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a b s t r a c t

We prove local-in-time (non-uniform) solvability for the rotating Navier–Stokes equations
in Morrey spaces M�

p,µ(R3). These spaces contain singular and nondecaying functions
which are of interest in statistical turbulence. We give an algebraic relation between the
size of existence time and angular velocity ⌦ . The evolution of velocity u is analyzed in
suitable Kato–Fujita spaces based on Morrey spaces. We show the asymptotic behavior
u⌦ ! w in L1(0, T ; M�

p,µ(R3)) as ⌦ ! 0, where w is the solution for the Navier–Stokes
equations with the same data u0. Particularly, for µ = 3� p, the solution is approximately
self-similar for small |⌦|, when u0 is homogeneous of degree �1.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the initial value problem (IVP) for the incompressible rotating Navier–Stokes equations

@u
@t

� 1u + (u · r)u + ⌦Ju + rp = 0, x 2 R3, t > 0 (1.1)

r · u = 0, x 2 R3, t � 0 (1.2)

u(x, 0) = u0(x), x 2 R3, (1.3)

where u is the velocity field of fluid and the scalar function p denotes the pressure at the point x 2 R3 and t > 0. The
term ⌦ 2 R is the so-called Coriolis parameter which corresponds twice the speed of rotation around the vertical axis
e3 = (0, 0, 1). The operator J is the skew-symmetric 3 ⇥ 3 matrix

J =
 0 �1 0
1 0 0
0 0 0

!

(1.4)

and the term ⌦Ju = ⌦e3 ⇥ u is called Coriolis force. After applying the Leray projector P, Duhamel’s principle can be used
to formally convert (1.1)–(1.3) to the integral equation

u(t) = G(t)u0 +
Z t

0
r · G(t � s)P(u ⌦ u)(s)ds, (1.5)

⇤ Corresponding author.
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where {G(t)}t�0 stands for the semigroup associated to linear part of (1.1)–(1.2) (see Section 2.3 for details). The operator
G(t) is the composition of the heat semigroup exp(t�) with exp(�t⌦S) where S = PJP is the Coriolis operator, that is

G(t)u0 = exp(t�) exp(�t⌦S)u0. (1.6)

The family {exp(�t⌦S)}t�0 is also known as Poincaré–Riesz semigroup. Throughout this manuscript, vector fields u
verifying (1.5) are called mild solutions for the Cauchy problem (1.1)–(1.3).

Due to their potential applications, fluids under rotational effects have recently attracted the attention of several authors,
see e.g. [1,2,4,9,10,12,14,11,15,13,21,26]. For instance, the above system has applications connected to the large-scale ocean
and atmosphere dynamics which can present sharp movements of rotation (see [5]). In the mathematical theory of rotating
fluids, it is important to study local or global solvability by analyzing how the angular velocity⌦ affects the size of existence
time or initial data. Also, existence results for (1.1)–(1.3) with singular and nondecaying initial data can be important in the
context of homogeneous statistical turbulence (see e.g. [1,2,8,14,30]).

In this paper, we obtain results about local-in-time solvability for (1.1)–(1.3) inMorrey spacesM�
p,µ(R3)with 1 < p < 1

and µ � 3 � p (see Theorem 3.1), whose elements can be strongly singular. These spaces contain functions f that do not
vanish as |x| ! 1 (nondecaying functions) in the sense that the set

{x 2 Rn : |x| > L and |f (x)| > ⌘} (1.7)

has infinite measure, for every L > 0 and some fixed ⌘ > 0. The evolution of the velocity is analyzed in suitable Kato–Fujita
norms based on Morrey spaces. In spite of (1.1) does not have a scaling when ⌦ 6= 0, we can use the Navier–Stokes one
u ! u� = �u(�x, �2t) as a suitable intrinsic scaling for (1.1) in order to define a notion of critical spaces. In Theorem 3.4,
we show that the solution u⌦(x, t) is approximately self-similar when µ = 3 � p, u0 is homogeneous of degree �1, and
|⌦| is small enough. Precisely, it is proved that u⌦ ! w in L1(0, T ; M�

p,�(R
3)) as ⌦ ! 0, for arbitrary fixed T > 0, where

w is the self-similar global solution of the Navier–Stokes equations (⌦ = 0) with initial data u0.
From another point of view, our results provide local solvability of the Navier–Stokes equations in R3 (3DNS) with

measure as initial vorticity. Indeed, we can consider initial vorticity belonging toM1,1 which containsmeasure concentrated
on smooth compact curves (see [16]), because Biot–Savart law implies

u0(x) = � 1
4⇡

Z

R3

1
|x � z|3 (x � z) ⇥ !0(z)dz 2 M�

2,1 for !0 = r ⇥ u0 2 M1,1(R3).

