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Article history: We prove local-in-time (non-uniform) solvability for the rotating Navier-Stokes equations
Received 29 January 2013 in Morrey spaces M; #(R3). These spaces contain singular and nondecaying functions
Available online 6 April 2013 which are of interest in statistical turbulence. We give an algebraic relation between the
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Local solvability self-similar for small |$2|, when 1 is homogeneous of degree —1. .
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1. Introduction

In this paper we consider the initial value problem (IVP) for the incompressible rotating Navier-Stokes equations

ou

5—Au+(u-V)u+QJu+Vp=0, xeR3 t>0 (1.1)
V.u=0, xeR, t>0 (1.2)
ux, 0) = up(x), xe€R>, (1.3)

where u is the velocity field of fluid and the scalar function p denotes the pressure at the point x € R* and t > 0. The
term £2 € R is the so-called Coriolis parameter which corresponds twice the speed of rotation around the vertical axis
e3 = (0, 0, 1). The operator J is the skew-symmetric 3 x 3 matrix

0 —1 0
J= (1 0 o) (1.4)
0 0 O

and the term £2Ju = 2e3 x u is called Coriolis force. After applying the Leray projector P, Duhamel’s principle can be used
to formally convert (1.1)-(1.3) to the integral equation

t
u(t) = 9(uy + / V.6(t —3s)P(u® u)(s)ds, (1.5)
0
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where {§(t)}:>o stands for the semigroup associated to linear part of (1.1)-(1.2) (see Section 2.3 for details). The operator
g(t) is the composition of the heat semigroup exp(t A) with exp(—t£2S) where S = PJPP is the Coriolis operator, that is

G(t)ug = exp(tA) exp(—t£2S)uyg. (1.6)

The family {exp(—t£2S)};>o is also known as Poincaré-Riesz semigroup. Throughout this manuscript, vector fields u
verifying (1.5) are called mild solutions for the Cauchy problem (1.1)-(1.3).

Due to their potential applications, fluids under rotational effects have recently attracted the attention of several authors,
seee.g.[1,2,4,9,10,12,14,11,15,13,21,26]. For instance, the above system has applications connected to the large-scale ocean
and atmosphere dynamics which can present sharp movements of rotation (see [5]). In the mathematical theory of rotating
fluids, it is important to study local or global solvability by analyzing how the angular velocity £2 affects the size of existence
time or initial data. Also, existence results for (1.1)-(1.3) with singular and nondecaying initial data can be important in the
context of homogeneous statistical turbulence (see e.g. [1,2,8,14,30]).

In this paper, we obtain results about local-in-time solvability for (1.1)-(1.3) in Morrey spaces M; u (R withl <p < o0
and u > 3 — p (see Theorem 3.1), whose elements can be strongly singular. These spaces contain functions f that do not
vanish as |x| — oo (nondecaying functions) in the sense that the set

{xeR":|x| > Land |f(x)| > 7} (1.7)

has infinite measure, for every L > 0 and some fixed > 0. The evolution of the velocity is analyzed in suitable Kato-Fujita
norms based on Morrey spaces. In spite of (1.1) does not have a scaling when £ # 0, we can use the Navier-Stokes one
u — u, = Au(ix, A%t) as a suitable intrinsic scaling for (1.1) in order to define a notion of critical spaces. In Theorem 3.4,
we show that the solution ug (x, t) is approximately self-similar when & = 3 — p, ug is homogeneous of degree —1, and
|£2| is small enough. Precisely, it is proved that u; — w in L*(0, T; eMg’A(R3)) as 2 — 0, for arbitrary fixed T > 0, where
w is the self-similar global solution of the Navier-Stokes equations (§2 = 0) with initial data uq.

From another point of view, our results provide local solvability of the Navier-Stokes equations in R* (3DNS) with
measure as initial vorticity. Indeed, we can consider initial vorticity belonging to .M ; which contains measure concentrated
on smooth compact curves (see [16]), because Biot-Savart law implies

Up(x) = —L %(x —2Z) X wo(z)dz € M5, forwog=V X ug € My, 1(R?).
4 Jg3 |x — 2| ’
Here we denote spaces of vector-valued and scalar functions in the same way.

