

INSTRUÇÃO NORMATIVA Nº 01/02023/PPGQ

Dispõe sobre a estrutura curricular do curso de mestrado do Programa de Pós-Graduação em Química - PPGQ.

O COLEGIADO DO PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA da Universidade Federal de Sergipe, no uso de suas atribuições legais;

CONSIDERANDO o disposto no Capítulo IV - Das Estruturas Curriculares, Anexo I, Resolução nº 04/2021/CONEPE, em especial no §1°, Art. 91;

CONSIDERANDO o disposto na Instrução Normativa nº 04/2021/POSGRAP que estabelece o modelo padrão de estruturas curriculares para cursos de mestrado e doutorado da UFS;

CONSIDERANDO a decisão deste Colegiado, em sua reunião ordinária realizada nesta data.

RESOLVE:

- **Art. 1.** Aprovar a alteração da estrutura curricular do curso de mestrado em química do PPGQ, de acordo com os Anexos I e II.
- **Art. 2.** Ficam criadas as seguintes disciplinas:
 - I. Elucidação Estrutural de Compostos Orgânicos II;
 - II. Quimioinformática e Bioinformática;
 - III. Métodos Avançados de Caracterização de Misturas Orgânicas Complexas;
 - IV. Físico-Química e Cinética de Processos em Superfícies;
 - V. Planejamento e Otimização de Experimentos;
 - VI. Análise Multivariada em Química;
 - VII. Métodos de Síntese e Caracterização de Materiais I;
 - VIII. Métodos de Síntese e Caracterização de Materiais II; e,
 - IX. Catálise Aplicada à Indústria do Petróleo e Proteção Ambiental.
- Art. 3. Ficam excluídas as seguintes disciplinas:
 - I. Síntese Orgânica;
 - II. Cinética Química;
 - III. Química de Superfície;
 - IV. Quimiometria;
 - V. Eletroquímica;
 - VI. Termodinâmica Estatística;
 - VII. Química do Petróleo;
 - VIII. Química Bioanalítica;
 - IX. Química Ambiental;
 - X. Métodos Óticos de Análise;
 - XI. Métodos Eletroquímicos de Análise;
 - XII. Métodos de Preparação de Amostras para Análise de Compostos Orgânicos;
 - XIII. Métodos de Síntese e Caracterização de Compostos Inorgânicos;

XIV. Química Inorgânica Estrutural;

XV. Espectroscopia de Ressonância Paramagnética Eletrônica;

XVI. Catálise ambiental;

XVII. Catálise Aplicada à indústria do Petróleo;

XVIII. Fundamentos de cristalografia,

XIX. Química Inorgânica Biológica.

Art. 4. Esta Instrução Normativa entra em vigor 09/08/2023, revoga as disposições em contrário e, em especial, a Instrução Normativa nº 01/2015/PPGQ rev02 15/04/2016.

Programa de Pós-Graduação em Química, 09/08/2023

Profa. Dra. Eliana Midori Sussuchi

Coordenadora do PPGQ Presidente do Colegiado

INSTRUÇÃO NORMATIVA Nº 01/2023/PPGQ

ANEXO I

ESTRUTURA CURRICULAR DO MESTRADO EM QUÍMICA

A estrutura curricular do curso de mestrado em química terá um total de **40** (**quarenta**) **créditos** exigidos para sua integralização curricular, distribuídos em disciplinas obrigatórias, disciplinas optativas e atividades acadêmicas.

Para a realização das disciplinas e atividades acadêmicas desta estrutura curricular, serão observados os critérios dispostos nesta instrução normativa, bem como nas Normas Acadêmicas da Pós-Graduação *stricto sensu* da UFS (Capítulo IV - Das estruturas curriculares, Anexo I, Resolução nº 04/2021/CONEPE).

1. DISCIPLINAS

1.1. <u>Disciplinas obrigatórias</u>: O discente de mestrado deve cursar a disciplina obrigatória de sua área de concentração e escolher mais uma dentre as três disciplinas avançadas (esta será computada como créditos de disciplina optativa). A disciplinas obrigatórias de cada área de concentração estão listadas abaixo:

1.1.1 Área de Concentração: Química Inorgânica

Disciplina: Química Inorgânica Avançada

Créditos: 04

Ementa: Operações e elementos de simetria. Grupo pontual de uma molécula. Tabelas de caracteres e aplicações. Descrição estrutural e teorias de ligação em compostos de coordenação. Termos espectroscópicos e transições eletrônicas. Mecanismos de reações inorgânicas. Definições, ligações e estabilidade de compostos organometálicos do bloco *d.* Métodos de síntese e reações envolvendo compostos organometálicos. Aplicações de organometálicos em processos catalíticos.

Bibliografia:

- 1- Shriver, D. F.; Atkins, P. W.; Overton, T. L.; Rourke, J. P.; Weller, M. T.; Armstrong, F. A. Química Inorgânica. 4ª ed. Porto Alegre: Bookman, 2008.
- 2- Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry: Principles of structure and reactivity. 4th ed. New York: Harper & Row, 1993.
- 3- Miessler, G. L.; Tarr, D. A. Inorganic Chemistry. 4th ed. Boston: Pearson Prentice Hall, 2011.
- 4- Dupont, J. Química Organometálica-Elementos do bloco d. Porto Alegre: Bookman, 2005.
- 5- Crabtree, R. H. The Organometallic Chemistry of the Transition Metals. 6^a ed. New Jersey: John Wiley & Sons, 2014.

1.1.2 Área de Concentração: Química Analítica

Disciplina: Química Analítica Avançada

Créditos: 04

Ementa: Química de soluções aquosas. Equilíbrios envolvendo reações de neutralização, precipitação, complexação e de oxidação-redução.

- 1- Butler, J.N.; Ionic Equilibrium/ Solubility and pH Calculations, John Wiley & Sons, 1998.
- 2- Christian, G.; Dasgupta, P. K. Analytical Chemistry, John Wiley & Sons, 2013.
- 3- Bard, A.J.; Equilíbrio Químico, Harper & Row Publishers, 1970.
- 4- Harris, D.C; Exploring Chemical Analysis, W. H. Freeman and Company, 4ª edição, 2009.
- 5- Stumm, W; Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley-Interscience, 3ª edição, 1996.

6- Pardue, H. L. Chemical Equilibria Exact- Equations and Spreadsheet Programs to Solve Them, CRC Press, 2019.

7- Artigos de periódicos especializados.

1.1.3 Área de Concentração: Química Orgânica

Disciplina: Química Orgânica Avançada

Créditos: 04

Ementa: Ligação química e teoria estrutural; ácidos e bases; estereoquímica; intermediários reativos; reações químicas (reações de substituição nucleofílica, eliminações, adição a ligações múltiplas carbonocarbono e carbono-heteroátomo); Reações pericíclicas e rearranjos.

Bibliografia:

- 1- March, J. Advanced Organic Chemistry, 4th Ed., John Wiley & Sons, New York, 1992.
- 2- Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, 3th Ed., Parts A and B, Springer, 2007.
- 3- Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds. Wiley Interscience, 1994.
- 4- Clayden, J.; Greeves, N.; Warren, S.; Wroters, P. Organic Chemistry, Oxford Press, 2001.
- 5- Costa, P.; Pilli, R.; Pinheiro, S.; Vasconcellos, M. Substâncias Carboniladas e Derivados, Artmed Editora, 2003.
- 6- Greene, T.W. &. Wuts, P.G.M. Protective Groups in Organic Synthesis (2nd edition) J. Wiley & Sons, 1991.