Here we denote spaces of vector-valued and scalar functions in the same way.
Let us review some works about local and global solvability for (1.1)–(1.3). Local-in-time existence of solutions in the

Besov space Ḃ0
1,1 was proved in [18,32]with existence time T depending on Coriolis parameter⌦ (i.e. non-uniform). Indeed

the paper [18] considered the Eq. (1.1) with a additional drift termMx · ruwithM a real matrix. In the paper [11], authors
showed local non-uniform solvability in L1

av , which is a subspace of L1 having vertical averaging property. Precisely,

L1
av(R

3) = �

u 2 L1(R3) : u � u 2 Ḃ0
1,1(R

3)
 

where u = lim
L!+1

1
2L

Z L

�L
u(x1, x2, x3)dx3. (1.8)

The motivation for introducing the space L1
av(R

3) was that the Stokes–Coriolis semigroup is unbounded on L1(R3).
Afterwards the authors of [12] introduced the space FM0 and showed a result of local-in-time solvability, uniformly on
⌦ , where

FM0 = {f̂ : f 2 M has no point mass at x = 0},
andM is the space of finite Radonmeasures.Wehave the inclusions FM0 ⇢ Ḃ0

1,1 ⇢ BUC . Concerning small global solvability
for (1.1)–(1.3), uniformly on ⌦ , we have results on Sobolev space H

1
2 [19], FM� = {f 2 FM; supp (f̂ ) ⇢ F�} [13], (FM0)

�1 =
div

⇥

(FM0)
3⇤ [14], F Ḃ

2� 3
p

p,1 with p > 3 [26] and Ḃ
1/2,sp
2,p [6]with sp = �1+ 3

p and3 < p < 1. Here F� is a sum-closed frequency

set, FM = (M)^ = {f̂ : f 2 M}, F Ḃs
p,1 = (Ḃs

p,1)_ denotes Fourier Besov spaces, and Ḃ
1/2,sp
2,p is a homogeneous hybrid-

Besov space. The time analyticity of local solutionswas studied in [15] by assuming values in the space of bounded uniformly
continuous functions BUC(R3) when ⌦ = 0 and in FM0 when ⌦ 6= 0. Another problem related to (1.1)–(1.3) is to describe
the Navier–Stokes flow past rotating obstacles, whose mathematical structure have a drift term besides the Coriolis force.
In the literature for this model, the reader can find existence results for decaying data in Lp and weak-Lp (see [9,10,20,21]
and references therein).

The continuous inclusions

W
1
2 ,2(R3) ⇢ L3(R3) ⇢ L3,1(R3) ⇢ M2,1(R3) (1.9)

hold true, where the first one in (1.9) follows from Sobolev embedding. On the other hand, there is no inclusion relation

between M2,1(R3) (or more generally Mp,µ) and the spaces FM� ⇢ FM0 ⇢ (FM0)
�1, F Ḃ

2� 3
p

p,1 and Ḃ
1/2,sp
2,p (see Remark 3.3).

The same occurs between Mp,µ(R3) and Ḃ0
1,1(R

3), L1
av(R

3), for 1  p < 1 and 0  µ < 3. Then we are providing a new
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initial data class for IVP (1.1)–(1.3), which contains in particular nondecaying functions at infinity. Another types of
nondecaying data have been considered in the works [12,14,11,15,13,22,32,35]. Due to the presence of Poincaré–Riesz
semigroup, the analysis of rotating fluid models in a nondecaying framework requires involved arguments and, unlike L2
and Hs-spaces, it is not possible to use energy methods.

Technically speaking, the works [12,14,13,19,26] have analyzed (1.1)–(1.3) in spaces based on Fourier transform, among
other reasons, in order to obtain results uniform on ⌦ . We show the local-in-time solvability in a space whose norm is not
characterized via Fourier transform, however our existence time depends on ⌦ . The Navier–Stokes equations in R3 have
been studied in Morrey spaces by [16,24,33] where the kernel of the integral mild formulation is the heat fundamental
solution which is a L1-function. In virtue of Poincaré–Riesz semigroup exp(�t⌦S), the kernel of the integral operator
associated to (1.6) does not belong to L1(R3) since it behaves like 1/|x|3 as |x| ! 1 (see [11, Appendix A]). In order to
overcome this lack of integrability, a non-straightforward adaptation from arguments of [16,24,33] is performed here.

Finally, we recall results about existence of global solutions for large |⌦| and regardless the size of data u0. In [1],
the authors worked in Sobolev spaces of periodic functions H↵

per (↵ > 1/2) with zero average and obtained solution for
(1.1)–(1.3) on the time-interval [0, 1) for |⌦| � C0 with C0 depending on the spatial lattice and u0 (see also [2] for
L2-periodic data). Results for H1-solutions and bounded cylindrical domains U = {x 2 R3; x3 2 [0, h], x21 + x22  a2} can
be found in [30] with C0 depending on h/a and kr ⇥ u0kL2(U); there, slip boundary conditions for u on vertical plates are
assumed. The author of [35] showed existence of mild solution on [0, T ], for any 0 < T < 1 and arbitrary almost periodic
data, by assuming |⌦| � C0 where C0 depends on T and u0. These three last results show that fast angular velocities tend to
smooth out flows of fluids. Further results for the above and other rotating fluid models can be found in [4,5].

The plan of this paper is as follows. In the next section we review some basic properties about Morrey spaces and
Stokes–Coriolis semigroup. We state our results in Section 3 and prove them in Section 4. The core linear estimates for
the Stokes–Coriolis semigroup on Morrey spaces are proved in Section 4.1.

