 =97 1s2) | = v)(E5) | p, e S
0
1

+C / (1— ) 273005 5)P (1T, (ts) + M (ts)) ds, (5.58)
0

where

ts
(ts)? M (ts) = / s =2 Pa@) | o oy @ = DO oy 4T

0
1
< 28/(1 — T2 P2 (s)Y | (u — V)(t”)”/\/tq, &) 47 (5.59)
Ry
0
and, similarly,
1
(ts)P I (ts) < 2¢ /(1 =P s [ = s, ) AT (5.60)
B +
0

Let us set I' := limsup,_, o, t*||u(,t) — v(~,t)||Mq_“(Rn+). Taking limsup,_, ., in (5.54)-(5.60), we
obtain the following inequalities:

limsup[lo(H)] < lig sup t*| GO0 = Vol (. O q, ey

t—o00

+ Climsupt® | [G(O) @0 — V)] [olng | @)
t—o00 qu‘ﬂ

1
n_ 1
+c/(1 =) P dslimsupt? | GO o — Vo)lo|| vy, , nr)
t—o00 "
0

=04+0+0=0, (5.61)

limsup[I1(t) + I2(t)] < Climsupt®|an(-, t) — by(-, t) HM @Y
t—o00 qpp n

t—00

1
1 n_ 1
+C /(1—s)*?*9<f*ﬁ)s—ﬂds limsupt? |aC, ©) =bC, O] v nor) +
, t—o00 n#
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1
n—p 1
)" 2524l Ay — v (-
+48Cf(1 s)” @ 2s dSll{I_l)Sgolpt | V)(’t)”Mq.u(]Ri)
0
—0+0-+4eK I =4¢K;T, (5.62)
and
1
limsup[I3(1)] < 4£C/(1 — ) s~ dslimsupt® | (u — v)(-, t) | e ®)
=00 5 t— 00 9.1

1 1
1 0 1
+c/(1 —5) 27217 B g 45/(1 —p)2e—plp =20 g
0 0

x limsupt® [ =)0 p, , )

=4g(Ky + K3)T. (5.63)

Now, taking limsup;_, o, in (5.53), and using (5.61)-(5.63), it follows that

I <limsup[Io(t) + I1(t) + I2(t) + 13(D) ]
t—o00
<044k I +4¢(Ky 4+ K3)I" < (4eK) T,
which implies I" =0 (because 4K¢e < 1), and then we obtain (4.9). O

References

[1] D.R. Adams, A note on Riesz potentials, Duke Math. J. 42 (4) (1975) 765-778.
[2] M. Cannone, G. Karch, Smooth or singular solutions to the Navier-Stokes system?, J. Differential Equations 197 (2) (2004)
247-274.
[3] M. Cannone, F. Planchon, M. Schonbek, Strong solutions to the incompressible Navier-Stokes equations in the half-space,
Comm. Partial Differential Equations 25 (5-6) (2000) 903-924.
[4] M. Cannone, Ondelettes, paraproduits et Navier-Stokes, Diderot Editeur, Paris, 1995.
[5] W. Desch, M. Hieber, ]. Priiss, LP-theory of the Stokes equation in a halfspace, J. Evol. Equ. 1 (1) (2001) 115-142.
[6] E.B. Fabes, B.F. Jones, N.M. Riviére, The initial value problem for the Navier-Stokes equations with data in L?, Arch. Ration.
Mech. Anal. 45 (1972) 222-240.
[7] Y. Giga, T. Miyakawa, Navier-Stokes flow in R3 with measures as initial vorticity and Morrey spaces, Comm. Partial Differ-
ential Equations 14 (5) (1989) 577-618.
[8] Y. Giga, S. Matsui, Y. Shimizu, On estimates in Hardy spaces for the Stokes flow in a half space, Math. Z. 231 (2) (1999)
383-396.
[9] Y. Giga, Solutions for semilinear parabolic equations in LP and regularity of weak solutions of the Navier-Stokes system,
J. Differential Equations 62 (2) (1986) 186-212.
[10] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, NJ, 2004.
[11] T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Brasil. Mat. (N.S.) 22 (2) (1992) 127-155.
[12] T. Kato, Strong LP-solutions of the Navier-Stokes equation in R", with applications to weak solutions, Math. Z. 187 (4)
(1984) 471-480.
[13] H. Kozono, M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function
spaces as initial data, Comm. Partial Differential Equations 19 (5-6) (1994) 959-1014.
[14] H. Kozono, Global L"-solution and its decay property for the Navier-Stokes equations in half-space, J. Differential Equa-
tions 79 (1) (1989) 79-88.
[15] P.G. Lemarie-Rieusset, The Navier-Stokes equations in the critical Morrey-Campanato space, Rev. Mat. Iberoam. 23 (3)
(2007) 897-930.
[16] J.E. Lewis, The initial-boundary value problem for the Navier-Stokes equations with data in LP, Indiana Univ. Math. J. 22
(1972/1973) 739-761.
[17] J. Peetre, On the theory of £P-* spaces, J. Funct. Anal. 4 (1969) 71-87.



1570 M.E de Almeida, L.C.F. Ferreira / J. Differential Equations 254 (2013) 1548-1570

[18] J. Saal, The Stokes operator with Robin boundary conditions in solenoidal subspaces of L (R%) and L*°(R'} ), Comm. Partial
Differential Equations 32 (1-3) (2007) 343-373.

[19] ]. Saal, Stokes and Navier-Stokes equations with Robin boundary conditions in a half-space, J. Math. Fluid Mech. 8 (2)
(2006) 211-241.

[20] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.

[21] V.A. Solonnikov, Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations, Tr. Mat. Inst.
Steklova 70 (1964) 213-317 (in Russian); English version: Amer. Math. Soc. Transl. Ser. 2 75 (1968) 1-116.

[22] V.A. Solonnikov, On nonstationary Stokes problem and Navier-Stokes problem in a half-space with initial data nondecreas-
ing at infinity. Function theory and applications, J. Math. Sci. (N. Y.) 114 (5) (2003) 1726-1740.

[23] Y. Shibata, S. Shimizu, A decay property of the Fourier transform and its application to the Stokes problem, ]. Math. Fluid
Mech. 3 (3) (2001) 213-230.

[24] M.E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial
Differential Equations 17 (9-10) (1992) 1407-1456.

[25] S. Ukai, A solution formula for the Stokes equation in R" , Comm. Pure Appl. Math. 40 (5) (1987) 611-621.

[26] K.A. Voss, Self-similar solutions of the Navier-Stokes equation, PhD Thesis, Yale University, ISBN 978-0591-01861-5, 1996,
64 pp.

[27] E.B. Weisseler, The Navier-Stokes initial value problem in LP, Arch. Ration. Mech. Anal. 74 (3) (1980) 219-230.

[28] M. Yamazaki, The Navier-Stokes equations in the weak-L" space with time-dependent external force, Math. Ann. 317 (4)
(2000) 635-675.



	On the Navier-Stokes equations in the half-space with initial and boundary rough data in Morrey spaces
	1 Introduction
	2 Preliminaries
	2.1 Heat semigroup in Rn

	3 An integral formulation for (1.1)-(1.4)
	4 Functional setting and results
	5 Proof of results
	5.1 Linear estimates
	5.2 Estimates for the operators N and L
	5.3 Proof of Theorem 4.1
	5.4 Proof of Theorem 4.2

	References