1.1.4 Área de Concentração: Fisíco-Química

Disciplina: Físico-Química Avançada

Créditos: 04

Ementa: Leis da Termodinâmica. Termodinâmica de Sistemas reais (composição multicomponentes): Gases reais, Cálculos de fugacidade, Soluções: potencial químico e atividade, Leis das soluções. Equilíbrio Químico. Leis de velocidade e mecanismos de reações.

Bibliografia:

- 1- Ira N. Levine, Físico-Química, LTC, RJ 6ª edição, 2012.
- 2- Gilbert Castellan, Fundamentos de Físico-Química, 1ª edição, LTC, RJ, 1995.
- 3- Peter Atkins, Julio de Paula. Físico-Química, LTC, RJ, 10^a ed., 2017.
- 4- Donald A. Mcquarrie, John D. Simon, Physical Chemistry, 1st edition, University Science Books, 1997.

1.2. Disciplinas optativas

Disciplina: Química Orgânica Avançada

Créditos: 04

Ementa: Ligação química e teoria estrutural; ácidos e bases; estereoquímica; intermediários reativos; reações químicas (reações de substituição nucleofílica, eliminações, adição a ligações múltiplas carbonocarbono e carbono-heteroátomo); Reações pericíclicas e rearranjos.

- 1- March, J. Advanced Organic Chemistry, 4th Ed., John Wiley & Sons, New York, 1992.
- 2- Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, 3th Ed., Parts A and B, Springer, 2007.
- 3- Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds. Wiley Interscience, 1994.
- 4- Clayden, J.; Greeves, N.; Warren, S.; Wroters, P. Organic Chemistry, Oxford Press, 2001.
- 5- Costa, P.; Pilli, R.; Pinheiro, S.; Vasconcellos, M. Substâncias Carboniladas e Derivados, Artmed Editora, 2003.
- 6- Greene, T.W. &. Wuts, P.G.M. Protective Groups in Organic Synthesis (2nd edition) J. Wiley & Sons, 1991.

Disciplina: Físico-Química Avançada

Créditos: 04

Ementa: Leis da Termodinâmica. Termodinâmica de Sistemas reais (composição multicomponentes): Gases reais, Cálculos de fugacidade, Soluções: potencial químico e atividade, Leis das soluções. Equilíbrio Químico. Leis de velocidade e mecanismos de reações.

Bibliografia:

- 1- Ira N. Levine, Físico-Química, LTC, RJ 6ª edição, 2012.
- 2- Gilbert Castellan, Fundamentos de Físico-Química, 1ª edição, LTC, RJ, 1995.
- 3- Peter Atkins, Julio de Paula. Físico-Química, LTC, RJ, 10^a ed., 2017.
- 4- Donald A. Mcquarrie, John D. Simon, Physical Chemistry, 1st edition, University Science Books, 1997.

Disciplina: Química Analítica Avançada

Créditos: 04

Ementa: Química de soluções aquosas. Equilíbrios envolvendo reações de neutralização, precipitação, complexação e de oxidação-redução.

Bibliografia:

- 1- Butler, J.N.; Ionic Equilibrium/ Solubility and pH Calculations, John Wiley & Sons, 1998.
- 2- Christian, G.; Dasgupta, P. K. Analytical Chemistry, John Wiley & Sons, 2013.
- 3- Bard, A.J.; Equilíbrio Químico, Harper & Row Publishers, 1970.
- 4- Harris, D.C; Exploring Chemical Analysis, W. H. Freeman and Company, 4ª edição, 2009.
- 5- Stumm, W; Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley-Interscience, 3^a edição, 1996.
- 6- Pardue, H. L. Chemical Equilibria Exact- Equations and Spreadsheet Programs to Solve Them, CRC Press, 2019.
- 7- Artigos de periódicos especializados.

Disciplina: Química Inorgânica Avançada

Créditos: 04

Ementa: Operações e elementos de simetria. Grupo pontual de uma molécula. Tabelas de caracteres e aplicações. Descrição estrutural e teorias de ligação em compostos de coordenação. Termos espectroscópicos e transições eletrônicas. Mecanismos de reações inorgânicas. Definições, ligações e estabilidade de compostos organometálicos do bloco *d.* Métodos de síntese e reações envolvendo compostos organometálicos. Aplicações de organometálicos em processos catalíticos.

Bibliografia:

- 1- Shriver, D. F.; Atkins, P. W.; Overton, T. L.; Rourke, J. P.; Weller, M. T.; Armstrong, F. A. Química Inorgânica. 4ª ed. Porto Alegre: Bookman, 2008.
- 2- Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry: Principles of structure and reactivity. 4th ed. New York: Harper & Row, 1993.
- 3- Miessler, G. L.; Tarr, D. A. Inorganic Chemistry. 4th ed. Boston: Pearson Prentice Hall, 2011.
- 4- Dupont, J. Química Organometálica-Elementos do bloco d. Porto Alegre: Bookman, 2005.
- 5- Crabtree, R. H. The Organometallic Chemistry of the Transition Metals. 6^a ed. New Jersey: John Wiley & Sons, 2014.

Disciplina: Elucidação Estrutural de Compostos Orgânicos I

Créditos: 04

Ementa: Espectroscopia no Ultravioleta, Espectroscopia no Infravermelho e Espectroscopia de Ressonância Magnética Nuclear 1D (¹H, ¹³C, DEPT) e 2D (COSY, HSQC, HMBC): Conceitos e aplicação em problemas de análise estrutural de compostos orgânicos.

Bibliografia:

- 1- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R. Introdução à Espectroscopia. 5. ed. São Paulo: Cengage Learning, 2015.
- 2- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D. L. Identificação Espectrométrica de Compostos Orgânicos. 8. ed. Rio de Janeiro: LTC, 2019.
- 3- Constantino, M.G. Química Orgânica: Curso Básico Universitário. Rio de Janeiro: LTC, 2008. v. 3.
- 4- Breitmaier, E., Structure Elucidation by NMR in Organic Chemistry. A Practical Guide. 3rd Revised Edition, Wiley, 1993.

Disciplina: Elucidação Estrutural de Compostos Orgânicos II

Créditos: 04

Ementa: Técnicas modernas em Espectroscopia de Ressonância Magnética Nuclear (2D RMN) e sua aplicação para elucidação estrutural de compostos orgânicos. Estudo de casos através da leitura e discussão crítica de artigos científicos reportando elucidação estrutural.

Bibliografia:

- 1- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R. Introdução à Espectroscopia. 5. ed. São Paulo: Cengage Learning, 2015.
- 2- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D. L. Identificação Espectrométrica de Compostos Orgânicos. 8. ed. Rio de Janeiro: LTC, 2019.
- 3- Constantino, M.G. Química Orgânica: Curso Básico Universitário. Rio de Janeiro: LTC, 2008. v. 3.
- 4- Breitmaier, E., Structure Elucidation by NMR in Organic Chemistry. A Practical Guide. 3rd Revised Edition, Wiley, 1993.

Disciplina: Quimioinformática e Bioinformática

Créditos: 04

Ementa: Noções fundamentais sobre os principais programas computacionais e algoritmos aplicados na resolução/interpretação de diferentes questões químicas e biológicas. Inclui discussões sobre a obtenção de dados desde as estruturas químicas orgânicas a macromoléculas a partir de métodos de representação estrutural de substâncias químicas e arquivos de armazenamento destas informações. Introdução à Quimioinformática e Bioinformática e suas aplicações. Representação estrutural de substâncias químicas e arquivos de armazenamento destas informações. Principais Bancos de Dados Químicos e Biológicos. Buscas em Bancos de Dados. Descritores estruturais. Geração de descritores estruturais. Seleção de descritores. Construção de modelos de previsão. Aplicações da quimioinformática em produtos naturais. Métodos de Sequenciamento de Nucleotídeos; Clusterização de Sequências; Alinhamento de Sequências Biológicas; Anotação Funcional; Desenho de Primers e Sondas; Evolução Molecular Computacional; Bioinformática Estrutural.