2. Preliminaries

2.1. Morrey spaces

For 1  p < 1 and 0  µ < n, the Morrey space Mp,µ = Mp,µ(Rn) is the space of all measurable functions such that

kf kp,µ = sup
x02Rn

sup
r>0

r�µ/pkf kLp(Br (x0)) < 1, (2.1)

where Br(x0) ⇢ Rn is the closed ball in Rn with center x0 and radius r . Notice that Mp,0 = Lp for p > 1 and µ = 0.
By identifying locally integrable functions with Radon measure, M1,µ(Rn) is a set of Radon measures on Rn, and the space
M1,0(Rn) denotes the set of finite real valued Radon measure. Finally the cases µ = n and µ > n correspond to L1(Rn) and
to the null space {0}, respectively. For further details about Morrey spaces, see [24,29,31,27,28]. The space Mp,µ endowed
with the norm k · kp,µ is a Banach space and

kf (lx)kp,µ = l�
n�µ
p kf (x)kp,µ, for l > 0.

In the next lemma we recall some basic inequalities in Morrey spaces (see [24]).

Lemma 2.1. Assume that 1  p, q, r < 1 and 0  �, µ,� < n.
(i) (Inclusion). If n��

p = n�µ
q and p  q then

Mq,µ ⇢ Mp,�. (2.2)

(ii) (Hölder inequality). If 1
r = 1

p + 1
q and �

r = �
p + µ

q then

kfgkr,� 6 kf kp,�kgkq,µ. (2.3)

(iii) (Homogeneous function). Let ' 2 L1(Sn�1), 0 < d < n and 1  p < n/d. Then '(x/|x|)|x|�d 2 Mp,n�dp(Rn).

2.2. Fourier multipliers

Let N 2 N with N > n
2 , and denote ⌃1

0 (R
n) by the class of CN -functions on Rn \ {0} satisfying the estimate

sup
⇠ 6=0

|⇠ ||↵||@↵
⇠ � (⇠)|  L, (2.4)

for all multi-index ↵ with |↵|  N (see [17,27,34]). In such a case, we have that the operator

T�u = F �1� (⇠)F u (2.5)
is a Fourier multiplier on Lp and there exists a constant C > 0 such that (see e.g. [17, p. 362])

kT�ukLp(Rn)  C L kukLp(Rn) , (2.6)
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for all u 2 Lp(Rn). In what follows, the class OP⌃1
0 (R

n) denotes the set of operators with symbol � (T� ) = � (⇠) belonging
to ⌃1

0 (R
n).

In particular, the next lemma extends (2.6) to Morrey spaces. Its proof can be reached by using results and arguments
of [27,33,34].

Lemma 2.2. Let 1 < p < 1, 0  µ < n and T� 2 OP⌃0
1 (R

n).

(i) There exists C > 0 (independent of L) such that

kT� f kp,µ  CLkf kp,µ, (2.7)

for all f 2 Mp,µ(Rn).
(ii) If k� (z) = (� (⇠))_ satisfies |k� (z)|  A1 |z|�n and

kT� f kLp(Rn)  A2kf kLp(Rn), (2.8)

for all f 2 Lp(Rn), then

kT� f kp,µ eCkf kp,µ, (2.9)

for all f 2 Mp,µ(Rn), whereeC = C(A1 + A2) with C > 0 depending only on p, µ, n.

Proof. From [33, p. 1420] and [34, Propositions B.1 and B.2], we have that T� is a convolution operator with kernel k� (z) =
(� (⇠))_ and the estimate (2.7) holds (see also [27,28]). Moreover, one can use [34, Propositions B.1 and B.2] and follow the
same steps of its proofs to see that the constanteC > 0 can be taken as in (2.9). In the sequel we give some details for the
reader’s convenience. First one splits f 2 Mp,µ(Rn) as

f = f0 +
1
X

j=1

gj,

where

f0 = �B2r (x0)f , gj = f�Arj and Arj = {x : 2jr  |x0 � x|  2j+1r}.
Defining kj(x, y) = �Br (x0)(x)k(x � y)�Arj(y) and T� ,j(f ) = R

Rn kj(x, y)f (y)dy, one can estimate

kT� f kLp(Br (x0))  kT� f0kLp(Rn) +
1
X

j=1

�

�T� gj
�

�

Lp(Br (x0))

 A1 kf0kLp(Rn) +
1
X

j=1

�

�T� ,j(�Arj f )
�

�

Lp(Rn)

 A1 kf kLp(B2r (x0)) +
1
X

j=1

CA22�jn/p
�

��Arj f
�

�

Lp(Rn)

 2
µ
p A1 kf kp,µ r

µ
p + CA2

1
X

j=1

2�jn/p kf kp,µ (2jr)
µ
p

 C

 

1 +
1
X

j=1

2�j
⇣

n�µ
p

⌘

!

(A1 + A2) kf kp,µ r
µ
p , (2.10)

which yields (2.9), because the series in (2.10) is convergent. ⇤

Remark 2.3. Let � (⇠) 2 ⌃0
1 (R

n) be homogeneous of degree zero. We have that |k� (z)|  CL |z|�n with C > 0 independent
of z and � (see [3, Theorem 1] and [17, Chapters 2 and 4]). Then we can obtain (2.7) directly from (2.6) and item (ii) of
Lemma 2.2.

