
An Efficient Local Search Algorithm for the Linear Ordering P roblem

Celso S. Sakuraba and Mutsunori Yagiura

Department of Computer Science and Mathematical Informatics, Graduate School of Information
Science, Nagoya University, Furocho, Chikusaku, Nagoya 464-8603, Japan,

sakuraba@al.cm.is.nagoya-u.ac.jp, yagiura@nagoya-u.jp

Keywords: Linear ordering problem, local search.

Abstract. Given a directed graph withn vertices,m edges and costs on the edges, the linear ordering
problem consists of finding a permutationπ of the vertices so that the total cost of the reverse edges is
minimized. We present a local search algorithm for the neighborhood of theinsert move that performs a
search through the neighborhood inO(n + ∆ log ∆) time, where∆ represents the maximum vertex de-
gree. Computational experiments show that the proposed algorithm presented the best results compared
to other methods in the literature.

1 Introduction

Given a directed graphG = (V, E) with a vertex setV (|V | = n), an edge setE ⊆ V × V
and a costcuv for each edge(u, v), the linear ordering problem (LOP) consists of finding a
permutation of vertices that minimizes the total cost of thereverse edges. For convenience, we
assumecuv = 0 for all (u, v) /∈ E and that if we regardG as an undirected graph, it is connected
(which impliesm ≥ n−1, wherem = |E|). Denoting the permutation byπ : {1, . . . , n} → V ,
whereπ(i) = v (equivalently,π−1(v) = i) signifies thatv is theith element ofπ, the total cost
of the reverse edges is formally defined as follows:

cost(π) =
n−1∑

i=1

n∑

j=i+1

cπ(j)π(i). (1)

The LOP has a number of real world applications in various fields (Grötschel et al., 1984),
among which the most widely known is the triangularization of economic input-output matrices.
Known as an NP-hard problem (Chanas and Kobylański, 1996), the LOP has been vastly studied
in the literature. Good literature reviews about the LOP aregiven bySchiavinotto and Stützle
(2004) andGarcia et al.(2006).

Among heuristic approaches, there is a number of metaheuristics to handle the LOP that
use local search methods to refine the quality of their solutions. The most widely known local
search neighborhoods for the LOP are the ones given by the following operations:

• insert: taking one vertex from a positioni and inserting it after (resp., before) the vertex
in positionj for i < j (resp.,i > j);

• interchange: exchanging the vertices in positionsi andj.

According toHuang and Lim(2003) andSchiavinotto and Stützle(2004), it is not advantageous
to useinterchange compared toinsert, and indeed most of the algorithms proposed so far use
theinsert operation.

We denote bysearch through the neighborhood the task of finding an improved solution
or concluding that no such solution exists (i.e., the current solution is locally optimal). The

necessary computation time to perform such a task, including the time to update relevant data
structures, is calledone-round time.

A straightforward search through the insert neighborhood can be conducted inO(n3) time.
By conducting the search in an ordered way, the one-round time can be reduced toO(n2). This
result, presented bySchiavinotto and Stützle(2004), is the best one found so far concerning
local search methods for the LOP.

In this paper, we propose an algorithm named TREE for the search through the insert neigh-
borhood. The one-round time of TREE algorithm isO(n+∆ log ∆), where∆ is the maximum
degree of the graph (denoting bydv the degree of a vertexv, i.e., the number of vertices incident
to and fromv, ∆ = maxv∈V dv). Computational results showed that TREE has a good perfor-
mance when compared to other methods proposed in the literature, being more than a hundred
times faster than these methods for large instances.

2 The TREE algorithm

The TREE algorithm uses a balanced search tree data structure to make the search through
the insert neighborhood efficient. Our implementation is based on the 2-3 tree, i.e., a tree such
that all the inner nodes have 2 or 3 children and all the leaveshave the same depth. A tree
is build for each vertex, and we use the tree for a vertexv to calculate the cost of solutions
obtained by insertingv into different positions ofπ.

Let N(v) be the set of all vertices adjacent to a vertexv (i.e., N(v) = {u ∈ V | (u, v) ∈
E or (v, u) ∈ E}). We denote byπv : {1, 2, . . . , dv} → N(v) the permutation of the vertices
u ∈ N(v) having the same order asπ, i.e.,π−1

v (u) < π−1
v (w) ⇐⇒ π−1(u) < π−1(w) for any

two verticesu andw in N(v). For convenience, dummy nodesv0 andvn+1 are added to the
beginning and to the end ofπ and of eachπv (π(0) = v0 andπ(n + 1) = vn+1; πv(0) = v0 and
πv(dv + 1) = vn+1 for all v ∈ V).