Let us review some works about local and global solvability for (1.1)-(1.3). Local-in-time existence of solutions in the
Besov space £0 .; was proved in[18,32] with existence time T depending on Coriolis parameter £2 (i.e. non-uniform). Indeed
the paper [18] con51dered the Eq. (1.1) with a additional drift term Mx - Vu with M a real matrix. In the paper [11], authors
showed local non-uniform solvability in LS, which is a subspace of L* having vertical averaging property. Precisely,

av’

L

. 1
LYR) ={uel®®):u—ue B (R} whereii= lim 5 | u(xl,xz, x3)dx3. (1.8)
’ L—+o00

The motivation for introducing the space L3S (R3) was that the Stokes-Coriolis semigroup is unbounded on L*(R3).
Afterwards the authors of [12] introduced the space FMy and showed a result of local-in-time solvability, uniformly on
£2, where

FMq = {f . f € M has no point mass at x = 0},
and M is the space of finite Radon measures. We have the inclusions FMO C JE’O .1 C BUC. Concerning small global solvability
for (1.1)-(1.3), umformly on £2, we have results on Sobolev spaceHz [19], FMs = {f € FM; supp (f) C Fs}[13], (FMg) ™! =

div [(FMO) ][14] FB 0 Wlthp > 3[26]and:B /2% [6]withs, = —1—|— and3 < p < oo. Herng; isa sum-closed frequency

set, FM = (M)" = {f f e M}, FB = (B ~)" denotes Fourier Besov spaces, and i>’ P is a homogeneous hybrid-
Besov space. The time analyticity of local solutlons was studied in [15] by assuming values in t e space of bounded uniformly
continuous functions BUC (R*) when £2 = 0 and in FMy when £2 # 0. Another problem related to (1.1)-(1.3) is to describe
the Navier-Stokes flow past rotating obstacles, whose mathematical structure have a drift term besides the Coriolis force.
In the literature for this model, the reader can find existence results for decaying data in [’ and weak-L? (see [9,10,20,21]
and references therein).

The continuous inclusions

W22R?) ¢ 3R c P®[R?) C My, (RY) (1.9)
hold true, where the first one in (1.9) follows from Sobolev embedding. On the other hand there is no inclusion relation

]/2 P(see Remark 3.3).

o (R3) for1 <p < ooand 0 < u < 3.Then we are providing a new

between M, 1 (R?) (or more generally Mp,,) and the spaces FMs C FMy C (FMo)~ 1 FBp 00 ? and :B

The same occurs between A, , (R*) and 8%, | (R?), L3
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initial data class for IVP (1.1)-(1.3), which contains in particular nondecaying functions at infinity. Another types of
nondecaying data have been considered in the works [12,14,11,15,13,22,32,35]. Due to the presence of Poincaré-Riesz
semigroup, the analysis of rotating fluid models in a nondecaying framework requires involved arguments and, unlike L2
and H*-spaces, it is not possible to use energy methods.

Technically speaking, the works [12,14,13,19,26] have analyzed (1.1)-(1.3) in spaces based on Fourier transform, among
other reasons, in order to obtain results uniform on £2. We show the local-in-time solvability in a space whose norm is not
characterized via Fourier transform, however our existence time depends on £2. The Navier-Stokes equations in R> have
been studied in Morrey spaces by [16,24,33] where the kernel of the integral mild formulation is the heat fundamental
solution which is a L!-function. In virtue of Poincaré-Riesz semigroup exp(—ts2S), the kernel of the integral operator
associated to (1.6) does not belong to L!(R?) since it behaves like 1/|x|> as |x| — oo (see [11, Appendix A]). In order to
overcome this lack of integrability, a non-straightforward adaptation from arguments of [16,24,33] is performed here.

