An Efficient Local Search Algorithm for the Linear Ordering P roblem

Celso S. Sakuraba and Mutsunori Yagiura

Department of Computer Science and Mathematical Informatics, Graduate School of Information
Science, Nagoya University, Furocho, Chikusaku, Nagoya 464-8603, Japan,
sakuraba@l . cm i s. nagoya-u. ac.jp, yagi ura@agoya-u.jp

Keywords: Linear ordering problem, local search.

Abstract. Given a directed graph with vertices,n edges and costs on the edges, the linear ordering
problem consists of finding a permutatianof the vertices so that the total cost of the reverse edges is
minimized. We present a local search algorithm for the resghood of thénsert move that performs a
search through the neighborhood(xin + A log A) time, whereA represents the maximum vertex de-
gree. Computational experiments show that the proposedithion presented the best results compared
to other methods in the literature.

1 Introduction

Given a directed grapty = (V, E) with a vertex seV’ (|V| =n),anedgeset C V x V
and a cost,, for each edgdu,v), the linear ordering problem (LOP) consists of finding a
permutation of vertices that minimizes the total cost ofréaeerse edges. For convenience, we
assume,, = 0 forall (u,v) ¢ F and that if we regardr as an undirected graph, it is connected
(which impliesm > n—1, wherem = | E|). Denoting the permutationby: {1,...,n} — V,
wherer (i) = v (equivalentlyr—!(v) = i) signifies that is theith element ofr, the total cost
of the reverse edges is formally defined as follows:

n—1 n
cost(m) = Z Z Cr(j)n(i)- 1)

i=1 j=i+1

The LOP has a number of real world applications in variousisigGrotschel et a].1984),
among which the most widely known is the triangularizatiba@nomic input-output matrices.
Known as an NP-hard probler@kanas and Kobylahski996, the LOP has been vastly studied
in the literature. Good literature reviews about the LOPgven by Schiavinotto and Stutzle
(2004 andGarcia et al(2009.

Among heuristic approaches, there is a number of metatiesri® handle the LOP that
use local search methods to refine the quality of their smhgti The most widely known local
search neighborhoods for the LOP are the ones given by tlosviah operations:

e insert: taking one vertex from a positianand inserting it after (resp., before) the vertex
in positionj for i < j (resp., > j);

e interchange: exchanging the vertices in positionand;.

According toHuang and Lim(2003 andSchiavinotto and Stutzi2004), it is not advantageous
to useinterchange compared tansert, and indeed most of the algorithms proposed so far use
theinsert operation.

We denote bysearch through the neighborhood the task of finding an improved solution
or concluding that no such solution exists (i.e., the cursatution is locally optimal). The

necessary computation time to perform such a task, indytia time to update relevant data
structures, is calledne-round time.

A straightforward search through the insert neighborhaotlme conducted i (n?) time.

By conducting the search in an ordered way, the one-rounel¢am be reduced 0(n?). This
result, presented bgchiavinotto and StuitzI€004), is the best one found so far concerning
local search methods for the LOP.

In this paper, we propose an algorithm named TREE for thebdhrough the insert neigh-
borhood. The one-round time of TREE algorithntig: + A log A), whereA is the maximum
degree of the graph (denoting Bythe degree of a vertex i.e., the number of vertices incident
to and fromv, A = max,cy d,). Computational results showed that TREE has a good perfor-
mance when compared to other methods proposed in the literdteing more than a hundred
times faster than these methods for large instances.

2 The TREE algorithm

The TREE algorithm uses a balanced search tree data s&uoturake the search through
the insert neighborhood efficient. Our implementation isdabon the 2-3 tree, i.e., a tree such
that all the inner nodes have 2 or 3 children and all the lehaee the same depth. A tree
is build for each vertex, and we use the tree for a vertéa calculate the cost of solutions
obtained by inserting into different positions ofr.

Let N(v) be the set of all vertices adjacent to a vertefi.e., N(v) = {u € V | (u,v) €
Eor(v,u) € E}). We denote byr, : {1,2,...,d,} — N(v) the permutation of the vertices
u € N(v) having the same order asi.e.,r, ! (u) < 7' (w) < 7 '(u) < 7! (w) for any
two verticesu andw in N(v). For convenience, dummy nodesandv,,; are added to the
beginning and to the end afand of eachr, (7(0) = vy andn(n + 1) = v,41; 7,(0) = vy and
To(dy + 1) = v, 41 forallv € V).

