

Programa de Pós-Graduação em Física Notas e Classificação - Prova de Seleção - 2023/1

A prova de seleção foi realizada no dia **11 de novembro de 2022** conforme estabelecido nos editais **PPGFI/POSGRAP/UFS N° 03/2022** e **N° 04/2022**, das 14h às 18h no horário de Brasília (14h as 18h no horário local).

i) Referente ao EDITAL PPGFI/POSGRAP/UFS Nº 03/2022

1. Mestrado

1.1. Relação dos candidatos ao **Mestrado** que compareceram à prova com as suas respectivas notas, ordenados por nome.

DISCOLO TO		QUESTÃO				NOTA
INSCRIÇÃO	CANDIDATO	1	2	3	4	NOTA
94275	ADNAN RAZA	0,00	1,00	2,50	1,60	5,10
93613	BENJAMIN SOTTIE	2,00	2,30	1,40	2,50	8,20
94699	EDUARDO DESTEFANI STEFANATO	0,00	0,00	0,00	0,00	0,00
94002	EMANUELLY DA SILVA SANTOS	1,80	0,00	0,00	0,00	1,80
94627	EMERSON LEMOS DOS SANTOS	0,00	0,00	0,20	0,00	0,20
94319	FRANCIELLE OLIVEIRA DOS SANTOS	0,70	0,00	0,60	1,20	2,50
94604	ÍCARO MEIDEM SILVA	0,00	0,00	0,00	0,10	0,10
94674	JOÃO PEDRO COSME DO PRADO	2,50	2,50	0,40	2,50	7,90
94620	JOÉLITO DOS SANTOS DE JESUS	1,30	0,00	0,00	1,20	2,50
94388	LUIZ FERNANDO BARBOSA	2,50	2,50	0,00	0,00	5,00
94601	PEDRO ÍTALO DE ARAUJO FERREIRA	1,90	1,50	2,50	0,00	5,90
94550	RUAN RODRIGUES MOURA	1,40	2,50	0,20	2,30	6,40
94708	VITOR PREMOLI PINTO DE OLIVEIRA	0,00	0,00	0,00	1,00	1,00

1.2. Relação dos candidatos ao **Mestrado**, que tiveram inscrição homologada, mas **não compareceram** à prova.

INSCRIÇÃO	CANDIDATO
94498	GILVAN SANTOS FERREIRA
94243	RUAN MIGUEL DE GOIS

1.3. Relação dos candidatos aprovados ao **Mestrado em Física da Matéria Condensada** por ordem de classificação e situação considerando o número de vagas disponíveis.

COLOCAÇÃO	CANDIDATO	NOTA	SITUAÇÃO
1	BENJAMIN SOTTIE	8,20	Classificado
2	JOÃO PEDRO COSME DO PRADO	7,90	Classificado
3	RUAN RODRIGUES MOURA	6,40	Classificado
4	ADNAN RAZA	5,10	Classificado

Programa de Pós-Graduação em Física Notas e Classificação - Prova de Seleção - 2023/1

5	LUIZ FERNANDO BARBOSA	5,00	Classificado
6	JOÉLITO DOS SANTOS DE JESUS	2,50	Classificado
7	FRANCIELLE OLIVEIRA DOS SANTOS	2,50	Classificado

1.4. Relação dos candidatos **aprovados** ao **Mestrado em Astrofísica** por ordem de classificação e situação considerando o número de vagas disponíveis.

COLOCAÇÃO	CANDIDATO	NOTA	SITUAÇÃO
1	PEDRO ÍTALO DE ARAUJO FERREIRA	5,90	Classificado

2. Doutorado

2.1. Relação dos candidatos ao Doutorado que compareceram à prova com as suas respectivas notas, ordenados por nome.

INCODICÃO	CANDIDATO		QUESTÃO			
INSCRIÇÃO	CANDIDATO	1	2	3	4 NO1	NOTA
93545	ABDUL MUNAM KHAN	0,00	0,00	1,00	0,00	1,00
94589	ALEFF DE JESUS SANTOS	0,70	2,50	0,20	1,50	4,90
93532	BARBENY DE JESUS SANTOS	0,20	0,00	1,70	1,00	2,90
94261	FAGNER JUSTINIANO DE ANDRADE SANTOS	1,60	2,30	2,5	1,20	7,60
94584	GABRIEL FABRÍCIO DE SOUZA	0,20	0,00	0,00	0,00	0,20
94449	JANDERSON RIBEIRO DA SILVA	0,80	0,80	0,20	0,00	1,80
93588	JONATHAN UENDLER OLIVEIRA CRUZ	2,00	2,50	0,00	0,50	5,00
94700	RAFAEL MARLLUS DOS SANTOS	0,00	0,00	0,00	0,00	0,00
94582	SIDDIVINAYAKA TONAPE SRINIVAS	0,20	0,00	0,60	1,00	1,80

2.2. Relação dos candidatos aprovados ao **Doutorado em Física da Matéria Condensada** por ordem de colocação e situação considerando o número de vagas disponíveis.