Finally, we recall results about existence of global solutions for large |§2| and regardless the size of data ug. In [1],
the authors worked in Sobolev spaces of periodic functions Hp, (e > 1/2) with zero average and obtained solution for
(1.1)-(1.3) on the time-interval [0, co) for |£2| > (o with (o depending on the spatial lattice and ug (see also [2] for
[*-periodic data). Results for H'-solutions and bounded cylindrical domains U = {x € R*;x3 € [0, h], x3 + x5 < a*} can
be found in [30] with Co depending on h/a and ||V X ug||;2(y,; there, slip boundary conditions for u on vertical plates are
assumed. The author of [35] showed existence of mild solution on [0, T], forany 0 < T < oo and arbitrary almost periodic
data, by assuming |§2| > Cy where Cy depends on T and ug. These three last results show that fast angular velocities tend to
smooth out flows of fluids. Further results for the above and other rotating fluid models can be found in [4,5].

The plan of this paper is as follows. In the next section we review some basic properties about Morrey spaces and
Stokes-Coriolis semigroup. We state our results in Section 3 and prove them in Section 4. The core linear estimates for
the Stokes-Coriolis semigroup on Morrey spaces are proved in Section 4.1.

2. Preliminaries
2.1. Morrey spaces
For1 <p < ooand0 < pu < n, the Morrey space M, , = M, ,(R") is the space of all measurable functions such that
Ifllp. = sup supr="/P|f |, x)) < 00, (2.1)

Xp€R™ r>0

where B;(xg) C R" is the closed ball in R" with center xo and radius r. Notice that Mpo = [P forp > 1and u = 0.
By identifying locally integrable functions with Radon measure, M1, (R") is a set of Radon measures on R", and the space
My,0(R") denotes the set of finite real valued Radon measure. Finally the cases © = nand u > n correspond to L*°(R") and
to the null space {0}, respectively. For further details about Morrey spaces, see [24,29,31,27,28]. The space M, , endowed
with the norm || - ||, is a Banach space and

_n—u
IfEOp =1 7 IfC)lp,u, forl>0.
In the next lemma we recall some basic inequalities in Morrey spaces (see [24]).

Lemma 2.1. Assume that 1 < p,q,r <ocand0 < A, u,v < n.
(i) (Inclusion). If ”’%’\ = "%“ and p < q then

Mg C Mp,j.. (2.2)
(i) (Holder inequality). If + = >ty and + = s T4 then
I8 lrw < Ifllpaliglig,p- (2.3)

(iii) (Homogeneous function). Let ¢ € L°(S"™"),0 <d <nand 1 < p < n/d. Then ¢(x/|x|)|x| ¢ Mp n—ap(R").

2.2. Fourier multipliers
Let N € Nwith N > 7, and denote ZJ(} (R") by the class of CN-functions on R" \ {0} satisfying the estimate
sup £*!|0go (§) < L, (2.4)
§#0

for all multi-index o with || < N (see [17,27,34]). In such a case, we have that the operator

T,u=¥%'o()Fu (2.5)
is a Fourier multiplier on [P and there exists a constant C > 0 such that (see e.g. [17, p. 362])
I Toullpeny < CLI[ullpgn (2.6)
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for all u € [P(R"). In what follows, the class OPE(} (R™) denotes the set of operators with symbol o (T,) = o (§) belonging
to Xj (R").

In particular, the next lemma extends (2.6) to Morrey spaces. Its proof can be reached by using results and arguments
of [27,33,34].
Lemma22. Let 1 <p < 00,0 <u <nandT, € OPZ?(R").
(i) There exists C > 0 (independent of L) such that

ITof I, = CLISf llp, e (2.7)

forallf € M, (R™).
(i) If ko (2) = (0(§))" satisfies |k, (2)] < A; |z|™" and

I Tof lp®ny < A2llf llpen), (2.8)
forallf € [P(R"), then
ITof Nlp,e < ClIf llp, e (2.9)

orallf e M R,were~: 1+ Ay) with C > 0 depending only on p, u, n.
forallf p.u(R"), where C = C(A; + Ay) withC > 0d d [