2.3. Stokes–Coriolis semigroup

Let us recall the Stokes–Coriolis semigroup {G(t)}t�0 associated to the linear system

@tu � 1u + ⌦e3 ⇥ u + rp = 0 in R3 ⇥ {t > 0} (2.11)

r · u = 0 in R3 ⇥ {t � 0} (2.12)

u(x, 0) = u0 in R3. (2.13)
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Hieber and Shibata [19, Proposition 2.1] gave an explicit representation formula for {G(t)}t�0 by handling the corresponding
resolvent equation in Fourier variables. Using infinite series for the exponential Coriolis operator, the authors of [11]
obtained the same formula, namely

\G(t)u0 = e�t|⇠ |2


cos
✓

t⌦
⇠3

|⇠ |
◆

I + sin
✓

t⌦
⇠3

|⇠ |
◆

bR(⇠)

�

bu0, (2.14)

for all ⇠ 2 R3 \ {0} and t � 0, where I is the identity in R3. HerebR(⇠) is a 3 ⇥ 3 skew-symmetric matrix whose elements
are symbols of Riesz operators Rj, j = 1, 2, 3. Precisely,

bR(⇠) =

2

6

6

6

6

6

4

0
⇠3

|⇠ | � ⇠2

|⇠ |
� ⇠3

|⇠ | 0
⇠1

|⇠ |
⇠2

|⇠ | � ⇠1

|⇠ | 0

3

7

7

7

7

7

5

and bR(⇠)u := � 1
|⇠ |⇠ ⇥ u.

The elements of the symbol matrix of Leray projector Pu = (��)�1r ⇥ r ⇥ u belong to ⌃0
1 (R

3) and are given by

(bP(⇠))i,j = �ij � ⇠i⇠j/|⇠ |2. (2.15)
It follows that P is bounded from Mp,µ into itself, for 1 < p < 1 and 0  µ < 3. Applying P in (2.11), we obtain

@tu � 1u + ⌦Su = 0 in R3 ⇥ {t > 0} and u(x, 0) = u0 in R3, (2.16)
where S = PJ = PJP is the Coriolis operator on divergence-free vector fields and J is as in (1.4). Therefore

u(x, t) = G(t)u0 := exp(t�) exp(�t⌦S)u0 (2.17)
is a solution for (2.16) on divergence-free vector spaces and we have

\exp(�t⌦S)u0 =


cos
✓

t⌦
⇠3

|⇠ |
◆

I + sin
✓

t⌦
⇠3

|⇠ |
◆

bR(⇠)

�

bu0. (2.18)

3. Main results

In what follows, for T > 0, BC((0, T ), X) denotes the space of bounded continuous functions from (0, T ) to the Banach
space X .

We are going to employ Kato–Fujita method (see [23,25]) to the integral equation (1.5) on Morrey spaces. To do this, we
performa scaling analysis in order to find suitable Kato–Fujita spaces based onMorrey spaces. As pointed out in Introduction,
for ⌦ 6= 0 the system (1.1)–(1.2) does not have a scaling invariance property, however we can use an ‘‘intrinsic scaling’’
which comes from Navier–Stokes equations, namely

u(x, t) ! u�(x, t) := �u(�x, �2t). (3.1)
In a natural way, making t ! 0+, the map (3.1) induces the following scaling for initial data

u0(x) ! �u0(�x). (3.2)

Let us denote M�
p,µ = {u0 2 Mp,µ : r · u0 = 0}. For 1 < p < q < 1, 0  µ < 3 and ↵ = 3�µ

p � 3�µ
q , we consider the

Kato–Fujita type space based on Morrey spaces

Hq,T =
n

u(·, t) 2 BC((0, T ), M�
p,µ) : t

↵
2 u(·, t) 2 BC((0, T ), Mq,µ)

o

, (3.3)

which is a Banach space with norm

kukHq ,T = sup
0<t<T

ku(·, t)kp,µ + sup
0<t<T

t
↵
2 ku(·, t)kq,µ. (3.4)

Above, the upper index � stands for solenoidal fields. Notice that Hq,1 is critical for the scaling (3.1) only when µ = 3 � p,
that is

kukHq,1 = ku�kHq,1 . (3.5)

For ⌦ = 0, a solution w is called self-similar when it is invariant by (3.1), that is, w = w� := �w(�x, �2t), for all � > 0.
Our local-in-time solvability result reads as follows.

Theorem 3.1. Let 1 < q0 < p < q < 1, ⌦ 2 R, 0  µ < 3 with µ � 3 � p and u0 2 M�
p,µ.