COLOCAÇÃO	CANDIDATO	NOTA	SITUAÇÃO
1	FAGNER JUSTINIANO DE ANDRADE SANTOS	7,60	Classificado
2	JONATHAN UENDLER OLIVEIRA CRUZ	5,00	Classificado
3	ALEFF DE JESUS SANTOS	4,90	Classificado

Programa de Pós-Graduação em Física Notas e Classificação - Prova de Seleção - 2023/1

ii) Referente ao EDITAL PPGFI/POSGRAP/UFS Nº 04/2022

Não houve inscritos.

iii) Referente ao EDITAL PPGFI/POSGRAP/UFS Nº 05/2022

Relação dos candidatos inscritos para a disciplina **Teoria Quântica I** e situação considerando o número de vagas disponíveis.

INSCRIÇÃO	COLOCAÇÃO	CANDIDATO	NOTA	SITUAÇÃO
94650	1	NATIELLE DOS SANTOS COSTA	3,20	Classificado

Prof. Dr. Diogo Martins Souto
Membro

Prof. Dr. Diogo Martins Souto
Membro

Prof. Dr. Diogo Martins Souto
Membro

Membro

Programa de Pós-Graduação em Física Notas e Classificação - Prova de Seleção — 2023/1

GABARITO

Questão 1

a)
$$\int_{-\alpha}^{\alpha} \Psi_{(x)}^{*} \Psi_{(x)} dx = 1$$

$$\frac{1}{|A|^2} = \int_{-a}^{a} \left[\frac{2}{\sqrt{a}} \cos\left(\frac{3\pi x}{2a}\right) - \frac{i}{\sqrt{a}} \sin\left(\frac{2\pi x}{a}\right) \right] \cdot \left[\frac{2}{\sqrt{a}} \cos\left(\frac{3\pi x}{a}\right) + \frac{i}{\sqrt{a}} \sin\left(\frac{2\pi x}{a}\right) \right] dx$$

$$\Rightarrow \frac{1}{|A|^2} = \frac{1}{a} \int_{-a}^{a} \left[4 \cos^2\left(\frac{3\pi x}{2a}\right) + \sin^2\left(\frac{2\pi x}{a}\right) \right] dx$$

pars integrais mistos de sin e cos são nula (integrand impar)

$$\cos 2d = \cos^2 d - \sin^2 d$$

$$\Rightarrow \sin^2 d = \frac{1 + \cos 2d}{2}$$

$$\Rightarrow \sin^2 d = \frac{1 - \cos 2d}{2}$$

$$\Rightarrow \frac{\alpha}{|A|^2} = 4 \int_{-\alpha}^{\alpha} \cos^2\left(\frac{3\pi x}{2\alpha}\right) dx + \int_{-\alpha}^{\alpha} \sin^2\left(\frac{2\pi x}{\alpha}\right) dx =$$

$$=2\cdot\int_{-\alpha}^{\alpha}\left[1+\cos\frac{3\pi x}{\alpha}\right]dx+\frac{1}{2}\cdot\int_{-\alpha}^{\alpha}\left[1-\cos\frac{4\pi x}{\alpha}\right]dx=$$

$$= 2 \int_{-\alpha}^{\alpha} dx + \frac{1}{2} \int_{-\alpha}^{\alpha} dx + 2 \cdot \frac{\alpha}{3\pi} \int_{-\alpha}^{\alpha} \cos\left(\frac{3\pi x}{\alpha}\right) d\left(\frac{3\pi x}{\alpha}\right) - \frac{1}{2\pi} \int_{-\alpha}^{\alpha} \cos\left(\frac{3\pi x}{\alpha}\right) d\left(\frac{3\pi x}{\alpha}\right) dx$$