In our data structure, each Ieaih the tree for a vertex corresponds to a gap between two
consecutive vertices af,. An example for a vertex, with 7 = (v, vy, v7, vy, Vs, V2, V3, V19, Vg,
vs) and N (vg) = {vg, v1, vg, vg, V3, Vg, V5 } IS Shown in Figurel. The lower part of this figure
shows the vertices itV (v,), with the costs of the edges connecting them withand the upper
part shows the tree correspondinguto It should be observed that vertices not adjacentto
do not appear in the tree, since their relative positions teave no influence on the cost of the
solution. The values in the nodes of the tree are explairied la

To explain how our data structure works, we first define the aba vertexv for the current
solutionr. This cost corresponds to the sum of the costs of all revetgeseconnected with
for the current solution and is given by

COSt(Ua 7T) = Z Co, (1) + Z Cr(i)v- (2)

i<m—1(v) i>m—1(v)

In Figure 1, cost(ve,m) = 8 + 35 4+ 42 = 85. For the current solutiom, we keep a list of
cost(v,) for all the verticesy € V' and the solution costost(r) = >, . cost(v,) /2.

In the tree for a vertex, each node: keeps a value(z) (represented in the right bottom cell
of each node in Figur#). For a pair of nodesy, z), with y an ancestor of, we defineP(y, z)
as the set of all nodes contained in the unique path from padeodez, including these two.
We then define the value of the path between ngd@sdz as(P(y, 2)) = >_,cp(,..) V()

Let ¢[*(1) be the cost incurred by inserting a verteinto the position corresponding to a
leaf [of the tree forv; i.e., the sum of the costs of reverse edges connecteduwithen the

0
BED BEE L 159
0 0 10
180l | e8| | [123] | [118] | |85] | [101] | 89 | [71
6 1 4 8| 85 3| 9| 5| 71

80 118 59

Figure 1: The vertices adjacent to vertexand the tree correspondingg

position ofwv is in the gap defined by We controly(z) so thatc®(l) = ~(P(r,,()) holds,
wherer, is the root of the tree fov. The rules to achieve this are explained in the following
subsections. Denoting by (v, [) the solution obtained from by inserting a vertex into the
position corresponding to a legfwe havecost (7' (v, 1)) — cost(m) = (1) — cost(v,).

Two other values are kept in each nadef the tree. The first onen,md), carries the name
of the vertex on the left of the gap represented:hfy/ = is a leaf, or the value af,,md y) of the
rightmosty € C(z), whereC'(z) is the set of children of, if x is an inner node. In Figurg,
vnamd) IS represented in the left cell of each node. By keeping thgegaofunamd) this way
and usingr—!, we can find any leafin the tree ofv by its unamd) in O(log d,) time.

The second oney.,,(z), is equal to the minimum path value among the paths between
x and one of the leaves in the subtree whose roaf, ise., Ymin(r) = miner) (P, 1)),
whereL(x) is the set of leaves in the subtree of a naddn Figurel, ~.i,(x) is represented
in the right upper cell of each node. For a léafy.,;,(!) = (), and for the other nodes,
’ymin(x> = ’}/($) + minyeC’(a:) Vmin(y)'

From the definitions above,,;,(r,) is equal to the minimum value @f*(/) among all the
leaves in the tree af, and we can find a solution with a smaller cost than the cuoeatjust
by comparing the values of,;,(r,) andcost(v, 7) for all v € V. If none of the trees for have
~min(7») SMaller tharvost (v, 7), we can conclude that the current solutiois locally optimal.

The number of leaves in the tree of each ventag equal tod, + 1, and each node of the
trees carries a fixed amount of information. Hence, the ta&hory space necessary to keep
this data structure iI9(>_, _\/(d, + 1)) = O(m +n) = O(m).

veV

2.1 Initialization

To build the trees from a list of edgés, v) and an initial permutation;,;, we first make a
list for each vertex. Each cell in the list ob contains the information of a vertexe N(v),
and the cells are listed in the same orderrgs. In the cell of each:, we keep the index of
the vertexu and the value:,, — ¢,,. The lists for allv can be built inO(m) time by using a
procedure similar to the one shownSakuraba and Yagiu@008.