(i) Let µ > 3 � p. There exists C > 0 independent of ⌦ and u0, T⌦ := T (⌦) > 0, and a unique local-in-time mild solution
u 2 Hq,T⌦ for the IVP (1.1)–(1.3) satisfying kukHq,T⌦

 2�⌦ , where �⌦ = C(1 + T⌦ |⌦|)2ku0kp,µ. The data-map solution is
locally Lipschitz continuous from M�

p,µ to Hq,T⌦ .
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(ii) Let µ = 3�p and �⌦ = C(1+T |⌦|)2ku0kp,µ, where T > 0 is arbitrary and C is as in item (i). There exist � := �(T , ⌦) > 0
and a uniquemild solution u 2 Hq,T satisfying kukHq,T  2�⌦ provided that ku0kp,µ < �. For ⌦ = 0, there is �0 > 0, �0 � �,
such that if ku0kp,µ < �0 thenwe can take T = 1 and u is the unique global solution verifying kukHq,1  2�0 = 2Cku0kp,µ.
In the first conclusion of this item, we can replace � by �0 provided that T |⌦| is small enough.

Remark 3.2. If T0 > 0 is the existence time in the above item (i), corresponding to⌦ = 0, we can take T⌦ = T0 for |⌦| small
enough (see (4.18)). Also, it follows from item (ii) that, for ku0kp,µ < �0 with µ = 3� p, there is a solution u⌦(x, t) 2 Hq,T⌦ ,
where T⌦ |⌦| is small, and T⌦ ! 1 when ⌦ ! 0.

The case ⌦ = 0 in item (ii) recovers an existence result due to [24].

Remark 3.3. Let � 2 C1
0 , � � 0, �(0) = 1,

R

R3 �dx = 1, and �(x) = 0 for |x| � 1. Let {�j} ⇢ Rn satisfy |�j| = 4j and
define

f =
1
X

j=1

ei�j·x�(x � �j). (3.6)

Then f is a nondecaying function and it belongs to Mp,µ(R3), for 1  p < 1 and 0  µ < 3, but not to FM�, FM0,

(FM0)
�1, Ḃ

1/2,sp
2,p nor F Ḃ

2� 3
p

p,1 . In [7, Remark 2.1], the function (3.6) was used as an example of f that does not belong to weak-
Lp spaces and to pseudo-measure spaces PMa.

Theorem 3.4. Under the hypotheses of Theorem 3.1.

(i) (Vanishing angular velocity limit). Let u⌦ be the solution corresponding to angular velocity ⌦ , and let w be the solution of
the Navier–Stokes equations (⌦ = 0) both with the initial data u0. Then

u⌦ ! w in L1(0, T ; Mp,µ) as ⌦ ! 0, (3.7)

where either T > 0 is arbitrary if µ = 3 � p or T = T0 if µ > 3 � p (see Remark 3.2).
(ii) (Approximate self-similarity as ⌦ ! 0). Assume µ = 3 � p. Let u⌦(x, t) be the solution with data u0 homogeneous of

degree �1 and with existence time T⌦ , where ku0kp,µ  �0 and T⌦ ! 1 as ⌦ ! 0. Then, for small values of |⌦| , u⌦ is
approximately self-similar in L1

loc(0, 1; Mp,µ), that is, u⌦(x, t) converges in the sense of (3.7), for any fixed T > 0, to the
self-similar solution w of the Navier–Stokes equations.

4. Proofs

4.1. Linear estimates

In this sectionwe obtain estimates for the Stokes–Coriolis semigroup {G(t)}t�0 acting onMorrey spaces. For that, we start
by providing estimates for the evolution operator exp(t⌦Rj) which is called Riesz semigroup (see [22]). Here Rj stands for
the so-called j-th Riesz transform whose symbol is

�j(⇠) = i⇠j/|⇠ |, j = 1, . . . , n.

For 1 < p < 1 and 0  µ < n, notice that Rj’s are continuous on Mp,µ because �j 2 ⌃0
1 (R

n) (see Lemma 2.2).
The next lemma deals with the Riesz semigroup in Morrey spaces.

Lemma 4.1. Let 1 < p < 1, 0  µ < n and⌦ 2 R. For each fixed t � 0, the operator exp(t⌦Rj) is bounded from Mp,µ(Rn)
into itself, for j = 1, . . . , n. Moreover, there is C > 0 (independent of ⌦) such that

k exp(t⌦Rj)f kp,µ  C (1 + t|⌦|)bn/2c+1kf kp,µ, (4.1)

for all f 2 Mp,µ and t � 0, where b·c stands for the greatest integer function.

Proof. Because � (Rj) satisfies (2.4), a simple computation shows that

|@↵
⇠ exp(t⌦ � (Rj))|  C(1 + t|⌦|)|↵||⇠ |�|↵|,

for all |↵|  N = bn/2c + 1 and j = 1, . . . , n. It follows that

sup
⇠2Rn

�|⇠ ||↵||@↵
⇠ exp(t⌦ � (Rj))|

�  L = C(1 + t|⌦|)bn/2c+1,

which implies that exp(t⌦Rj) 2 OP⌃1
0 (R

n). Now an application of Lemma 2.2(i) gives us the desired statement. ⇤

In the following we recall estimates on Morrey spaces for the heat semigroup exp(t�) found in [24, Lemma 2.1] (see
also [33]).
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Lemma 4.2. Let 1  q1  q2 < 1, 0  µ < n, ⌘i = n�µ
qi

(i = 1, 2) and let � 2 ({0} [ N)n be a multi-index. Then the

operator @
�
x exp(t�) is bounded from Mq1,µ to Mq2,µ and there is C > 0 such that

t
1
2 (⌘1�⌘2)+ |�|

2 k@�
x exp(t�)f kq2,µ  Ckf kq1,µ,

for all f 2 Mq1,µ and t > 0.