In our data structure, each leafl in the tree for a vertexv corresponds to a gap between two
consecutive vertices ofπv. An example for a vertexv2 with π = (v6, v1, v7, v4, v8, v2, v3, v10, v9,
v5) andN(v2) = {v6, v1, v4, v8, v3, v9, v5} is shown in Figure1. The lower part of this figure
shows the vertices inN(v2), with the costs of the edges connecting them withv2, and the upper
part shows the tree corresponding tov2. It should be observed that vertices not adjacent tov2

do not appear in the tree, since their relative positions tov2 have no influence on the cost of the
solution. The values in the nodes of the tree are explained later.

To explain how our data structure works, we first define the cost of a vertexv for the current
solutionπ. This cost corresponds to the sum of the costs of all reverse edges connected withv
for the current solution and is given by

cost(v, π) =
∑

i<π−1(v)

cv,π(i) +
∑

i>π−1(v)

cπ(i),v. (2)

In Figure1, cost(v2, π) = 8 + 35 + 42 = 85. For the current solutionπ, we keep a list of
cost(v, π) for all the verticesv ∈ V and the solution costcost(π) =

∑
v∈V cost(v, π)/2.

In the tree for a vertexv, each nodex keeps a valueγ(x) (represented in the right bottom cell
of each node in Figure1). For a pair of nodes(y, z), with y an ancestor ofz, we defineP (y, z)
as the set of all nodes contained in the unique path from nodey to nodez, including these two.
We then define the value of the path between nodesy andz asγ(P (y, z)) =

∑
x∈P (y,z) γ(x).

Let crev
v (l) be the cost incurred by inserting a vertexv into the position corresponding to a

leaf l of the tree forv; i.e., the sum of the costs of reverse edges connected withv when the

Figure 1: The vertices adjacent to vertexv2 and the tree corresponding tov2

position ofv is in the gap defined byl. We controlγ(x) so thatcrev
v (l) = γ(P (rv, l)) holds,

whererv is the root of the tree forv. The rules to achieve this are explained in the following
subsections. Denoting byπ′(v, l) the solution obtained fromπ by inserting a vertexv into the
position corresponding to a leafl, we havecost(π′(v, l)) − cost(π) = crev

v (l) − cost(v, π).
Two other values are kept in each nodex of the tree. The first one,vname(x), carries the name

of the vertex on the left of the gap represented byx if x is a leaf, or the value ofvname(y) of the
rightmosty ∈ C(x), whereC(x) is the set of children ofx, if x is an inner node. In Figure1,
vname(x) is represented in the left cell of each node. By keeping the values ofvname(x) this way
and usingπ−1, we can find any leafl in the tree ofv by itsvname(l) in O(log dv) time.

The second one,γmin(x), is equal to the minimum path value among the paths between
x and one of the leaves in the subtree whose root isx, i.e., γmin(x) = minl∈L(x) γ(P (x, l)),
whereL(x) is the set of leaves in the subtree of a nodex. In Figure1, γmin(x) is represented
in the right upper cell of each node. For a leafl, γmin(l) = γ(l), and for the other nodesx,
γmin(x) = γ(x) + miny∈C(x) γmin(y).

From the definitions above,γmin(rv) is equal to the minimum value ofcrev
v (l) among all the

leaves in the tree ofv, and we can find a solution with a smaller cost than the currentone just
by comparing the values ofγmin(rv) andcost(v, π) for all v ∈ V . If none of the trees forv have
γmin(rv) smaller thancost(v, π), we can conclude that the current solutionπ is locally optimal.

The number of leaves in the tree of each vertexv is equal todv + 1, and each node of the
trees carries a fixed amount of information. Hence, the totalmemory space necessary to keep
this data structure isO(

∑
v∈V (dv + 1)) = O(m + n) = O(m).

2.1 Initialization

To build the trees from a list of edges(u, v) and an initial permutationπinit , we first make a
list for each vertexv. Each cell in the list ofv contains the information of a vertexu ∈ N(v),
and the cells are listed in the same order asπinit . In the cell of eachu, we keep the index of
the vertexu and the valuecvu − cuv. The lists for allv can be built inO(m) time by using a
procedure similar to the one shown inSakuraba and Yagiura(2008).