$$= 2 \int_{-\alpha}^{\alpha} dx + \frac{1}{2} \int_{-\alpha}^{\alpha} dx + 2 \cdot \frac{\alpha}{3\pi} \int_{-\alpha}^{\alpha} \cos\left(\frac{3\pi x}{\alpha}\right) d\left(\frac{3\pi x}{\alpha}\right) - \frac{1}{2\pi} \int_{-\alpha}^{\alpha} dx + \frac{1}{2\pi}$$

$$-\frac{1}{2} \cdot \frac{\alpha}{4\pi} \int_{-\alpha}^{\alpha} \cos\left(\frac{4\pi x}{\alpha}\right) d\left(\frac{4\pi x}{\alpha}\right)$$

$$-\sin\left(\frac{4\pi x}{\alpha}\right) d\left(\frac{4\pi x}{\alpha}\right) = 0$$

$$\Rightarrow \frac{\alpha}{14.1^2} = 5\alpha \Rightarrow A = \frac{1}{\sqrt{5}} \Rightarrow \Psi(x) = \frac{1}{\sqrt{5}} \left[\frac{2}{\sqrt{6}} \cos \frac{3\pi x}{2a} + \frac{i}{\sqrt{6}} \sin \frac{2\pi x}{a} \right]$$

$$\psi(x) = \frac{1}{\sqrt{5}} \left[\frac{2}{\sqrt{a}} \cos\left(\frac{3\pi x}{2a}\right) + \frac{i}{\sqrt{a}} \sin\left(\frac{2\pi x}{a}\right) \right] =$$

$$= \frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{a}} \cos\left(\frac{3\pi x}{2a}\right) + \frac{i}{\sqrt{5}} \cdot \frac{1}{\sqrt{a}} \sin\left(\frac{2\pi x}{a}\right)$$

$$\psi_{3}(x)$$

$$\psi_{4}(x)$$

$$\Rightarrow \quad \Psi_{(x)} = \frac{2}{\sqrt{5}} \, \Psi_{3(x)} + \frac{\hat{\iota}}{\sqrt{5}} \, \Psi_{4(x)}$$

energias que possam
$$E_3 = g \cdot \frac{\pi^2 h^2}{2m(2a)^2}$$
ser medidas
$$E_4 = 16 \cdot \frac{\pi^2 h^2}{2m(2a)^2}$$

probabilisade de se medirem as energias E3 ou E4:

$$P(E_3) = \left| \frac{2}{\sqrt{5}} \right|^2 = \frac{4}{5} = 0.8$$

$$P(E_4) = \left| \frac{i}{\sqrt{5}} \right|^2 = \frac{1}{5} = 0.2$$

c)
$$\langle \hat{H} \rangle = \int_{-\infty}^{+\infty} \Psi_{(x)}^* \hat{H} \Psi_{(x)} dx = \int_{-\infty}^{+\infty} \left(\sum_{n} c_n^* \Psi_n^* \right) \hat{H} \left(\sum_{n'} c_{n'} \Psi_{n'} \right) dx =$$

$$= \sum_{n,n'} c_n^* c_{n'} \int_{-\infty}^{+\infty} \Psi_n^* \hat{H} \Psi_{n'} dx = \sum_{n,n'} c_n^* c_{n'} E_{n'} \int_{-\infty}^{+\infty} \Psi_n^* \Psi_{n'} dx = \sum_{n,n'} c_n^* c_{n'} E_{n'} \int_{-\infty}^{+\infty} \Psi_n^* \Psi_{n'} dx = \sum_{n,n'} c_n^* c_{n'} E_{n'} \int_{-\infty}^{+\infty} \Psi_n^* \Psi_{n'} dx = \sum_{n,n'} c_n^* c_{n'} E_{n'} \int_{-\infty}^{+\infty} \Psi_n^* \Psi_{n'} dx = \sum_{n,n'} c_n^* c_{n'} E_{n'} \int_{-\infty}^{+\infty} \Psi_n^* \Psi_{n'} dx = \sum_{n,n'} c_n^* c_{n'} E_{n'} \int_{-\infty}^{+\infty} \Psi_n^* \Psi_{n'} dx = \sum_{n,n'} c_n^* c_{n'} E_{n'} \int_{-\infty}^{+\infty} \Psi_n^* \Psi_{n'} dx = \sum_{n,n'} c_n^* c_{n'} E_{n'} \int_{-\infty}^{+\infty} \Psi_n^* \Psi_{n'} dx = \sum_{n,n'} c_n^* c_{n'} E_{n'} \int_{-\infty}^{+\infty} \Psi_n^* \Psi_{n'} dx = \sum_{n,n'} c_n^* C_{n'} E_{n'} \int_{-\infty}^{+\infty} \Psi_n^* \Psi_{n'} dx = \sum_{n,n'} c_n^* C_{n'} E_{n'} \int_{-\infty}^{+\infty} \Psi_n^* \Psi_{n'} dx = \sum_{n,n'} c_n^* C_{n'} E_{n'} \Psi_{n'} dx = \sum_{n,n'} c_n^* E_{n$$