Proof. From [33, p. 1420] and [34, Propositions B.1 and B.2], we have that T, is a convolution operator with kernel k, (z) =
(0(£))" and the estimate (2.7) holds (see also [27,28]). Moreover, one can use [34, Propositions B.1 and B.2] and follow the
same steps of its proofs to see that the constant C > 0 can be taken as in (2.9). In the sequel we give some details for the
reader’s convenience. First one splits f € M, ,(R") as

f =fo+2gj,

=1

where
fo=xsyoofs & =Ffxa; and Ay ={x: r < |xo—x < 2t}

Defining k;(x, ¥) = x5, xy) ®k(x — ¥) XA, ) and T, ;(f) = ./]R" ki(x, y)f (y)dy, one can estimate

o0
ITaf lip 0 < ITafollipam + Zl 1 7ol 6,000
]:
o0
< A lfollp@ny + Z | To.j (Xash) HLP(R")
=
0 .
< A1 If ey (o)) T Z CAL27P || X, f ||lP(R”)
=
© I = j B
20 A Wf N+ CA2 3 27 If 0 (20
=1

IA

IA

C <1 + gz‘f(

which yields (2.9), because the series in (2.10) is convergent. O

>) (A +Ao) If TP (2.10)

Remark 2.3. Leto (¢) € Ef(R") be homogeneous of degree zero. We have that |k, (z)| < CL|z|™" with C > 0 independent
of z and o (see [3, Theorem 1] and [17, Chapters 2 and 4]). Then we can obtain (2.7) directly from (2.6) and item (ii) of
Lemma 2.2.

2.3. Stokes-Coriolis semigroup

Let us recall the Stokes-Coriolis semigroup {§(t)};>¢ associated to the linear system

du—Au+ Res xu+Vp=0 inR>x{t >0} (2.11)
V.-u=0 inR®x {t >0} (2.12)
u(x,0) = up inR>. (2.13)
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Hieber and Shibata [ 19, Proposition 2.1] gave an explicit representation formula for {4 (t) };>o by handling the corresponding
resolvent equation in Fourier variables. Using infinite series for the exponential Coriolis operator, the authors of [11]
obtained the same formula, namely

G(t)up = e E"° [cos (m %) J + sin (m%)’ﬁ(s)}ﬁo, (2.14)

forall & € R?\ {0} and t > 0, where { is the identity in R>. Here ﬁ(é) is a 3 x 3 skew-symmetric matrix whose elements
are symbols of Riesz operators R;, j = 1, 2, 3. Precisely,

5 &
13 3
Ro=|-2 0o | and ROu=-——txu
€1 €] €]
2o &
€] 3
The elements of the symbol matrix of Leray projector Pu = (—A)~!V x V x u belong to Zf (R?) and are given by
P(&))ij = 8 — E&i/ €I, (2.15)
It follows that P is bounded from M, , into itself, for 1 < p < coand 0 < u < 3. Applying P in (2.11), we obtain
du—Au+2Su=0 inR>x{t>0} and u(x,0) =uy inR> (2.16)
where S = PJ = PJP is the Coriolis operator on divergence-free vector fields and J is as in (1.4). Therefore
u(x, t) = G(t)ug := exp(tA) exp(—t$2S)ug (2.17)
is a solution for (2.16) on divergence-free vector spaces and we have
exp(ftES)uo = [cos (t.Q I%) 4 4+ sin (t.Q %) ﬁ(é)} Up. (2.18)

3. Main results

In what follows, for T > 0, BC((0, T), X) denotes the space of bounded continuous functions from (0, T) to the Banach
space X.

We are going to employ Kato-Fujita method (see [23,25]) to the integral equation (1.5) on Morrey spaces. To do this, we
perform a scaling analysis in order to find suitable Kato-Fujita spaces based on Morrey spaces. As pointed out in Introduction,
for 2 # 0 the system (1.1)-(1.2) does not have a scaling invariance property, however we can use an “intrinsic scaling”
which comes from Navier-Stokes equations, namely

u(x, t) — u (x, t) = Au(ix, A°t). (3.1)
In a natural way, making t — 0%, the map (3.1) induces the following scaling for initial data
Ug(x) = Aug(Ax). (3.2)

Let us denote My , = {up € My, : V-ug=0}.Forl<p<qg<o00,0<pu<3anda = 377" — 3%",weconsiderthe

Kato-Fujita type space based on Morrey spaces

Hor = {uC, ) € BCO.T), M) : tuC, 1) € BCO,T), Mg, (33)
which is a Banach space with norm

lullhg ., = sup fluC, Ollp,n + sup t2lul, )llq,p. (3.4)

O<t<T O<t<T

Above, the upper index o stands for solenoidal fields. Notice that Hg o is critical for the scaling (3.1) only when © = 3 — p,
that is

ullHg0o = Nt llHg o0 - (3.5)

For £2 = 0, a solution w is called self-similar when it is invariant by (3.1), that is, w = w;, := Aw(Ax, At), forall A > 0.
Our local-in-time solvability result reads as follows.