Lemma 4.3. Let n = 3, 1 < p < 1, 0  µ < 3 and ⌦ 2 R. Then there is C > 0 (independent of ⌦) such that

k exp(�t⌦S)f kp,µ  C(1 + t|⌦|)2kf kp,µ, (4.2)

for all f 2 M�
p,µ(R3).

Proof. First observe that the real and imaginary parts of exp(t⌦� (R3)) are cos(t⌦⇠3/|⇠ |) = cos(t⌦ i� (R3)) and
sin(t⌦⇠3/|⇠ |) = � sin(t⌦ i� (R3)), respectively, which belong to OP⌃0

1 (R
3). In view of (2.18), we obtain from Lemma 4.1

that

k exp(�t⌦S)kMp,µ!Mp,µ  k cos(t⌦ iR3)kMp,µ!Mp,µ + k sin(t⌦ iR3)kMp,µ!Mp,µkRkMp,µ!Mp,µ (4.3)
 Ck exp(t⌦R3)kMp,µ!Mp,µ + Ck exp(t⌦R3)kMp,µ!Mp,µkRkMp,µ!Mp,µ

 C(1 + t|⌦|)2, (4.4)

which is equivalent to (4.2). ⇤

Lemma 4.4. Let n = 3, ⌦ 2 R, 1 < q1  q2 < 1, 0  µ < 3, ⌘i = 3�µ
qi

(i = 1, 2) and let � 2 ({0} [ N)3 be a multi-index.
There exists C1 > 0 (independent of ⌦) such that

k@�
x G(t)f kq2,µ  C1(1 + t|⌦|)2t� ⌘1�⌘2

2 � |�|
2 kf kq1,µ, (4.5)

for all f 2 M�
q1,µ(R3) and t > 0.

Proof. In view of (2.17), we can use Lemmas 4.2 and 4.3 to estimate
�

�@�
x G(t)f

�

�

q2,µ
= �

�@�
x e

t� ⇥

e�t⌦S f
⇤

�

�

q2,µ

 Ct�
⌘1�⌘2

2 � |�|
2 ke�t⌦S f kq1,µ

 C1(1 + t|⌦|)2t� ⌘1�⌘2
2 � |�|

2 kf kq1,µ,

which gives (4.5). ⇤

4.2. Bilinear estimates

From now on, we denote

B(u, v)(x, t) :=
Z t

0
r · G(t � s)P(u ⌦ v)(s)ds, (4.6)

where the above integral should be understood in the sense of Bochner.

Lemma 4.5. Let T > 0, 1 < q0 < p < q < 1, 0  µ < 3 and µ � 3 � p. There exists a constant C2 > 0 such that

kB(u, v)kHq,T  C2 (1 + T |⌦|)2T 1
2 � 3�µ

2p kukHq,T kvkHq,T , (4.7)

for all u, v 2 Hq,T , where C2 is independent of T and the rotation speed ⌦ .

Proof. Note that↵ = 3�µ
p � 3�µ

q < 1. From the semigroup estimate (4.5)with (|�|, q2, q1) = (1, q, q
2 ) andHölder inequality

(2.3), we get

kr · G(t � s)[P(u ⌦ v)(s)]kq,µ  C (1 + (t � s)|⌦|)2(t � s)�
1
2

⇣

3�µ
q/2 � 3�µ

q

⌘

� 1
2 k(u ⌦ v)(·, s)k q

2 ,µ

 C (1 + (t � s)|⌦|)2(t � s)
1
2 � 3�µ

2p + ↵
2 �1ku(·, s)kq,µ kv(·, s)kq,µ. (4.8)
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It follows from (4.8) that

kB(u, v)(·, t)kq,µ 
Z t

0
kr · G(t � s)P(u ⌦ v)(s)kq,µds

 K(t) sup
0<t<T

t
↵
2 ku(·, t)kq,µ sup

0<t<T
t

↵
2 kv(·, t)kq,µ (4.9)

 K (t)kukHq,T kvkHq,T , (4.10)

where

K(t) = C
Z t

0
(1 + (t � s)|⌦|)2(t � s)

1
2 � 3�µ

2p + ↵
2 �1s�↵ds

 C(1 + t|⌦|)2
Z t

0
(t � s)

1
2 � 3�µ

2p + ↵
2 �1s�↵ds

= C (1 + t|⌦|)2t 1
2 � 3�µ

2p � ↵
2

Z 1

0
(1 � z)

1
2 � 3�µ

2p + ↵
2 �1z�↵dz

 C(1 + T |⌦|)2T 1
2 � 3�µ

2p t�
↵
2 . (4.11)

The estimates (4.10) and (4.11) give us

sup
0<t<T

t
↵
2 kB(u, v)(·, t)kq,µ  C(1 + T |⌦|)2T 1

2 � 3�µ
2p kukHq,T kvkHq,T . (4.12)