=
$$\sum_{n} |c_n|^2 E_n = |c_3|^2 E_3 + |c_4|^2 E_4$$
 pois todos outros coeficientes são zero

$$\Rightarrow \langle \hat{H} \rangle = \left| \frac{2}{\sqrt{5}} \right|^{2} \cdot 9 E_{1} + \left| \frac{i}{\sqrt{5}} \right|^{2} \cdot 16 E_{1} = \left(\frac{4}{5} \cdot 9 + \frac{1}{5} \cdot 16 \right) E_{1}$$

$$\Rightarrow \left\langle \hat{H} \right\rangle = \frac{52}{5} E_1$$

Evolução temporal do estado:

$$\Psi(\mathbf{x},t) = \frac{2}{\sqrt{5}} \Psi_3(\mathbf{x}) e^{-\frac{i}{\hbar} E_3 t} + \frac{i}{\sqrt{5}} \Psi_4(\mathbf{x}) e^{-\frac{i}{\hbar} E_4 t}$$

Questão 2

$$\langle x \rangle_{n} = \int \Psi_{n}^{*} \hat{x} \, \Psi_{n} \, dx = \frac{\hbar}{2m\omega} \int \Psi_{n}^{*} (a_{+} + a_{-}) \, \Psi_{n} \, dx =$$

$$= \frac{\hbar}{2m\omega} \left[\int \Psi_{n}^{*} a_{+} \, \Psi_{n} \, dx + \int \Psi_{n}^{*} a_{-} \, \Psi_{n} \, dx \right] =$$

$$= \frac{\hbar}{2m\omega} \left[\sqrt{n+1} \int \Psi_{n}^{*} \, \Psi_{n+1} \, dx + \sqrt{n} \int \Psi_{n}^{*} \, \Psi_{n-1} \, dx \right] = 0 \quad \text{ortogonolidade}$$

$$= 0 \quad \text{ortogonolidade}$$

$$\langle P \rangle_n = \int \Psi_n^* \hat{P} \Psi_n dx = i \sqrt{\frac{\hbar m \omega}{2}} \left[\int \Psi_n^* \alpha_+ \Psi_n dx - \int \Psi_n^* \alpha_- \Psi_n dx \right] = 0$$

$$\sim \Psi_{n-1}$$

ou, pode ser usado: $\langle P \rangle_n = m \frac{d\langle x \rangle_n}{dt} = 0$, pois $\langle x \rangle_n = 0$

$$\langle x^{2} \rangle_{n} = \int \Psi_{n}^{*} \hat{x}^{2} \Psi_{n} dx = \frac{\hbar}{2m\omega} \int \Psi_{n}^{*} (a_{+}^{2} + a_{-}^{2} + a_{+}a_{-} + a_{-}a_{+}) \Psi_{n} dx =$$

$$= \frac{\hbar}{2m\omega} \int \Psi_{n}^{*} (a_{+}a_{-} + a_{-}a_{+}) \Psi_{n} dx , \quad Pors \quad a_{+}^{2} \Psi_{n} \sim \Psi_{n-2}$$

$$a_{-}^{2} \Psi_{n} \sim \Psi_{n-2}$$

e user ortogonalidade!