Theorem3.1. Let 1 <q' <p<q<00,2 €R,0=<pu <3withu >3 —pandug € M, ,.

(i) Let w > 3 — p. There exists C > 0 independent of §2 and ug, T := T($2) > 0, and a unique local-in-time mild solution
u € Hy r, for the IVP (1.1)-(1.3) satisfying ||u||Hq’TQ < 2yq,where yo = C(1+ TngZl)zlluollp#. The data-map solution is
locally Lipschitz continuous from My, to Hq 1.
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(i) Let u = 3—pand yo, = C(1+T|82])? lluollp, .., where T > Ois arbitrary and C is as in item (i). There exist § := 6(T, §£2) > 0
and aunique mild solutionu € Hq r satisfying ||ulln, ; < 2yg provided that ||uo|,,. < &.For £2 = 0, thereiséy > 0, 5o > 6,
such thatif |luollp,. < 8o thenwe cantakeT = oo and u is the unique global solution verifying ||ully, ., < 2yo = 2Cl[uollp. .-
In the first conclusion of this item, we can replace & by § provided that T |§2| is small enough.

Remark 3.2. If Ty > Ois the existence time in the above item (i), corresponding to £2 = 0, we can take T, = Ty for |£2| small
enough (see (4.18)). Also, it follows from item (ii) that, for |[ugl| . < 8o with u = 3 — p, there is a solution u (x, t) € Hy 1,,,
where T, |£2] is small, and To — oo when £2 — 0.

The case £2 = 0 in item (ii) recovers an existence result due to [24].

Remark 3.3. Let ¢ € C°, ¢ > 0,¢(0) = 1, fR3 ¢dx = 1,and ¢(x) = O for |x| > 1.Let {};} C R" satisfy || = 4 and
define

f=) e px— 4. (3.6)
j=1

Then f is a nondecaying function and it belongs to ,MP,M(IR@), for1 < p < oocand0 < pu < 3, but not to FMs, FM,
. .2-3
(FMg)~ 1, £21g2’5p nor FB, »¢ . In [7, Remark 2.1], the function (3.6) was used as an example of f that does not belong to weak-

[P spaces and to pseudo-measure spaces & M°.
Theorem 3.4. Under the hypotheses of Theorem 3.1.

(i) (Vanishing angular velocity limit). Let up be the solution corresponding to angular velocity §2, and let w be the solution of
the Navier-Stokes equations (§2 = 0) both with the initial data uy. Then

ug — w inl*(0,T; M, ,)as 2 — 0, (3.7)

where either T > Qs arbitrary if u =3 —por T =Ty if u > 3 — p (see Remark 3.2).
(ii) (Approximate self-similarity as 2 — 0). Assume © = 3 — p. Let ug(x, t) be the solution with data uy homogeneous of
degree —1 and with existence time T, where |[ug|lp,,, < 8o and T, — oo as 2 — 0. Then, for small values of |£2], ug is

approximately self-similar in L7.(0, 00; M, ,,), that is, ug (x, t) converges in the sense of (3.7), for any fixed T > 0, to the

self-similar solution w of the Navier-Stokes equations.

4. Proofs
4.1. Linear estimates

In this section we obtain estimates for the Stokes—Coriolis semigroup {4 (t)};>o acting on Morrey spaces. For that, we start
by providing estimates for the evolution operator exp(t$2R;) which is called Riesz semigroup (see [22]). Here &; stands for
the so-called j-th Riesz transform whose symbol is

oj(§) = i&/1&l, j=1,...,n

For 1 <p <ooand0 < pu < n, notice that R;'s are continuous on .M, , because o; € 9(R") (see Lemma 2.2).
The next lemma deals with the Riesz semigroup in Morrey spaces.