Bibliografia Básica:

- 1- Selzer, P. M. et al. Applied Bioinformatics: An Introduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
- 2- Lesk, A. M. Introduction to bioinformatics. Oxford, United Kingdom: Oxford University Press, 2019.
- 3- Engel, T.; J. Gasteiger. Chemoinformatics: basic concepts and methods. Weinheim: Wiley-Vch, 2018.
- 4- Johann Gasteiger; Engel, T. Chemoinformatics. John Wiley & Sons, 2006.
- 5- Witten, I. H.; Frank, E.; Hall, M. A. Data mining: practical machine learning tools and techniques. Amsterdam: Elsevier, 2011.

Disciplina: Métodos Avançados de Caracterização de Misturas Orgânicas Complexas.

Créditos: 04

Ementa: Estratégias analíticas e aplicações de técnicas avançadas de separação na elucidação da composição química de misturas complexas de compostos orgânicos.

Bibliografia Básica:

- 1- David S. Wishart. Metabolomics for investigating physiological and pathophysiological processes. Physiol. Rev. 99: 1819–1875, 2019.
- 2- Diana Catalina Palacio Lozano, Mary J. Thomas, Hugh E. Jones, Mark P Barrow. Petroleomics: Tools, Challenges, and Developments. Annu Rev Anal Chem (Palo Alto Calif), 2020, Jun 12; 13(1): 405-430.
- 3- Martin Staš, Josef Chudoba, David Kubička, Josef Blažek, Milan Pospíšil. Petroleomic Characterization of Pyrolysis Bio-oils: A Review. Energy Fuels, 2017, 31, 10, 10283–10299.
- 4- Michelle S. S. Amaral, Yada Nolvachai, Philip J. Marriott. Comprehensive Two-Dimensional Gas Chromatography Advances in Technology and Applications: Biennial Update. Anal. Chem. 2020, 92, 1, 85–104.
- 5- Freitas, Lisiane dos Santos (Org.). Energia da Biomassa: termoconversão e seus produtos. 1. ed. Curitiba: Brazil Publishing, 2020. v. 1. 234p.

Disciplina: Introdução à Espectrometria de Massas

Créditos: 04

Ementa: Conceitos e aplicação em problemas de análise estrutural de compostos orgânicos. Técnicas de introdução da amostra. Técnicas de ionização. Analisadores de massas. Detectores. Estudo das fragmentações. Interpretação de espectros.

Bibliografia Básica:

- 1- Gross, J.H. Mass Spectrometry: A text book. Springer, 2011.
- 2- Silverstein, R.M.; Webster, F.X.; Kiemle, D. Spectrometric Identification of Organic Compounds. John Wiley & Sons, 2005.
- 3- Smith, R. M. Understanding mass spectra: a basic approach. John Wiley & Sons, 2005.
- 4- McLafferty, F.; Turecek, F. Interpretation of Mass Spectra University Science Books, 1993.
- 5- Meurer, E. C., Espectrometria de massas para iniciantes. Appris, 2020, 1ª edição.

Disciplina: Metabólitos Secundários Bioativos

Créditos: 04

Ementa: Metabolismo primário e secundário. Funções e importância do metabolismo primário e secundário no organismo produtor. Fotossíntese. Biossíntese dos metabólitos secundários. Principais classes de metabólitos secundários. Aplicações dos metabólitos secundários. Atividades biológicas de metabólitos secundários. Extração, isolamento, purificação e determinação estrutural dos metabólitos secundários. Implicações ecológicas dos metabólitos secundários.

Bibliografia:

- 1- Dewick, Paul M. Medicinal natural products: a biosynthetic approach. 3 ª edição New York: John Wiley & Sons, 2009.
- 2- Simões, Cláudia M. O.; Schenkel, Eloi P. (Org.). Farmacognosia: da planta ao medicamento. 6. ed. Porto Alegre, RS: UFSC, 2007.
- 3- Sarker, Satyajit D. Naturals products isolation. New Jersey, Estados Unidos: Humana Press, 2006.
- 4- Solomons. Química Orgânica Vol. 1 e 2 10ª edição Editora LTC, 2012.
- 5- Vollhardt, K. P. C.; Schore, N. E. Química orgânica: estrutura e função 4ª edição Editora Bookman.

Disciplina: Tópicos Especiais em Química Orgânica I

Créditos: 02

Ementa: A ementa será definida de acordo com o tema de relevância para o mestrado e doutorado em Química, visando proporcionar a compreensão sobre assuntos relacionados às linhas de pesquisa e não constante no elenco de disciplinas.

Bibliografia: A definir.

Disciplina: Tópicos Especiais em Química Orgânica II

Créditos: 04

Ementa: A ementa será definida de acordo com o tema de relevância para o mestrado e doutorado em Química, visando proporcionar a compreensão sobre assuntos relacionados às linhas de pesquisa e não constante no elenco de disciplinas.

Bibliografia: A definir.

Disciplina: Química Quântica

Créditos: 04

Ementa: Princípios da mecânica quântica. Aplicações a sistemas simples: partícula livre, partícula na caixa, barreiras de potencial e efeito túnel, oscilador harmônico, rotor rígido. Propriedades de autofunções e autovalores. Operadores de momento angular, Operadores de spin. Efeito spin-órbita. Métodos aproximados em mecânica quântica: teoria de perturbação e método variacional.

Bibliografia:

- 1- I.N. Levine. Quantum Chemistry, 7ª edição, Pearson Education, 2013;
- 2- J.P. Lowe. Quantum Chemistry, Academic Press, 3ª edição, 2005;
- 3- F.L. Pilar. Elementary Quantum Chemistry, 2ª edição, Dover Publications, 2011;
- 4- R. Eisberg e R. Resnick. Física Quântica, Editora Campus Ltda., 1979;
- 5- D.A. McQuarrie. Quantum Chemistry, 2ª edição, University Science Books, 2007;
- 6- P.W. Atkins. Molecular Quantum Mechanics, 4ª edição, Oxford University Press, 2005

Disciplina: Físico-Química e Cinética de Processos em Superfícies

Créditos: 04

Ementa: Tensão superficial: definição e métodos de medida. Interface líquido-gás: tensoativos e adsorção na interface. Interface sólido-líquido: capilaridade; molhabilidade, ângulo de contato; propriedades elétricas de superfícies: dupla camada; coloides e estabilidade coloidal. Interface sólido-gás: tipos de isotermas de adsorção segundo a IUPAC. Propriedades de transporte: difusão e condutividade. Velocidades de reação, leis de velocidade. Dependência da velocidade com a temperatura. Cinética de processos em superfícies: adsorção, dessorção, isoterma de Langmuir, isoterma de BET, catálise heterogênea

Bibliografia:

- 1- Robert J. Hunter, Introduction to Modern Colloid Science, Oxford Univ. Press, NY, 1996
- 2- Duncan J. Shaw, Introdução a Química dos Colóides e Superfícies, Editora Edgard Blucher 1975
- 3- Tibor Rabóczkay, Físico-química de interfases Editora Edusp, São Paulo, 2016
- 4- Ira N. Levine, Físico-química, McGraw-Hill, New York, 2009
- 5- Peter Atkins, Julio de Paula, Físico-química, Oxford Univ. Press, NY, 2006

Disciplina: Planejamento e Otimização de Experimentos

Créditos: 04

Ementa: Modelos empíricos; Erros, populações amostras e distribuições; Distribuição normal; Covariância, correlação e combinações lineares de variáveis aleatórias; Planejamento experimental: método univariado, fatorial completo e fracionário; Regressão simples, análise da variância e intervalos de confiança e Método de análise de superfície resposta.