$$a_{+}a_{-}\Psi_{n} = a_{+} \sqrt{n} \Psi_{n-1} = \sqrt{n} \alpha_{+}\Psi_{n-1} = \sqrt{n} \sqrt{n} \Psi_{n} = n \Psi_{n}$$

$$a_{-}a_{+} \Psi_{n} = a_{-} \sqrt{n+1} \Psi_{n+1} = \sqrt{n+1} \alpha_{-}\Psi_{n+1} = \sqrt{n+1} \sqrt{n+1} \Psi_{n} = (n+1) \Psi_{n}$$

$$=) \langle x^{2} \rangle_{n} = \frac{\hbar}{2m\omega} \left[n \underbrace{\int \psi_{n}^{*} \psi_{n} dx}_{=1} + (n+1) \underbrace{\int \psi_{n}^{*} \psi_{n} dx}_{=1} \right] = \frac{(2n+1)\hbar}{2m\omega} \sqrt{\frac{2m\omega}{2m\omega}}$$

$$ou: (n+\frac{1}{2}) \frac{k}{m\omega}$$

$$\langle P^2 \rangle_n = \int \Psi_n^* \hat{P}^2 \Psi_n dx = -\frac{\hbar m \omega}{2} \int \Psi_n^* (\alpha_+^2 + \alpha_-^2 - \alpha_+ \alpha_- - \alpha_- \alpha_+) \Psi_n dx =$$

$$= -\frac{\hbar m \omega}{2} \left[-\int \Psi_n^* \alpha_+ \alpha_- \Psi_n dx - \int \Psi_n^* \alpha_- \alpha_+ \Psi_n dx \right] =$$

$$n \Psi_n$$

$$(n+1) \Psi_n$$

$$= + \frac{\hbar m \omega}{2} \left[n + (n+1) \right] = (2n+1) \frac{\hbar m \omega}{2} = (n+\frac{1}{2}) \hbar m \omega$$

$$\langle T \rangle_n = \left\langle \frac{\rho^2}{2m} \right\rangle_n = \frac{1}{2m} \left\langle \hat{\rho}^2 \right\rangle_n = \frac{1}{2} \left(n + \frac{1}{2} \right) \hbar \omega \sqrt{\frac{1}{2}}$$

Verificando incerteza do estado: 2x.2p, onde:

$$b_{x} = \sqrt{\langle x^{2} \rangle_{n} - \langle x \rangle_{n}^{2}} = \sqrt{(n + \frac{1}{2}) \frac{\hbar}{m\omega} - 0^{2}} = \sqrt{n + \frac{1}{2}} \cdot \sqrt{\frac{\hbar}{m\omega}}$$

$$\mathcal{D}_{P} = \sqrt{\langle P^{2} \rangle_{n} - \langle P \rangle_{n}^{2}} = \sqrt{(n + \frac{1}{2}) \hbar m \omega - 0^{2}} = \sqrt{n + \frac{1}{2}} \cdot \sqrt{\hbar m \omega}$$

$$\delta_{x}\delta_{p} = (n + \frac{1}{2})\hbar \geq \frac{\hbar}{2}$$
 Principio de incerteza esta satisfeito ?

Questão 3.

a. Uma polarização elétrica **P** produz uma densidade de carga de polarização. Enquanto que a polarização magnética **M** resulta em uma corrente de magnetização. Elas são definidas respectivamente por:

$$\rho_b = -\nabla \cdot \mathbf{P} \quad \mathbf{J}_b = \nabla \times \mathbf{M}$$

b. para determinar as equações de Maxwell na matéria, devemos analisar o deslocamento da carga no determinado meio. A polarização induz uma densidade de carga diferente nas extremidades do material, com isso uma densidade de corrente é gerada, onde

$$\mathbf{J}_p = \frac{\partial \mathbf{P}}{\partial t}.$$

É fundamental verificar se a equação de continuidade é satisfeita para haver a conservação de carga no sistema. Para isto, podemos aplicar a função divergente na equação acima, onde

$$\nabla \cdot \mathbf{J}_p = \nabla \cdot \frac{\partial \mathbf{P}}{\partial t} = \frac{\partial}{\partial t} (\nabla \cdot \mathbf{P}) = -\frac{\partial \rho_b}{\partial t}.$$

podemos verificar que ela é satisfeita.

c. Diante disso, a densidade total de carga pode ser descrita pela soma das componentes ligadas (b) e livre (f). Logo:

$$\rho = \rho_f + \rho_b$$

e a densidade de corrente é descrita como três componentes polarizadas (p), livre (f) e ligadas (b) :

$$\mathbf{J} = \mathbf{J}_f + \mathbf{J}_b + \mathbf{J}_p :$$

Substituindo as funções ρ_b , J_b e J_p apresentadas anteriormente nas equações de Maxwell, obtemos

$$\rho = \rho_f + \rho_b = \rho_f - \nabla \cdot \mathbf{P},$$

$$\mathbf{J} = \mathbf{J}_f + \mathbf{J}_b + \mathbf{J}_p = \mathbf{J}_f + \nabla \times \mathbf{M} + \frac{\partial \mathbf{P}}{\partial t}.$$

Assim, a lei de Gauss pode ser expressa por

$$\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} (\rho_f - \nabla \cdot \mathbf{P}),$$

$$\nabla \cdot \mathbf{D} = \rho_f$$

Onde
$$\mathbf{D} \equiv \epsilon_0 \mathbf{E} + \mathbf{P}$$
.