Lemma4.1. et 1 <p < 00,0 < u < nand £2 € R. Foreach fixed t > 0, the operator exp(t§2 R;) is bounded from M, ,,(R")
into itself, for j = 1, ..., n. Moreover, there is C > 0 (independent of §2) such that

|l exp(t2R)f lp < C (1 + 12D, (4.1)
forallf € My, andt > 0, where | -] stands for the greatest integer function.
Proof. Because o (R;) satisfies (2.4), a simple computation shows that

188 exp(t2 o (R)| < C(1+ t]2])!|g| 71,
forall |¢| < N = [n/2] +1andj=1,...,n. It follows that

sup (1&]!9¢ exp(t2 o(R))]) < L= C(1+t|@)W2+1,

EeRN
which implies that exp(t2R;) € OPZJ(} (R™). Now an application of Lemma 2.2(i) gives us the desired statement. O

In the following we recall estimates on Morrey spaces for the heat semigroup exp(tA) found in [24, Lemma 2.1] (see
also [33]).
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Lemmad.2. et 1 < q < q; < 00,0 < u <n,n = % (i =1,2)andlet B € ({0} UN)" be a multi-index. Then the
operator 3} exp(t A) is bounded from Mg, t0 Mg, ,, and there is C > 0 such that

T — 181

£20 72500 exp(tA)f llgy e < Clfllgy.pes

forallf € My, ,andt > 0.

Lemmad4.3. [etn=3,1<p <00,0<pu <3and 2 € R. Then thereis C > 0 (independent of $2) such that

| exp(—t28)f llp.. < C(1+t12D2[f llp.e (4.2)
forallf € MS , (R).

Proof. First observe that the real and imaginary parts of exp(t£20 (R3)) are cos(t§2&3/|€]) = cos(tf2io (R3)) and
sin(t£2&3/|&€|) = — sin(t£2io (R3)), respectively, which belong to OPE? (R?). In view of (2.18), we obtain from Lemma 4.1
that

| exp(—tR25) | sy oty < |1 COS(E2IR) || piy iy, + | SINERIR) L ay o st IR by b 0 (4.3)
< Cll exp(t2R3) || .up.— My, + Cll €XPE22R) || pty o — b IR b o b 0
< C(1+t]R))? (4.4)

which is equivalent to (4.2). O
Lemmad4. [etn=3, 2 €R,1<q;<qy<00,0<u<3,n= 3;—” (i=1,2)andlet B € ({0} UN)> be a multi-index.
There exists C; > 0 (independent of £2) such that

_ni=m 1Bl
1026.()f gy < CLA+12D% 2 2 [Ifllgyopes (4.5)

forallf € M] ,(R%)andt > 0.

Proof. In view of (2.17), we can use Lemmas 4.2 and 4.3 to estimate

lafgf],, , = l9fe“ e F]ll,. .
< @R ety ,
< G+ 12D T gy

which gives (4.5). O

4.2. Bilinear estimates

From now on, we denote

t
B(u, v)(x, t) = / V.-6(t —s)P(u® v)(s)ds, (4.6)
0
where the above integral should be understood in the sense of Bochner.

Lemmad4.5. letT >0,1<q¢ <p<q<00,0<pu<3andpu > 3 — p. There exists a constant C, > 0 such that

1 —i
1B, v)llhy; < Co (1+TI2D*T2 2 |[ully, ; [v]l4,;- (4.7)

forallu, v € Hy 1, where C, is independent of T and the rotation speed 2.

Proof. Notethata = 377" - 377" < 1.From the semigroup estimate (4.5) with (|81, 2, q1) = (1, q, %) and Holder inequality
(2.3), we get

3—p

IV 9 = 9P ©)lay = €1+ € - 91212 -9 2T T Fag v sly,

1_3

CO+(t =)D =97 % 27 uC ) g 106, ) g (4.8)