- 1- B. B. Neto, I. S. Scarminio e R. E. Bruns. Como Fazer Experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria. Editora da Unicamp (2010).
- 2- G. E. P. Box, W. G. Hunter e J. S. Hunter. Statistics for experimenters. An introduction to design, data analysis and model building. Wiley (1978).
- 3- J. D. Petruccelli, B. Namdram e M. Chen. Applied statistics for engineers and scientists. Prentice-Hall (1999).
- 4- F. L. Ramsey e D. W. Schafer. The statistical sleuth. Duxbury (1996).

Disciplina: Análise Multivariada em Química

Créditos: 04

Ementa: Características gerais da análise multivariada; Tipos de variáveis; Notação; Análise exploratória; Visualização dos dados; Análise de componentes principais; Análise de agrupamentos hierárquica. Análise classificatória. Método dos vizinhos mais próximos. Análise discriminatória e Regressão linear múltipla e métodos de modelagem

Bibliografia:

- 1- B. B. Neto, I. S. Scarminio e R. E. Bruns. Statistical Design Chemometrics. Elsevier Science; 1ª edição (27 janeiro 2006).
- 2- M. A. Sharaf, D. L. Illman e B. R. Kowalski. Chemometrics. Wiley, 1986
- 3- K. Beebe, R. Pell e M. B. Seasholtz. Chemometrics A practical guide. Wiley, 1998
- 4- M.C.F, Márcia. Quimiometria conceito, métodos e aplicação Editora Unicamp, 2015.

Disciplina: Simulação e Modelagem Computacional

Créditos: 04

Ementa: Método Hartree-Fock. Teoria do Funcional de Densidade. Métodos pós-Hartree-Fock. Métodos semiempíricos.

Bibliografia:

- 1- J. P. Come, Quantum Chemistry, 3ª edição, Academic Press, 2005.
- 2- J. A. Pople and D.Beveridge, Approximate Molecular Orbital Theory, 1ª edição, McGraw-Hill, 1970.

Disciplina: Reologia

Créditos: 04

Ementa: Introdução à reologia geral; Definições de parâmetros reológicos fundamentais; Comportamento newtoniano e não newtoniano; Noções de viscoelasticidade; Discussão dos principais modelos reológicos; Reometria: Aspectos instrumentais da reologia de sistemas coloidais: teoria e prática. Análise de dados reológicos; Estudos de casos de interesse da reologia

Bibliografia:

- 1- Schramm, Gebhard., and Cheila Goncalves. Mothe. Reologia e reometria: fundamentos teóricos e práticos. 2ª edição São Paulo: Artliber, 2006.
- 2- Macosko, C.W. Rheology Principles, Measurements, and Applications Wiley-VCH.
- 3- Bretas, R. E. S.; D'ávila, M. A. Reologia de Polímeros Fundidos. São Carlos, EDUFSCAR, 2005.
- 4- Larson, R.G. The Structure and Rhelogy of Complex Fluids, Oxford University Press.
- 5- Barnes, Howard A., J.F. Hutton, and Kenneth Walters. An Introduction to Rheology. Amsterdam: Elsevier, 1989, Print.
- 6- Goodwin, J.W. and Hughes, R.W. Rheology for Chemistry RSC.

Disciplina: Espectroscopia molecular

Créditos: 04

Ementa: A natureza da radiação eletromagnética: descrição clássica, propagação da luz na matéria, descrição quântica. Propriedades elétricas e magnéticas molecular e da matéria. Teoria de perturbação dependente do tempo. Abordagem experimental: Absorção, emissão e espalhamento. Espectroscopia atômica. Espectroscopia vibracional de moléculas diatômicas. Espectroscopia vibracional de moléculas poliatômicas. Espectroscopia eletrônica.

- 1- Jeanne L. McHale, Molecular Spectroscopy, Prentice Hall, 1999.
- 2- Klaus-Peter Huber, Gerhard Herzberg Molecular Spectra and Molecular Structure, Springer US, 1979.
- 3- John M. Hollas, Modern spectroscopy, Hoboken, Estados Unidos: John Wiley & Sons, c2004.
- 4- José J. C. Teixeira Dias, Espectroscopia molecular: fundamentos, métodos e aplicações, Lisboa: Fundação Calouste Gulbenkian, 1986.

Disciplina: Tópicos Especiais em Físico Química I

Créditos: 02

Ementa: A ementa será definida de acordo com o tema de relevância para o mestrado e doutorado em Química, visando proporcionar a compreensão sobre assuntos relacionados às linhas de pesquisa e não constante no elenco de disciplinas.

Bibliografia: A definir.

Disciplina: Tópicos Especiais em Físico Química II

Créditos: 04

Ementa: A ementa será definida de acordo com o tema de relevância para o mestrado e doutorado em Química, visando proporcionar a compreensão sobre assuntos relacionados às linhas de pesquisa e não constante no elenco de disciplinas.

Bibliografia: A definir.

Disciplina: Análise de Poluentes Inorgânicos

Créditos: 04

Ementa: Classes Químicas de Poluentes Inorgânicos. Amostragem. Preparação de amostras: Água, Ar, Sedimento, Solo, Alimentos e Matrizes Biológicas. Análise Qualitativa e Quantitativa. Especiação. Validação de métodos analíticos. Legislação e Limites. Aplicações.

Bibliografia:

- 1- J. R Dean. Environmental Trace Analysis: Techniques and Applications. John Wiley & Sons, 2013.
- 2- F. J Krug, F.R.P. Rocha. Métodos de Preparo de Amostras para Análise Elementar. 2° Ed., Editora EditSBO, São Paulo, 2019.
- 3- K.D. Neri, M.C. Souza. Análise Instrumental Inorgânica. 1° Ed., Editora InterSaberes, 2022.
- 4- P.R. Loconto. Trace Environmental Quantitative Analysis: Including Student Tested Experiments. 3rd Ed., CRC Press, Boca Raton, FL, 2020.
- 5- A. Mohammad, A. Asiri. Inorganic Pollutants in Wastewater: Methods of Analysis, Removal and Treatment. 1st Ed., Materials Research Forum LLC, 2017.
- 6- Artigos de periódicos especializados.

Disciplina: Análise de Poluentes Orgânicos

Créditos: 04

Ementa: Métodos de extração, pré-concentração e derivatizações de analitos orgânicos presentes em matrizes sólidas, pastosas, líquidas e gasosas para análise. Análise quantitativa, desenvolvimento e validação de métodos de determinação de poluentes orgânicos emergentes. Bibliografia:

- 1- K.B. Borges, E.C. Figueiredo, M.E.C. Queiroz. Preparo de Amostras para Análise de Compostos Orgânicos. 1° Ed., Editora LTC; RJ, 2015.
- 2- R. Niesner, A. Schaffer. Organic Trace Analysis. 1st Ed., De Gruyter, 2017.
- 3- M. Vasanthy, V. Sivasankar, T.G. Sunitha. Organic Pollutants: Toxicity and Solutions. 1st. Ed., Springer, 2021
- 4- E.P. Popek. Sampling and Analysis of Environmental Chemical Pollutants: A Complete Guide. 1st Ed., Academic Press, 2003.
- 5- N. Fontanals, R. M. Marce. Analytical Methods for Environmental Contaminants of Emerging Concern. 1st Ed., Wiley, 2022.
- 6- F. Leite. Validação em Análise Química. 5° Ed., Editora Átomo, 2008.
- 7- Artigos de periódicos especializados.