For the tree of each vertexv, we start with an empty tree and add leavesl one by one, with
the first leaf havingvname(l) = v0 andγ(l) = γmin(l) =

∑
u∈V cuv. Then, we scan the list

of v, creating a leafl for each cell corresponding to a vertexu and inserting it to the right of
the last inserted leafl′. For each inserted leafl corresponding tou, we setvname(l) := u and
γ(l) := γmin(l) := γ(l′) + cvu − cuv. Inner nodes are created according to the insert operation
for 2-3 trees. Because the values in the inner nodes can be calculated only by looking at the
values in its children, each leaf can be inserted in the tree for v in O(log dv) time. Hence, the
total time to build the trees isO(m log ∆).

The list with the costscost(v, πinit) of all vertices can be build inO(m) time by scanning the
list of edges and comparing the positions of their end vertices usingπ−1

init .

2.2 Search and update of the data structure

To conduct a search through the neighborhood of a solutionπ, we look at theγmin(rv) values
in the roots of the trees for all verticesv ∈ V , and compare them to the values ofcost(v, π) that
are kept in a list. This procedure can be done inO(n) time.

Once we find av that satisfiesγmin(rv) < cost(v, π), which indicates that we can decrease
the total cost by insertingv into a different position, we need to find the position into which
v should be inserted. This position is in a gap corresponding to one of the leaves of the tree
for v. To find this leafl, we look for the path withcost(P (rv, l)) = γmin(rv) through the
following procedure: Start fromx = rv and replacex with one of its childreny satisfying
γmin(y) + γ(x) = γmin(x) (which means that the leaf we are looking for is in the subtreeof y)
until x is replaced by a leafl.

Then we know that the cost of the current solutionπ can be reduced bycost(v, π)− crev
v (l) if

we insertv into one of the positions corresponding to the leafl. For simplicity, in our algorithm
we set this position to the one immediately after vertexu with u = vname(l).

After insertingv immediately afteru, we have to update the trees for all the verticesw ∈
N(v). Supposeπ−1(v) < π−1(u) (the opposite case is similar). In the tree of eachw, we
look for the leaveslv with vname(lv) = v andlu with vname(lu) = u or such thatvname(lu) is the
rightmost vertex beforeu in π if u /∈ N(w). Then we update the values ofcrev

v (l) for all leaves
l betweenlv andlu. The update for the tree of eachw is executed through the following steps:

1. Find the leaflv by settingx := rw and repeat the following: Ifπ−1(vname(x)) < π−1(v),
setx to its right sibling; otherwise, setx to its left child unlessx is a leaf, settinglv := x
in casex is a leaf. (We keep thisx(= lv) for later computation.)

2. Find the leaflu, wherelu is the rightmost leaf withπ−1(vname(lu)) ≤ π−1(u). This can be
done by using a procedure similar to the one used in the previous step. Iflv = lu, stop (in
this case, no update is necessary on this tree).

3. Add a leafy to the right oflu, and setvname(y) := v andγ(y) := γmin(y) := γmin(lu).
(Inner nodes may be created according to the insertion operation for 2-3 trees.)

4. Whilex has a right sibling different fromy, setx to its right sibling and then addcvw−cwv

to γ(x) and toγmin(x). Updateγmin(p(x)), wherep(x) denotes the parent of nodex.

5. Whiley has a left sibling different fromx, sety to its left sibling and then addcvw − cwv

to γ(y) and toγmin(y). Updateγmin(p(y)).

6. Setx := p(x) andy := p(y). If x 6= y, repeat Steps 4 to 6; otherwise, update the values
of in the ancestors ofx if necessary.

7. Deletelv from the tree. (Inner nodes may be removed according to the deletion operation
for 2-3 trees.)

This update procedure can be done inO(log dw) time for eachw ∈ N(v), and hence it takes
O(∆ log∆) time to update all the necessary trees.

Let B(v, u) be the set of vertices inN(v) whose positions inπ are between the verticesv
andu, i.e., B(v, u) = {w ∈ N(v) | π−1(v) ≤ π−1(w) ≤ π−1(u)}. We also have to update
cost(π) andcost(w, π) for all verticesw ∈ B(v, u). The values ofcost(π) andcost(v, π) are
updated by subtracting

∑
w∈B(v,u)(cwv − cvw) from both of them. To update the costs of the

other verticesw, we subtractcwv − cvw from cost(w, π) for eachw ∈ B(v, u) \ {v}. This cost
update can be done inO(dv) time.

After updating the trees and the costs of the vertices and of the solution, we update the arrays
π andπ−1. This update can be done inO(n) time.