IA
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It follows from (4.8) that

t
B, v)(-, Ollg.n = /0 IV - §(t — )P(u v)(5)llq,uds

< K(t) sup t2[|u(, g, sup t2 v, )l (4.9)
O<t<T O<t<T
= K®Ollulln, rllvlln, (4.10)

where
t 3— o
K(t) = c/ (14 (t —s)|R2D2(t S
0

1_3

t — o
C(1+t|.(2|)2/ (t—s)2 o T3 Tgags
0

IA

1 1 3 o
—CA+tQ)k > 2/ (1—2)2 > 271772,
0

2 1_3-n o
CAA+T|2)T2 2t 2. (4.11)
The estimates (4.10) and (4.11) give us

IA

o 1_3—n
sup £2 B, v)(-, Ollgu < CA+TIRD* T2 Jlully,, 14, - (4.12)
O<t<T

Proceeding similarly to the proof of (4.9), one also obtains

2 t 173_7#+Q,1 _a
sup [IB(u, ), Ollp < sup | C(A+t]2D7 [ (t—s)2 2 "2 s~ 2ds
0

O<t<T O<t<T
: (SUP ”u(',t)”p,u> <SU13 t(;”v('at)”q,u> (4.13)
O<t<T O<t<T
sl 3on
=CA+TILDT? 2 |lully,llvilu,,- (4.14)

The estimate (4.7) follows from (4.12) and (4.14). O

4.3. Proof of Theorem 3.1

It follows from (4.5) that (changing C; if necessary)

19:(6)uollng; < Cr(1+TI2D?[[tollp.p (4.15)

forall ug € M;M. Furthermore, Lemma 4.5 implies that B(:, -) is bi-continuous in Hy r with

1_3-p
1Bty 7wty r—Hyr < Co(1+T|R2D?T27 2 (4.16)
We claim that there is T, > 0 such that @ defined by
P (u)(t) == §(t)ug + Bu, u)(t) (4.17)
is a contraction in By, = {u € Hy 1, [[ulln,, < 2y} endowed with Z(u, i) = |u-— ﬁ||Hq‘TQ,Where
ya = C1(1+ Te|R2D)*|[uollp,p.-

For that, we choose T, > 0 such that

1_3-n 1_3-—n

oG+ Te|R))?Te * =401+ Tel2D* T » lluolly, < 1. (4.18)
Using the bilinearity of B(-, -) and (4.16), we estimate
%_3;#

1DW) = @@ lnyr, < CA+Tl2D* Ty 7 lullsyr, + 18llng )t — @l (4.19)

3—u

1_3—n
< 4yoG(1+TelR2D*Ty 7 llu— i,y » (4.20)
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forallu, i € B,,,,.Since @(0) = §(t)uo, taking i = 0 in (4.19) and using (4.15), we get

1P W llty.r, < 1GEOUoll1 1, + 19 W) = §(OUoll, 1, (4.21)
1_3—n
< G+ Te 2D uollpp + (1 +Tel2D°Tg ™ lull,
1_3-n
< ye+ (4@(1 +Tol2D)’T; 7 yg) Ve <2ve, (422)

providedu € 8,,,,. Now the desired claim follows from (4.18), (4.20) and (4.22), and so @ has a fixed point u € 8B,,,, which
is a mild solution for (1.1)-(1.3). This solution is unique in 8,,,,. Notice that the initial data and radius 2y, can be large,
when u > 3 —p.

Let u, &t be two mild solutions with same existence time Ty, and respective data ug, tig. The Lipschitz continuity of data-
solution map follows from (4.18) and estimate

lu— @lly,,, = 16w — D@k,

< 116:0) (o — o) 1, 5, + Bt u) — B, DI,
1 3—u

Ci(1+ Ta|2)?(lup — follp, + 4y C(1 + T 2D*Tg % u— iy, -

IA

For u = 3 — p, it is sufficient to observe that (4.18) holds true for

1 1
< =
4G,G(1+T|2)% ~ 4G,G

In the case £2 = 0, we have § = &y and (4.18) holds true, regardless of T. Thus we can take To = 0. Also, given ||ugllp,,. < o,
there is n > 0 such that ||ug||,,, < § < &g provided that 0 < T [§2| < 5. This concludes the proof. O

luollp,, <6 = Jo. (4.23)

4.4. Proof of Theorem 3.4

Part (i) (Vanishing angular velocity limit): we have that ug, and w satisfy the respective equations

t
Uo(t) = e A5y, +/ V. A= 29py 0 @ ug)(s)ds (4.24)
0

and

t
w(t) = e“ug + / V- eP(w @ w)(s)ds. (4.25)
0
In view of Remark 3.2 and (4.18), we cantake T, = Ty < oo when |§2]is small enoughand & > 3—p.So,wesetT = T, = Ty
in this case. Also, for u = 3 — p, given an arbitrary T > 0, there is » > 0 small enough suchthatT < T, < Ty = o0, for all
12| < n.