Disciplina: Métodos de Separação I: Cromatografia a Gás

Créditos: 04

Ementa: Introdução a cromatografia a gás. Configuração instrumental. Principais sistemas de separações empregados em cromatografia em fase gasosa. Aplicações. Experimentos qualitativos e quantitativos em cromatografia a gás.

Bibliografia:

- 1- Grob, R.L., Barry, E.F.; Modern Practice of Gas Chromatography. Wiley-Interscience, New York, 4th ed., 2004.
- 2- Mondello, L.; Lewis, A.C.; Bartle, K.D.; Multidimensional Chromatography. John Wiley & Sons, New York, 2002.
- 3- Hübschmann, H.J.; Handbook of GC/MS Fundamentals and Applications. Wiley-VCH, 2nd ed., 2009.
- 4- Miller, J.M.; Chromatography Concepts and Contrasts. John Wiley & Sons, New York, 2sd ed., 2005.
- 5- Collins, C.H.; Braga, G.L.; Bonato, P.S.; Fundamentos de Cromatografia. Editora Unicamp, Campinas, 2006.
- 6- McNair, H.M.; Miller, J.M. Basic Gas Chromatography. 2nd ed., New York: John Wiley & Sons, 2009.
- 7- Sparkman, O.D.; Penton, Z.; Kitson, F.G. Gas Chromatography and Mass Spectrometry: A Practical Guide. Burlington: Academic Press, 2011.
- 8- Artigos de periódicos especializados.

Disciplina: Métodos de Separação II: Cromatografia Líquida

Créditos: 04

Ementa: Introdução a cromatografia líquida. Configuração instrumental. Principais sistemas de separações empregados em cromatografia líquida. Aplicações. Experimentos qualitativos e quantitativos em cromatografia líquida.

Bibliografia:

- 1- Collins, C.H.; Braga, G.L.; Bonato, P.S.; Fundamentos de Cromatografia. Editora Unicamp, Campinas, 1° Ed., 2006.
- 2- Lanças, F.M.; Cromatografia Líquida Moderna: HPLC/CLAE. Editora Átomo, Campinas, 2° Ed., 2016.
- 3- Snyder, L.R.; Kirkland, J.J.; Dolan, J.W.; Introduction to Modern Liquid Chromatography. Wiley, New Jersey, 3rd Ed., 2010.
- 4- Dong, M.W.; HPLC and UHPLC for Practicing Scientists. Wiley, New Jersey. 2nd Ed., 2019.
- 5- Meyer, V.R.; Practical High-Performance Liquid Chromatography. Wiley, West Sussex. 5th Ed., 2010.
- 6- Artigos de periódicos especializados.

Disciplina: Metodologia de Pesquisa e Redação de Artigos Científicos

Créditos: 04

Ementa: Definição de pesquisa, ética científica, desenvolvimento, elementos, critérios, interpretação de dados e ferramentas da WEB para levantamento bibliográfico (Scielo, WEB of Science, Science Direct, Scopus, Scifinder etc). Elaboração de projeto de pesquisa, dissertação e tese. Propriedade intelectual e redação de patentes. Redação de artigo científico e atividade de revisor.

- 1- Anselmo Gomes de Oliveira e Damaris Silveira. Jogo dos Erros: Motivos pelos quais um Artigo é Aceito ou Rejeitado Pelos Periódicos Científicos. Ciências Farmacêuticas, 2017.
- 2- Six things to do before writing your manuscript. Angel Borja. Elsevier, 2014.
- 3-11 steps to structuring a science paper editors will take seriously. Angel Borja. Elsevier, 2014.
- 4- Métodos de pesquisa. Tatiana Engel Gerhardt e Denise Tolfo Silveira. Editora da UFRGS, 2009.

Disciplina: Tópicos Especiais em Química Analítica I

Créditos: 02

Ementa: A ementa será definida de acordo com o tema de relevância para o mestrado e doutorado em Química, visando proporcionar a compreensão sobre assuntos relacionados às linhas de pesquisa e não constante no elenco de disciplinas.

Bibliografia: A definir.

Disciplina: Tópicos Especiais em Química Analítica II

Créditos: 04

Ementa: A ementa será definida de acordo com o tema de relevância para o mestrado e doutorado em Química, visando proporcionar a compreensão sobre assuntos relacionados às linhas de pesquisa e não constante no elenco de disciplinas.

Bibliografia: A definir.

Disciplina: Métodos de Síntese e Caracterização de Materiais I

Créditos: 04

Ementa: Introdução à síntese e caracterização de materiais. Conceitos básicos de materiais e nanomateriais, classificação e aplicações. Métodos de preparação direta, método sol-gel e derivados. Principais técnicas utilizadas para caracterização de materiais: difração de raios X, espectroscopia de absorção (UV-VIS, FTIR e Raman), microanálise elementar, métodos térmicos de análise. Manuseio de equipamentos, aquisição e interpretação de resultados e preparação de amostras.

Bibliografia:

- 1- Callister Jr., W. D.; Rethwisch, D. G. Ciência e Engenharia de Materiais Uma Introdução. 10ª ed. São Paulo: LTC, 2020.
- 2- Hall, N. Neoquímica: a Química Moderna e Suas Aplicações. Porto Alegre: Bookman, 2004.
- 3- Mothe, C. G. Análise Térmica De Materiais. 1ª ed. São Paulo: Artliber. 2009.
- 4- Sala, O. Fundamentos da Espectroscopia Raman e no Infravermelho. 2ª ed. São Paulo: Editora UNESP, 2011.
- 5- Pavia, D.; Lampman, G.; Kriz, G.; Vyvyan, J. Introdução à espectroscopia. 2ª ed. São Paulo: Cengage Learning, 2015.
- 6- Rodrigues, J. A. Raios X Difração e espectroscopia. 1ª ed. São Carlos: EdUFSCar, 2021.

Disciplina: Métodos de Síntese e Caracterização de Materiais II

Créditos: 04

Ementa: Principais métodos e técnicas de síntese de materiais: método da precipitação, método hidrotérmico e preparação de filmes finos. Materiais porosos. Técnicas de caracterização textural (área superficial e volume de poros): microscopia de força atômica (AFM), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET), espectroscopia de raios X, espectroscopia de fotoelétron de raios X (XPS). Manuseio de equipamentos, aquisição e interpretação de resultados e preparação de amostras.

- 1- Fi, F. A.; Padilha, A. F. Técnicas de Análise Microestrutural. 1ª ed. São Paulo: Hemus, 2006.
- 2- Groover, M. Introdução aos Processos de Fabricação. 1ª ed. São Paulo: LTC, 2014.
- 3- Ortega, E. O.; Hosseinian, H.; Meza, I. B. A.; López, M. J. R.; Vera, A. R.; Hosseini, S. Material Characterization Techniques and Applications. 1ª ed. Singapura: Springer Nature, 2022.
- 4- Rapp, M.; Isasi, J.; Palafox, M. A.; Muñoz-Ortiz, T.; Ortiz-River, E. Synthesis, structural and morphological characterization and photoluminescence study of Y0.9Er0.1–xYbxVO4 materials. Journal of Alloys and Compounds. V. 903, 163930-163949, 2022.

- 5- Mu, X.; Mazilkin, A.; Sprau, C.; Colsmann, A.; Kubel, C. Mapping structure and morphology of amorphous organic thin films by 4D-STEM pair distribution function analysis. Microscopy. V. 68, N. 4, 301-309, 2019.
- 6- Tahir, M. B.; Riaz, K. N.; Hafeez, M.; Fidous, S. Review of morphological, optical and structural characteristics of TiO₂ thin film prepared by sol gel spin-coating technique. Indian Journal of Pure & Applied Physics. V. 55, 716-721, 2017.