For the tree of each vertex we start with an empty tree and add leavesie by one, with
the first leaf havingnamd!) = vo andy(l) = Ymin(l) = >_,cv cww- Then, we scan the list

of v, creating a leaf for each cell corresponding to a vertexand inserting it to the right of
the last inserted ledf. For each inserted le@fcorresponding ta, we setvnamd() := u and
Y1) := Ymin(1) := v(I") 4+ cyu — cuwo- INNEr nodes are created according to the insert operation
for 2-3 trees. Because the values in the inner nodes can belat@d only by looking at the
values in its children, each leaf can be inserted in the wee in O(logd,) time. Hence, the
total time to build the trees i©(m log A).

The list with the costsost (v, minit) Of all vertices can be build i (m) time by scanning the
list of edges and comparing the positions of their end vestigsingr,; .

2.2 Search and update of the data structure

To conduct a search through the neighborhood of a soluti@re look at they,,;,(r,) values
in the roots of the trees for all verticess 1/, and compare them to the valuescoft(v, 7) that
are kept in a list. This procedure can be don®im) time.

Once we find a that satisfiesy,,(7,) < cost(v,), which indicates that we can decrease
the total cost by inserting into a different position, we need to find the position intoieth
v should be inserted. This position is in a gap correspondingne of the leaves of the tree
for v. To find this leafl, we look for the path withcost(P(r,,1)) = Ymin(ry) through the
following procedure: Start from = r, and replacer with one of its childreny satisfying
Ymin(¥) + 7(2) = Ymin(z) (Which means that the leaf we are looking for is in the subbfeg
until = is replaced by a ledf

Then we know that the cost of the current solutiocan be reduced byost (v, 7) — &2'(1) if
we insertv into one of the positions corresponding to the ledfor simplicity, in our algorithm
we set this position to the one immediately after verexith « = vnamdl).

After insertingv immediately after:, we have to update the trees for all the vertices
N(v). Supposer—!(v) < 7 !(u) (the opposite case is similar). In the tree of eaghwe
look for the leaves$, with vnamdl,) = v andl,, with vnamdl,) = u or such thabnamdl,) is the
rightmost vertex before in 7 if u ¢ N(w). Then we update the values@f(l) for all leaves
[betweer!, and/,.. The update for the tree of eachis executed through the following steps:

1. Find the leaf, by settingz := r,, and repeat the following: H~! (vpamd 7)) < 71 (v),
setx to its right sibling; otherwise, setto its left child unless: is a leaf, setting, := =
in caser is a leaf. (We keep this(= [,) for later computation.)

2. Find the leat,, wherel,, is the rightmost leaf withr ! (vpamd 1)) < 7~ *(u). This can be
done by using a procedure similar to the one used in the prswtep. If, = [, stop (in
this case, no update is necessary on this tree).

3. Add a leafy to the right ofl,,, and setnamdy) := v andy(y) := Ymin(¥) ‘= Ymin(lu)-
(Inner nodes may be created according to the insertion tperar 2-3 trees.)

4. Whilex has a right sibling different from, setz to its right sibling and then add,, —c,,.,
to y(z) and toyyin (). Updatey.,, (p(x)), wherep(x) denotes the parent of node

5. Whiley has a left sibling different from, sety to its left sibling and then add,., — ¢,
to W(y) and to’}/min(y)' Update)/mm(p(y))

6. Setr := p(z) andy := p(y). If x # y, repeat Steps 4 to 6; otherwise, update the values
of in the ancestors of if necessary.

7. Deletel, from the tree. (Inner nodes may be removed according to tle¢iole operation
for 2-3 trees.)

This update procedure can be don@iflog d,,) time for eachw € N(v), and hence it takes
O(Alog A) time to update all the necessary trees.

Let B(v,u) be the set of vertices itV (v) whose positions inr are between the vertices
andu, i.e., B(v,u) = {w € N(v) | 7 }(v) < 7~ }w) < 7 '(u)}. We also have to update
cost(m) and cost(w,) for all verticesw € B(v,u). The values otost(r) and cost(v, 7) are
updated by subtractiny B(M)(cwv — ¢y) from both of them. To update the costs of the
other verticesv, we subtract,,, — ¢,,, from cost(w, 7) for eachw € B(v,u) \ {v}. This cost
update can be done ®(d,) time.

After updating the trees and the costs of the vertices arnftbaddlution, we update the arrays
7 andr~!. This update can be doned(n) time.

Figure2 shows the updates on the treevgfrepresented in Figurg with the new solution
7' obtained by inserting; afteruvy. In this caseg,,,, — €y, = —35 andcost(vq, 7') = 50.