Proceeding similarly to the proof of (4.9), one also obtains

sup
0<t<T

kB(u, v)(·, t)kp,µ  sup
0<t<T

✓

C(1 + t|⌦|)2
Z t

0
(t � s)

1
2 � 3�µ

2p + ↵
2 �1s�

↵
2 ds

◆

·
✓

sup
0<t<T

ku(·, t)kp,µ

◆ ✓

sup
0<t<T

t
↵
2 kv(·, t)kq,µ

◆

(4.13)

 C (1 + T |⌦|)2T 1
2 � 3�µ

2p kukHq,T kvkHq,T . (4.14)

The estimate (4.7) follows from (4.12) and (4.14). ⇤

4.3. Proof of Theorem 3.1

It follows from (4.5) that (changing C1 if necessary)

kG(t)u0kHq,T  C1(1 + T |⌦|)2ku0kp,µ (4.15)

for all u0 2 M�
p,µ. Furthermore, Lemma 4.5 implies that B(·, ·) is bi-continuous in Hq,T with

kBkHq,T⇥Hq,T!Hq,T  C2(1 + T |⌦|)2T 1
2 � 3�µ

2p . (4.16)

We claim that there is T⌦ > 0 such that � defined by

�(u)(t) := G(t)u0 + B(u, u)(t) (4.17)

is a contraction in B2� = {u 2 Hq,T⌦ ; kukHq,T⌦
 2�⌦} endowed with Z(u, ũ) = ku � ũkHq,T⌦

, where

�⌦ = C1(1 + T⌦ |⌦|)2ku0kp,µ.

For that, we choose T⌦ > 0 such that

4�⌦C2(1 + T⌦ |⌦|)2T
1
2 � 3�µ

2p
⌦ = 4C1C2(1 + T⌦ |⌦|)4T

1
2 � 3�µ

2p
⌦ ku0kp,µ < 1. (4.18)

Using the bilinearity of B(·, ·) and (4.16), we estimate

k�(u) � �(ũ)kHq,T⌦
 C2(1 + T⌦ |⌦|)2T

1
2 � 3�µ

2p
⌦ (kukHq,T⌦

+ kũkHq,T⌦
)ku � ũkHq,T⌦

(4.19)

 4�⌦C2(1 + T⌦ |⌦|)2T
1
2 � 3�µ

2p
⌦ ku � ũkHq,T⌦

, (4.20)
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for all u, ũ 2 B2�⌦ . Since �(0) = G(t)u0, taking ũ = 0 in (4.19) and using (4.15), we get

k�(u)kHq,T⌦
 kG(t)u0kHq,T⌦

+ k�(u) � G(t)u0kHq,T⌦
(4.21)

 C1(1 + T⌦ |⌦|)2ku0kp,µ + C2(1 + T⌦ |⌦|)2T
1
2 � 3�µ

2p
⌦ kuk2

Hq,T⌦

 �⌦ +
✓

4C2(1 + T⌦ |⌦|)2T
1
2 � 3�µ

2p
⌦ �⌦

◆

�⌦ < 2�⌦ , (4.22)

provided u 2 B2�⌦ . Now the desired claim follows from (4.18), (4.20) and (4.22), and so� has a fixed point u 2 B2�⌦ which
is a mild solution for (1.1)–(1.3). This solution is unique in B2�⌦ . Notice that the initial data and radius 2�⌦ can be large,
when µ > 3 � p.

Let u, ũ be two mild solutions with same existence time T⌦ and respective data u0, ũ0. The Lipschitz continuity of data-
solution map follows from (4.18) and estimate

ku � ũkHq,T⌦
= k�(u) � �(ũ)kHq,T⌦

 kG(t)(u0 � ũ0)kHq,T⌦
+ kB(u, u) � B(ũ, ũ)kHq,T⌦

 C1(1 + T⌦ |⌦|)2ku0 � ũ0kp,µ + 4� C2(1 + T⌦ |⌦|)2T
1
2 � 3�µ

2p
⌦ ku � ũkHq,T⌦

.

For µ = 3 � p, it is sufficient to observe that (4.18) holds true for

ku0kp,µ < � = 1
4C1C2(1 + T |⌦|)4  1

4C1C2
= �0. (4.23)

In the case⌦ = 0, we have � = �0 and (4.18) holds true, regardless of T . Thuswe can take T0 = 1. Also, given ku0kp,µ < �0,
there is ⌘ > 0 such that ku0kp,µ < �  �0 provided that 0  T |⌦|  ⌘. This concludes the proof. ⇤

4.4. Proof of Theorem 3.4

Part (i) (Vanishing angular velocity limit): we have that u⌦ and w satisfy the respective equations

u⌦(t) = et(��S⌦)u0 +
Z t

0
r · e(t�s)(��⌦S)P(u⌦ ⌦ u⌦)(s)ds (4.24)

and

w(t) = et�u0 +
Z t

0
r · e(t�s)�P(w ⌦ w)(s)ds. (4.25)

In viewof Remark 3.2 and (4.18),we can take T⌦ = T0 < 1when |⌦| is small enough andµ > 3�p. So,we set T = T⌦ = T0
in this case. Also, for µ = 3 � p, given an arbitrary T > 0, there is ⌘ > 0 small enough such that T  T⌦ < T0 = 1, for all
|⌦|  ⌘.