Disciplina: Catálise Aplicada à Indústria do Petróleo e Proteção Ambiental

Créditos: 04

Ementa: Matriz energética mundial. Fundamentos de catálise. Principais formas de energia. Processos catalíticos na indústria do petróleo. Principais processos catalíticos de refino de petróleo. Regeneração e descarte de catalisadores desativados. Principais poluentes ambientais. Materiais catalíticos para prevenção à poluição. Processos catalíticos de purificação.

Bibliografia:

- 1- Figueired, J. L.; Ribeiro, F. R. Catálise Heterogênea. Lisboa: Fundação Calouste Gulbenkian, 1989.
- 2- Bond, G. C. Heterogeneous catalysis: principles and applications. 2^a ed. New York: Oxford Science Publications, 1987.
- 3- Camphbell, M. Catalysis at surfaces. New York: Chapman and Hall, 1988.
- 4- Schmal, M. Catálise Heterogênea. Rio de Janeiro: Synergia Editora, 2011.
- 5- Speight, J. G. The Chemistry and Technology of Petroleum. 4^a ed. Florida: CRC Press, 2006.

Disciplina: Química do Estado Sólido

Créditos: 04

Ementa: Tipos de sólidos. Estrutura de sólidos. Tipos de empacotamento. Células unitárias. Simetria. Sistemas cristalinos. Sólidos cristalinos e não-cristalinos. Defeitos de ponto, de linha e de plano. Sólidos não-estequiométricos e soluções sólidas. Estrutura eletrônica de sólidos. Difração de raios X e aplicações. Apresentação de alguns materiais sólidos: propriedades e aplicações.

Bibliografia:

- 1- West, A. R. Basic Solid State Chemistry. 2nd ed. John Wiley & Sons LTD, 2002.
- 2- Schubert, U.; Husing, N. Synthesis of inorganic materials. 3rd ed. Weinheim: Wiley-VCH, 2012.
- 3- Shriver, D. F.; Atkins, P. W.; Overton, T. L.; Rourke, J. P.; Weller, M. T.; Armstrong, F. A. Química inorgânica. 4ª ed. Porto Alegre: Bookman, 2008.
- 4- Tanaka, J.; Suib, S. L. Experimental methods in inorganic chemistry. New Jersey: Prentice Hall, 1999.

Disciplina: Nanomateriais

Créditos: 04

Ementa: Introdução à nanociência e nanotecnologia. Mecanismos de estabilização de nanoestruturas. Principais métodos de síntese e caracterização de nanomateriais. Propriedades dos nanomateriais.

- 1 Timp G. Nanotechnology. New York: Springer 1998.
- 2- Cao, G.; Wang, Y. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications. 2^{nd} ed. Singapura: World Scientific Publishing Company, 2011.
- 3- Ratner, M.; Ratner, D. Nanotechnology: A Gentle Introduction to the Next Big Idea. New Jersey: Prentice Hall PTR, 2002.
- 4- Ozin, G. A. Nanochemistry. Cambridge: RSC Publishing, 2005.

Disciplina: Teoria de Grupos

Créditos: 04

Ementa: Definições e teoremas de teoria de grupos. Simetria molecular e grupos pontuais. Representações de grupos. Aplicações da teoria de grupos em química: orbitais moleculares, teoria do campo ligante, espectroscopia molecular, estruturas cristalinas.

Bibliografia:

1- Cotton, F. A. Chemical Applications of Group Theory. 3rd ed. New York: Wiley, 1990.

- 2- Harris, D. C.; Bertolucci, M. D. Symmetry and Spectroscopy. New York: Dover Publishers, 1989.
- 3- Miessler, G. L.; Fischer, P. J.; Tarr, D. A. Química Inorgânica. 5ª ed. São Paulo: Pearson, 2014.
- 4- Oliveira, G. M. Simetria de Moléculas e Cristais: Fundamentos da Espectroscopia Vibracional. Porto Alegre: Editora Bookman, 2009.

Disciplina: Tópicos Especiais em Química Inorgânica I

Créditos: 02

Ementa: A ementa será definida de acordo com o tema de relevância para o mestrado e doutorado em Química, visando proporcionar a compreensão sobre assuntos relacionados às linhas de pesquisa e não constante no elenco de disciplinas.

Bibliografia: A definir.

Disciplina: Tópicos Especiais em Química Inorgânica II

Créditos: 04

Ementa: A ementa será definida de acordo com o tema de relevância para o mestrado e doutorado em Química, visando proporcionar a compreensão sobre assuntos relacionados às linhas de pesquisa e não constante no elenco de disciplinas.

Bibliografia: A definir.

2. ATIVIDADES ACADÊMICAS

Atividade: Proficiência em Língua Estrangeira

Descrição: Apresentação por parte do discente de um certificado de aprovação em exame de aferição de conhecimentos instrumentais em língua estrangeira, sendo obrigatória uma língua para discentes do mestrado e duas para discentes do doutorado.

Créditos: nenhum

Critérios: Os discentes de Mestrado deverão demonstrar proficiência em língua inglesa, atendendo os requisitos a seguir:

- 1) O discente terá até a data de sua qualificação (18° mês) para encaminhar certificado do exame selecionado para proficiência em língua Inglesa para a secretaria do PPGQ;
- 2) Caso o aluno não comprove proficiência em língua Inglesa até a data de sua qualificação, ele será automaticamente desligado do Programa de Pós-Graduação em Química;
- 3) Para aprovação em exame de proficiência em língua inglesa do PPGQ, os certificados válidos podem ser obtidos nas seguintes alternativas: Exame de Proficiência em Língua Estrangeira (EPLE) da Universidade Federal de Sergipe: certificado de aprovação considerando pontuação mínima de 7,0 (sete) pontos; TEAP (Test of English for Academic and Professional Purposes): pontuação mínima 60 (sessenta); WAP (Writing for Academic and Professional Purposes): pontuação mínima 60 (sessenta) pontos; União Proficiency Test: pontuação mínima 60% (sessenta por cento); Certificado pela União Cultural; TOEFL (Test of English as Foreign Language): mínimo de 180 (cento e oitenta) pontos para o Computer-Based-Test (CBT) ou 500 (quinhentos) pontos para o Paper-Based-Test (PBT) ou 65 (sessenta e cinco) pontos para o Internet-Based-Test (IBT) ou 500 (quinhentos) pontos para o ITP Level 1; IELTS International English Language Test: pontuação mínima de 6,0 (seis) pontos; CAMBRIDGE FCE (First Certificate in English) ou CAE

(Certificate in Advanced English): exigida a aprovação no exame; MICHIGAN: exigida a aprovação no exame;

4) Atender aos critérios definidos pela CAPES.

Atividade: Elaboração de Pesquisa I, II, III e IV.

Descrição: Aferição semestral feita por cada docente orientador sobre o desempenho de seus respectivos discentes na execução de seus projetos de pesquisas, sendo obrigatória para todos os discentes.

Créditos: 04/semestre.