24

0

Figure 2: Updated tree far,

Based on the analysis presented above, we can state theifglo

Theorem. The one-round time for the TREE algorithmis O(n + Alog A). The data structure
of TREE for a given permutation can be built fromscratch in O(mlog A) time.

3 Computational results

We evaluate the performance of the TREE algorithm using afseindomly generated in-
stances of sizes (number of vertices) between 500 and 8d@9v&lues of density (probability
of an edge between any two vertices exist) were considemdedeh instance class (combina-
tion of size and density), five instances were generatedrmjoraly choosing edge costs from
the integers in the interval [1,99] using Mersenne Twister

We compare the one-round time of TREE algorithm with the @mi#ained by the methods
proposed inSchiavinotto and StiitzI€2004 and Sakuraba and Yagiur@008, which are re-
ferred to as SCST and LIST, respectively. The codes wergenrih the C language and all the
algorithms were run on a PC with an Intel Xeon (3.0 GHz) preoeand 8GB RAM.

http://www.math.sci.hiroshima-u.ac.jpm-mat/MT/ SFMT/index.html

Table 1 presents the average one-round time in seconds of the thlgsri The results of
SCST and LIST were taken fro@akuraba and Yagiurg@008, where only the better results
between them are shown in the table due to space limitati@nsf¢r the instances with density
up to 10%, LIST was always faster than SCST, and vice verdad.tfiree algorithms adopted
the best move strategy, i.e., the algorithm searches thrthegwhole neighborhood and then
moves to the neighbor that has the minimum cost.

Table 1: TREE Algorithm Results

density 1% 5% 10% 50% 100%

n LIST TREE LIST TREE LIST TREE SCST TREE SCST TREE
500 .000060 .0000089 .00086 .000025 0.0017 .000065 0.00Q069 0.0028 .0015
1000 .000235 .0000172 .00116 .000095 0.0082 .000246 0.0338B39 0.0347 .0038
2000 .001045 .0000465 .02428 .000282 0.0561 .000659 0.1832857 0.1806 .0087
3000 .007508 .0000837 .06365 .000499 0.1351 .001130 O0.428837 0.4271 .0143
4000 .019748 .0001261 .12070 .000723 0.2553 .001666 0.888842 0.8872 .0200
8000 .096189 .0003397 .51111 .001824 1.0851 .004011 4.7@A413 4.8053 .0466

We can conclude from the table that TREE has the best perfa@aresenting the smallest
one-round time among the three methods for any instance atasbeing more than a hundred
times faster than the other methods for large instances.

4 Conclusions

In this paper, we studied local search algorithms for the B@&presented an algorithm that
can perform the search through the neighborhood of thetioperation efficiently.

The TREE algorithm proposed in this paper utilizegn) memory space and its one-round
time isO(n + Alog A). Experiments showed that TREE is the fastest among theiglge
studied in this paper for all tested instances.

Acknowledgments

The authors are grateful to Professor Takao Ono for valuadmements. This research is
partially supported by a Scientific Grant-in-Aid from thertry of Education, Culture, Sports,
Science and Technology of Japan and by The Hori Informataerse Promotion Foundation.

References

Chanas, S. and Kobylahski, P.: 1996, A new heuristic algarisolving the linear ordering
problem,Computational Optimization and Applications 6, 191—-205.

Garcia, C. G., Pérez-Brito, D., Campos, V. and Marti, RO& Variable neighborhood search
for the linear ordering problenGomputers and Operations Research 33, 3549-3565.

Grotschel, M., Junger, M. and Reinelt, G.: 1984, A cutiitane algorithm for the linear order-
ing problem Operations Research 32, 1195-1220.

Huang, G. and Lim, A.: 2003, Designing a hybrid genetic athan for the linear ordering
problem,Genetic and Evolutionary Computation - GECCO 2003, proc. pp. 1053-1064.

Sakuraba, C. S. and Yagiura, M.: 2008, A local search algorifficient for sparse instances
of the linear ordering problendapan-Korea Joint Workshop on Algorithms and Computation
- WAAC 2008, proc. pp. 44-50.

Schiavinotto, T. and Stutzle, T.: 2004, The linear ordgnmoblem: Instances, search space
analysis and algorithmdopurnal of Mathematical Modelling and Algorithms 3, 367—402.

	Introduction
	The TREE algorithm
	Initialization
	Search and update of the data structure

	Computational results
	Conclusions