From existence result (see Theorem 3.1), we have that kwkHq,T  kwkHq,T0
 2�0 and ku⌦kHq,T  ku⌦kHq,T⌦

 2�⌦ .
Given f 2 M�

p,µ, notice that

sup
0<t<T

�

�

�

e�t⌦S � 1
�

f
�

�

p,µ  sup
0<t<T

Z t

0

�

�

�

�

d
d⌧

(e�⌧⌦S f )
�

�

�

�

p,µ
d⌧

 |⌦| T sup
0<⌧<T

�

�Se�⌧⌦S f
�

�

p,µ (4.26)

 C |⌦| T (1 + T |⌦|)2 kf kp,µ ! 0, as ⌦ ! 0, (4.27)

where, from (4.26) to (4.27), we have used Lemma 4.3 and the continuity of S = PJP on M�
p,µ. Subtracting the Eqs. (4.24)

and (4.25) we get

ku⌦(·, t) � w(·, t)kp,µ  �

�(e�tS⌦ � 1)et�u0
�

�

p,µ +
�

�

�

�

Z t

0
(e�(t�s)S⌦ � 1)r · e(t�s)�P(u⌦ ⌦ u⌦)(s)ds

�

�

�

�

p,µ

+
�

�

�

�

Z t

0
r · e(t�s)�P [(u⌦ � w) ⌦ u⌦ + w ⌦ (u⌦ � w)] ds

�

�

�

�

p,µ

:= I0(t, ⌦) + I1(t, ⌦) + I2(t, ⌦). (4.28)
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The terms Ij(t, ⌦) can be estimated in the following way:

sup
0<t<T

I0(t, ⌦)  C |⌦| T (1 + T |⌦|)2 ��et�u0
�

�

p,µ  C |⌦| T (1 + T |⌦|)2 ku0kp,µ , (4.29)

sup
0<t<T

I1(t, ⌦) 
Z t

0

�

�(e�(t�s)S⌦ � 1)r · e(t�s)�P(u⌦ ⌦ u⌦)(s)
�

�

p,µ ds

 C |⌦| T (1 + T |⌦|)2
Z t

0

�

�r · e(t�s)�P(u⌦ ⌦ u⌦)(s)
�

�

p,µ ds

 C |⌦| T (1 + T |⌦|)2C2(1 + T |⌦|)2T 1
2 � 3�µ

2p ku⌦kHq,T ku⌦kHq,T

 C
�

4� 2
⌦

� |⌦| T 3
2 � 3�µ

2p (1 + T |⌦|)4, (4.30)

and (proceeding as in (4.13))

sup
0<t<T

I2(t, ⌦)  C(1 + T |⌦|)2 sup
0<t<T

Z t

0
(t � s)↵/2�1 ⇥k(u⌦ � w)(·, s)kp,µ

�ku⌦(·, s)kq,µ + kw(·, s)kq,µ
�⇤

ds

 2(�⌦ + �0)C(1 + T |⌦|)2 sup
0<t<T

Z t

0
(t � s)↵/2�1s�↵/2 k(u⌦ � w)(·, s)kp,µ ds. (4.31)

In view of (4.29)–(4.31), afterwards applying sup0<t<T and lim sup⌦!0 in (4.28), we obtain

lim sup
⌦!0

✓

sup
0<t<T

ku⌦(·, t) � w(·, t)kp,µ

◆

 lim sup
⌦!0

✓

sup
0<t<T

I0(t, ⌦)

◆

+ lim sup
⌦!0

✓

sup
0<t<T

I1(t, ⌦)

◆

+ lim sup
⌦!0

✓

sup
0<t<T

I2(t, ⌦)

◆

= 0 + 0 + 4�0C
✓

sup
0<t<T

Z t

0
(t � s)↵/2�1s�↵/2ds

◆

lim sup
⌦!0

✓

sup
0<t<T

ku⌦(·, t) � w(·, t)kp,µ

◆

 4�0C2T
1
2 � 3�µ

2p lim sup
⌦!0

✓

sup
0<t<T

ku⌦(·, t) � w(·, t)kp,µ

◆

,

which implies that

lim
⌦!0

✓

sup
0<t<T

ku⌦(·, t) � w(·, t)kp,µ

◆

= 0,

because 4�0C2T
1
2 � 3�µ

2p  4�0C2T
1
2 � 3�µ

2p
0 < 1 (see (4.18)), as required. ⇤

Part (ii) (Approximate local-in-time self-similarity): if u0 is homogeneous of degree �1 and w(x, t) 2 Hq,1 verifies (4.25),
then it is not difficult to check that w�(x, t) = �w(�x, �2t) also verifies (4.25), for each fixed � > 0. Since µ = 3 � p, we
have that (3.5) holds true, and then

kw�kHq,1 = kwkHq,1  2�0.

From uniqueness assertions of Theorem 3.1(ii), we obtain w� = w in Hq,1, and then w is self-similar. In view of (3.7), it
follows that u⌦ is approximately self-similar in L1

loc(0, 1; Mp,µ) for small values of |⌦|. ⇤
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