Critérios: O conceito desta atividade será atribuído com base no coeficiente de rendimento (CR) que é calculado através da média geométrica do Desempenho Didático (DD) e do Desempenho Científico (DC), que busca quantificar o aproveitamento nessa atividade. O Coeficiente de Rendimento (CR) será calculado a partir do ingresso do discente no curso e incluirá também os créditos e os conceitos das disciplinas aproveitadas cursadas anteriormente ao seu ingresso. O CR será calculado semestralmente até a data da defesa de mestrado. Será computado apenas as pontuações do interstício. No(s) interstício(s) em que o discente não cursou disciplinas o DD será calculado considerando todas as disciplinas contidas no histórico do discente, seguindo a pontuação abaixo:

- 1) O Desempenho Didático (DD) será calculado a partir dos conceitos obtidos nas diversas disciplinas cursadas, tomando-se como peso para cada disciplina a pontuação atribuída abaixo segundo o conceito obtido em cada disciplina:
- I. Conceito A: aprendizagem excelente (peso 4);
- II. Conceito B: aprendizagem boa (peso 3);
- III. Conceito C: aprendizagem suficiente (peso 2);
- IV. Conceito D: aprendizagem insuficiente (peso 1), e,
- V. Conceito E: frequência insuficiente (peso 0).
- 2) O Desempenho Científico (DC) será calculado a partir dos conceitos obtidos nos critérios apresentados abaixo tomando-se como peso a pontuação atribuída ao lado de cada critério:
- I. Porcentagem de cumprimento das atividades atribuídas no semestre (peso 1);
- II. Participação em trabalhos de colaboração: internos ou externos ao grupo (peso 1);
- III. Quantidade de horas de trabalho em laboratório (peso 1);
- IV. Quantidade de artigos lidos por semana revisão da literatura (peso 1);
- V. Participação na publicação de artigos científicos publicados ou aceitos para publicação (peso 2);
- VI. Participação em eventos científicos (peso 0,5);
- VII. Participação na equipe de organização de eventos científicos ou de projetos de extensão (peso 0,5);
- VIII. Participação na publicação de livros ou capítulos (peso 1);
- IX. Participação no depósito ou concessão de patentes (peso 1).
- O Coeficiente de Rendimento (CR) será computado pelo orientador seguindo o formulário disponibilizado pelo PPGQ e será atribuído uma nota final da atividade de Elaboração de Pesquisa, seguindo a equivalência abaixo:
- a) $CR \ge 3.0$: equivale a uma nota entre 10.0 a 9.0 e será atribuído ao discente o Conceito A;
- b) $2.5 \le CR < 3.0$: equivale a uma nota entre 8.0 e 8.9 e será atribuído ao discente o Conceito B;
- c) 2,0 ≤ CR < 2,5: equivale a uma nota entre 7,0 a 7,9 e será atribuído ao discente o Conceito C;
- d) $1.0 \le CR < 2.0$: equivale a uma nota inferior a 7.0 e será atribuído ao discente o Conceito D;
- e) CR < 1,0: será atribuído ao discente que teve frequência insuficiente e será atribuído o Conceito E.

Atividade: Estudos Extracurriculares

Descrição: 1) Apresentação de comprovantes, por parte do discente, de participação em apresentação de qualificação e/ou defesa de cursos de pós-graduação, palestras e seminários científicos em eventos realizados durante seu vínculo com o programa; 2) Apresentação do(s) título(s) do(s) artigo(s) extraído(s) da dissertação e o comprovante de sua submissão em periódico indexado Qualis A3, no mínimo.

Créditos: 04

Critérios: O discente deverá apresentar à secretaria do PPGQ os seguintes documentos: 1) Comprovantes da participação das atividades até o prazo máximo da consolidação de suas disciplinas obrigatórias para o exame de qualificação. As atividades serão avaliadas pela secretaria do PPGQ, segundo os critérios de carga horária mínima de quatro (4) horas e apenas serão considerados se estiverem enquadrados como atividades científicas; 2) Comprovante de submissão de artigo até o prazo máximo da data de defesa da dissertação.

Atividade: Exame de Qualificação

Descrição: Realização de uma banca examinadora, à qual o discente é submetido, com o objetivo de avaliar

a pesquisa em desenvolvimento, sendo obrigatória para todos os discentes.

Créditos: nenhum

Critérios: O Exame de Qualificação de Mestrado deverá ocorrer até a data inicial da matrícula referente ao início do período equivalente ao quarto semestre de sua permanência no Programa e atender aos seguintes critérios:

- 1) Com antecedência de trinta (30) dias da data prevista para a qualificação, o orientador deverá submeter ao Colegiado do PPGQ formulário específico contendo uma lista de quatro nomes de examinadores qualificados para apreciação do Colegiado, o qual deverá aprovar dois dos indicados como membros titulares. Dos membros titulares a serem aprovados, um deles obrigatoriamente deve ser membro do PPGQ. Os demais nomes indicados devem atuar como membros suplentes.
- 2) O discente será avaliado por uma Banca Examinadora constituída pelo Orientador (como presidente), opcionalmente pelo co-orientador (em substituição ao orientador quando for o caso ou concomitantemente contabilizando apenas um voto) e pelo menos dois outros membros.
- 3) Os alunos de mestrado deverão comprovar proficiência em língua inglesa antes de se submeterem ao exame de qualificação.
- 4) Os alunos regulares bolsistas que não realizarem o Exame de Qualificação, até os períodos definidos acima, serão penalizados com a perda da bolsa e os respectivos orientadores ficarão impossibilitados de iniciar novas orientações até que não possua mais discentes em atraso.
- 5) As normas para redação e os critérios para avaliação dos Exames de Qualificação serão estabelecidas pelo Colegiado do Programa de Pós-Graduação em Química PPGQ, na forma de Instrução Normativa.
- 6) Para o Mestrado o exame de qualificação constará de:
- I. parte escrita: texto escrito seguindo o modelo disponibilizado pelo PPGQ;
- II. apresentação oral de trinta a quarenta minutos, abordando o tema geral da dissertação, relevância do tema, e resultados já obtidos, e,
- III. arguição por Banca Examinadora conforme critérios definidos através de Instrução Normativa.
- 7) O parecer final para o exame de qualificação do mestrado será atribuído com base no consenso entre os membros da Banca Examinadora, considerando a qualidade científica da parte escrita e da expressão oral do candidato, e a capacidade de resposta aos questionamentos proferidos pela Banca Examinadora. O discente será considerado aprovado em sua banca de defesa de dissertação se obtiver a maioria dos votos da comissão avaliadora.
- 8) O aluno reprovado no Exame de Qualificação, deverá repeti-lo no prazo máximo de noventa dias. Sendo reprovado pela segunda vez, será desligado do curso de pós-graduação.
- 9) Os pedidos de prorrogação deverão ser formalizados junto a coordenação do PPGQ, que submeterá à apreciação do colegiado. O pedido deve apresentar justificativa e cronograma, e o prazo máximo de prorrogação permitido será de três meses para o Mestrado, aplicados a qualquer aluno regularmente matriculado.
- 10) O aluno que não atender aos prazos definidos, será comunicado por correio eletrônico, sobre o seu desligamento do curso.

Atividade: Defesa de dissertação.

Descrição: Realização de uma banca examinadora, à qual o discente é submetido, com o objetivo de avaliar

o resultado final da pesquisa desenvolvida, sendo obrigatória para todos os discentes.