Figure2 shows the updates on the tree ofv2 represented in Figure1, with the new solution
π′ obtained by insertingv1 afterv9. In this case,cv1v2

− cv2v1
= −35 andcost(v2, π

′) = 50.

Figure 2: Updated tree forv2

Based on the analysis presented above, we can state the following:

Theorem. The one-round time for the TREE algorithm is O(n + ∆ log ∆). The data structure
of TREE for a given permutation can be built from scratch in O(m log ∆) time.

3 Computational results

We evaluate the performance of the TREE algorithm using a setof randomly generated in-
stances of sizes (number of vertices) between 500 and 8000. Five values of density (probability
of an edge between any two vertices exist) were considered. For each instance class (combina-
tion of size and density), five instances were generated by randomly choosing edge costs from
the integers in the interval [1,99] using Mersenne Twister1.

We compare the one-round time of TREE algorithm with the onesobtained by the methods
proposed inSchiavinotto and Stützle(2004) andSakuraba and Yagiura(2008), which are re-
ferred to as SCST and LIST, respectively. The codes were written in the C language and all the
algorithms were run on a PC with an Intel Xeon (3.0 GHz) processor and 8GB RAM.

1http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/ SFMT/index.html

Table1 presents the average one-round time in seconds of the algorithms. The results of
SCST and LIST were taken fromSakuraba and Yagiura(2008), where only the better results
between them are shown in the table due to space limitations (i.e., for the instances with density
up to 10%, LIST was always faster than SCST, and vice versa). The three algorithms adopted
the best move strategy, i.e., the algorithm searches through the whole neighborhood and then
moves to the neighbor that has the minimum cost.

Table 1: TREE Algorithm Results

density 1% 5% 10% 50% 100%
n LIST TREE LIST TREE LIST TREE SCST TREE SCST TREE

500 .000060 .0000089 .00086 .000025 0.0017 .000065 0.0027 .00069 0.0028 .0015
1000 .000235 .0000172 .00116 .000095 0.0082 .000246 0.0348.00189 0.0347 .0038
2000 .001045 .0000465 .02428 .000282 0.0561 .000659 0.1822.00457 0.1806 .0087
3000 .007508 .0000837 .06365 .000499 0.1351 .001130 0.4288.00737 0.4271 .0143
4000 .019748 .0001261 .12070 .000723 0.2553 .001666 0.8898.01042 0.8872 .0200
8000 .096189 .0003397 .51111 .001824 1.0851 .004011 4.7516.02413 4.8053 .0466

We can conclude from the table that TREE has the best performance, presenting the smallest
one-round time among the three methods for any instance class and being more than a hundred
times faster than the other methods for large instances.

4 Conclusions

In this paper, we studied local search algorithms for the LOPand presented an algorithm that
can perform the search through the neighborhood of the insert operation efficiently.

The TREE algorithm proposed in this paper utilizesO(m) memory space and its one-round
time isO(n + ∆ log ∆). Experiments showed that TREE is the fastest among the algorithms
studied in this paper for all tested instances.

Acknowledgments

The authors are grateful to Professor Takao Ono for valuablecomments. This research is
partially supported by a Scientific Grant-in-Aid from the Ministry of Education, Culture, Sports,
Science and Technology of Japan and by The Hori Information Science Promotion Foundation.

References

Chanas, S. and Kobylański, P.: 1996, A new heuristic algorithm solving the linear ordering
problem,Computational Optimization and Applications 6, 191–205.

Garcia, C. G., Pérez-Brito, D., Campos, V. and Martı́, R.: 2006, Variable neighborhood search
for the linear ordering problem,Computers and Operations Research 33, 3549–3565.

Grötschel, M., Jünger, M. and Reinelt, G.: 1984, A cuttingplane algorithm for the linear order-
ing problem,Operations Research 32, 1195–1220.

Huang, G. and Lim, A.: 2003, Designing a hybrid genetic algorithm for the linear ordering
problem,Genetic and Evolutionary Computation - GECCO 2003, proc. pp. 1053–1064.

Sakuraba, C. S. and Yagiura, M.: 2008, A local search algorithm efficient for sparse instances
of the linear ordering problem,Japan-Korea Joint Workshop on Algorithms and Computation
- WAAC 2008, proc. pp. 44–50.

Schiavinotto, T. and Stützle, T.: 2004, The linear ordering problem: Instances, search space
analysis and algorithms,Journal of Mathematical Modelling and Algorithms 3, 367–402.

	Introduction
	The TREE algorithm
	Initialization
	Search and update of the data structure

	Computational results
	Conclusions