From existence result (see Theorem 3.1), we have that ||w||HqT < ||w||Hq T < 2yp and |lug ”Hq_T < ||u9||Hq g = 2yq.
Givenf € gM"’ w notice that

t
_ d _
sup (e —1)f| =< sup — (B dr
0<t<T p.i 0<t<T Jo dt Pt
< |2IT sup [|Se™™*f] (4.26)
0<t<T ’
<ClITA+TI2D*Ifl,, — 0, as £2—0, (4.27)

where, from (4.26) to (4.27), we have used Lemma 4.3 and the continuity of S = PJIP on CMI‘; - Subtracting the Eqs. (4.24)
and (4.25) we get

t
lug(, ) —w(-, Oll,, < €52 — e ug HM + H / (952 _ )V . e 92P(ug ® ug)(s)ds
’ 0

P,

t
/ V- e™92P[(ug — w) Quo +w @ (ug — w)]ds

‘|
0

p.n
= Io(t, 2) + 11 (t, $2) + I, (t, £2). (4.28)
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The terms [;(t, §2) can be estimated in the following way:

sup Io(t, 2) < C12|T(A+TI2D? [e“uo, , < C12ITA+TI2D? luoll,., (4.29)

O<t<T

O<t<T

t
sup I;(t, 2) < / [e=@3% — )V . e 9P(uy @ UQ)(S)”pM ds
0

t
C|.Q|T(1+T|-Q|)2/ |V - e“9Pug @ ug)©)], , ds
; :

=
1 3-n
< CIRITA+TIRD’GA+TIRDT2 2 uglly, , lluglly,,
3 3—u
< C(4y2) 12T (1 +TIQ), (4:30)

and (proceeding as in (4.13))

O<t<T 0<t<T

t
sup L(t, 2) < C(1+T|$2])* sup / (t — 9> e — w)¢ )y (lug G, )l + lw,s)l,,.)] ds
0

O<t<T

t
< 2(ye + ¥0)C(1 +T[2])* sup / (t =) 1572 |l (ug — w) (-, 9)l,., ds. (4.31)
0

In view of (4.29)-(4.31), afterwards applying sup,_;.r and lim sup,_,, in (4.28), we obtain

lim sup ( sup [lug (-, t) — w-, r>||p,u)

22—0 0<t<T

< limsup < sup Io(t, .Q)> + lim sup ( sup I(t, Q)) + lim sup ( sup L(t, .Q))
2—0 O<t<T 2—0 O<t<T 2—0 0<t<T

t
=0+ 0+ 4y,C ( sup / (t— s)"‘/z_ls_"‘/zds> lim sup ( sup flug (-, t) — w(, t)||w>
0

O<t<T 2—0 O<t<T

1 3—
< 4yGT?™ % limsup ( sup flug(,t) — w-, t>||p,ﬂ) :
2

—0 O<t<T

which implies that

im ( sup flug(, t) —w(, t)”p.,u> =0,

1
£2—0 \o<t<T

13— 1_3-n
because 4y0C2TTTPM < 4)/0C2T02 < 1(see(4.18)), as required. O
Part (ii) (Approximate local-in-time self-similarity): if uo is homogeneous of degree —1 and w(x, t) € Hq o verifies (4.25),
then it is not difficult to check that w; (x, t) = Aw(ix, A%t) also verifies (4.25), for each fixed A > 0. Since © = 3 — p, we

have that (3.5) holds true, and then

lwilly . = lwlly, . < 20-

From uniqueness assertions of Theorem 3.1(ii), we obtain w; = w in Hy o, and then w is self-similar. In view of (3.7), it

follows that ug, is approximately self-similar in Lf;, (0, oo; Mp ;) for small values of [£2|. O
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