Créditos: nenhum

Critérios: A conclusão do curso de Mestrado em Química do PPGQ ocorrerá com a realização da banca examinadora de defesa de dissertação, observando as condições estabelecidas nas Normas Acadêmicas da Pós-Graduação *stricto sensu* da UFS e atendendo aos seguintes critérios:

- 1) A banca examinadora de dissertação deverá ser composta por um presidente e, no mínimo, dois examinadores, sendo ao menos um examinador externo ao programa. O orientador deverá submeter ao Colegiado do PPGQ um formulário específico contendo uma lista de seis nomes de examinadores qualificados (3 membros internos e 3 membros externos) para apreciação do Colegiado, sendo escolhido dois membros titulares e os demais nomes indicados devem atuar como membros suplentes.
- 2) O exemplar provisório da dissertação e o formulário com a indicação da banca examinadora deverão ser enviados para o e-mail institucional da Secretaria do PPGQ, em formato digital PDF, com antecedência mínima de 30 dias da data da defesa.
- 3) As dissertações deverão ser escritas seguindo os modelos disponibilizados pelo PPGQ em sua página.
- 4) As bancas examinadoras deverão ser cadastradas no sistema com antecedência mínima de 20 dias.
- 5) O autor da dissertação terá 50 minutos, com tolerância de 10 minutos a mais ou a menos, para a apresentação do trabalho. Após, cada membro da banca poderá arguir por até 30 minutos. Ao final, o discente terá no máximo 30 minutos para responder aos questionamentos dos membros da banca examinadora.
- 6) Por requerimento do discente, do docente orientador ou dos examinadores, a realização da banca poderá ser gravada em áudio ou áudio e vídeo, devendo o requerimento ser enviado via e-mail à secretaria do programa no prazo mínimo de 15 dias antes da defesa.
- 7) O coorientador, quando houver, poderá participar da banca em substituição ao orientador quando for o caso ou concomitantemente contabilizando apenas um voto o qual será daquele que presidiu a comissão avaliadora.
- 8) Na falta ou impedimento do orientador e coorientador, o Colegiado do Programa designará um docente permanente para presidir a banca examinadora.
- 9) O discente será considerado aprovado em sua banca de defesa de dissertação se obtiver a maioria dos votos da comissão avaliadora.
- 10) A conclusão de curso pelo discente regular se dará com a aprovação na banca examinadora de dissertação, tendo cumprido todas as exigências deste regimento e das Normas Acadêmicas da Pós-Graduação *stricto sensu* da UFS.
- 11) O grau conferido após conclusão do curso de Mestrado em Química do PPGQ será o de Mestre em Química.

3. TABELA DE CRÉDITOS PARA INTEGRALIZAÇÃO

Disciplinas	Obrigatórias	04 créditos
	Optativas	16 créditos
Atividades acadêmicas	Elaboração de Pesquisa I, II, III e IV	16 créditos
	Estudos Extracurriculares *	04 créditos
TOTAL		40 créditos

^{*}O discente tem que cursar obrigatoriamente Estudos Extracurriculares.

4. TABELA DE DISCIPLINAS EXCLUÍDAS

CÓDIGO	NOMENCLATURA	CRÉDITOS
QUIMI0129	SÍNTESE ORGÂNICA	04
QUIMI0104	CINÉTICA QUÍMICA	04
QUIMI0106	QUÍMICA DE SUPERFÍCIE	04
QUIMI0126	QUIMIOMETRIA	04
QUIMI0103	ELETROQUÍMICA	04
QUIMI0140	TERMODINÂMICA ESTATÍSTICA	04
QUIMI0124	0124 QUÍMICA DO PETRÓLEO	
QUIMI0125	QUÍMICA BIOANALÍTICA	04
QUIMI0071	QUÍMICA AMBIENTAL	04
QUIMI0089	MÉTODOS ÓTICOS DE ANÁLISE	04
QUIMI0123	MÉTODOS ELETROQUÍMICOS DE ANÁLISE	04
QUIMI0136	MÉTODOS DE PREPARAÇÃO DE AMOSTRAS PARA ANÁLISE DE COMPOSTOS ORGÂNICOS	04
QUIMI0006	MÉTODOS DE SÍNTESE E CARACTERIZAÇÃO DE COMPOSTOS INORGÂNICOS	04
QUIMI0007	QUÍMICA INORGÂNICA ESTRUTURAL	04
QUIMI0116	ESPECTROSCOPIA DE RESSONÂNCIA PARAMAGNÉTICA ELETRÔNICA	04
QUIMI0118	CATÁLISE AMBIENTAL	04

QUIMI0119	CATÁLISE APLICADA À INDÚSTRIA DO PETRÓLEO	04
QUIMI0120	FUNDAMENTOS DE CRISTALOGRAFIA	04
QUIMI0121	QUÍMICA INORGÂNICA BIOLÓGICA	04

ANEXO II

REGRAS DE MIGRAÇÃO DE DISCENTES ENTRE ESTRUTURAS CURRICULARES

1. REGRAS DE MIGRAÇÃO

- 1) Todos os discentes matriculados no curso de mestrado do PPGQ a partir do período 2021.2, deverão ser migrados automaticamente para a nova estrutura curricular, sem que seja solicitado pelo discente, observando-se a Tabela de Equivalência descrita abaixo.
- 2) No caso das atividades "Elaboração de Pesquisa I, II, III e IV", caberá ao orientador atribuir conceito à(s) atividade(s) dos semestres já cursados pelo discente no momento da migração.
- 3) Os casos não contemplados na tabela de equivalência, serão decididos pelo Colegiado do Curso do PPGQ.

2. TABELA DE EQUIVALÊNCIA

Disciplina desta estrutura curricular	Disciplina de estrutura curricular anterior
-	QUIMI0129 - SÍNTESE ORGÂNICA (04)
ELUCIDAÇÃO ESTRUTURAL DE COMPOSTOS ORGÂNICOS II (4)	QUIMI0097 - ELUCIDAÇÃO ESTRUTURAL DE COMPOSTOS ORGÂNICOS II (2)
FÍSICO-QUÍMICA E CINÉTICA DE PROCESSOS EM SUPERFÍCIES (04)	QUIMI0104 - CINÉTICA QUÍMICA (04)
FÍSICO-QUÍMICA E CINÉTICA DE PROCESSOS EM SUPERFÍCIES (04)	QUIMI0106 - QUÍMICA DE SUPERFÍCIE (04)
PLANEJAMENTO E OTIMIZAÇÃO DE EXPERIMENTOS (04)	QUIMI0126 - QUIMIOMETRIA (04)
-	QUIMI0103 - ELETROQUÍMICA (04)
-	QUIMI0140 - TERMODINÂMICA ESTATÍSTICA (04)
-	QUIMI0124 - QUÍMICA DO PETRÓLEO (O4)
-	QUIMI0125 - QUÍMICA BIOANALÍTICA (04)
-	QUIMI0071 - QUÍMICA AMBIENTAL (04)
-	QUIMI0089 - MÉTODOS ÓTICOS DE ANÁLISE (04)
-	QUIMI0123 - MÉTODOS ELETROQUÍMICOS DE ANÁLISE (04)
-	QUIMI0136 - MÉTODOS DE PREPARAÇÃO DE AMOSTRAS PARA ANÁLISE DE COMPOSTOS ORGÂNICOS (04)
MÉTODOS DE SÍNTESE E	QUIMI0006 - MÉTODOS DE SÍNTESE E
CARACTERIZAÇÃO DE MATERIAIS I (04)	CARACTERIZAÇÃO DE COMPOSTOS
	INORGÂNICOS (04)
-	QUIMI0007 - QUÍMICA INORGÂNICA ESTRUTURAL (04)
	ESTRUTURAL (U4)

-	QUIMI0116 - ESPECTROSCOPIA DE RESSONÂNCIA PARAMAGNÉTICA ELETRÔNICA (04)
CATÁLISE APLICADA À INDÚSTRIA DO PETRÓLEO E PROTEÇÃO AMBIENTAL (04)	QUIMI0118 - CATÁLISE AMBIENTAL (04)
	QUIMI0119 - CATÁLISE APLICADA À INDÚSTRIA DO PETRÓLEO (04)
-	QUIMI0120 - FUNDAMENTOS DE CRISTALOGRAFIA (04)
-	QUIMI0121 - QUÍMICA INORGÂNICA BIOLÓGICA
ESTUDOS EXTRACURRICULARES	SEMINÁRIOS