Por outro lado, a lei de Maxwell-Apere pode ser expressa por:

$$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J}_f + \nabla \times \mathbf{M} + \frac{\partial \mathbf{P}}{\partial t} \right) + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t},$$

$$\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t},$$

$$\mathbf{H} \equiv \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}.$$

Obtemos finalmente as equações de Maxwell na matéria

(i)
$$\nabla \cdot \mathbf{D} = \rho_f$$
, (iii) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$,

(ii)
$$\nabla \cdot \mathbf{B} = 0$$
, (iv) $\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$.

Note que a lei de Faraday e a ausência de carga magnética não são afetadas pela nossa separação de carga e corrente em partes livres e ligadas.

Questão 4

Solução:

(a) O campo magnético produzido por um fio retilíneo infinito conduzindo uma corrente i a um ponto de distância *r* do fio é dado pela lei de Ampère como:

$$B = \frac{\mu_0 i}{2\pi r}$$

Sua direção é perpendicular ao fio, portanto, o fluxo magnético que atravessa a espira é dado por:

$$\Phi_B = \int_S \vec{B} \cdot d\vec{s}$$
, sendo $ds = bdr$

Assim, o fluxo magnético que cruza a espira devido ao fio estar mais distante da espira é:

$$\Phi_{B_{1}} = \int_{d_{1}}^{d_{1}+a} \frac{\mu_{0}ib}{2\pi r} dr = \frac{\mu_{0}ib}{2\pi} \left[\ln \left(d_{1} + a \right) - \ln \left(d_{1} \right) \right]$$

$$\Phi_{B_1} = \frac{\mu_0 i b}{2\pi} \ln \frac{d_1 + a}{d_1}$$
, perpendicular à página (apontando para fora).

O outro fio, que está mais próximo da espira, dá origem ao fluxo magnético:

$$\Phi_{B_2} = \int_{d_2}^{d_2+a} \frac{\mu_0 ib}{2\pi r} dr = \frac{\mu_0 ib}{2\pi} \left[\ln \left(d_2 + a \right) - \ln \left(d_2 \right) \right]$$

$$\Phi_{\rm B_2} = \frac{\mu_0 i b}{2\pi} \ln \frac{d_2 + a}{d_2}$$
, que está entrando no plano da página.

Portanto, o fluxo total é

$$\Phi_{B} = \Phi_{B_{2}} - \Phi_{B_{1}} = \frac{\mu_{0}ib}{2\pi} \left[\ln \left(\frac{d_{2} + a}{d_{2}} \right) - \ln \left(\frac{d_{1} + a}{d_{1}} \right) \right]$$

$$\Phi_{\scriptscriptstyle B} = \frac{\mu_{\scriptscriptstyle 0} i b}{2\pi} \ln \left| \frac{d_{\scriptscriptstyle 2} + a}{d_{\scriptscriptstyle 2}} \cdot \frac{d_{\scriptscriptstyle 1}}{d_{\scriptscriptstyle 1} + a} \right|, \text{ entrando no plano da página.}$$

A fem induzida na espira retangular é, portanto,

$$\varepsilon = -\frac{\partial \Phi_{\scriptscriptstyle B}}{\partial t} = -\frac{\mu_{\scriptscriptstyle 0} b}{2\pi} \frac{\partial i}{\partial t} \ln \left[\frac{\left(d_{\scriptscriptstyle 2} + a\right) d_{\scriptscriptstyle 1}}{\left(d_{\scriptscriptstyle 1} + a\right) d_{\scriptscriptstyle 2}} \right].$$

(b) De acordo com a Lei de Lens, uma corrente induzida sempre flui em uma direção que se opõe à mudança (do fluxo magnético) que a causa. Então, o campo magnético produzido pela corrente induzida está entrando no plano da

página, em oposição à variação do fluxo magnético. Portanto, pela regra da mão direita, a corrente induzida na espira é no sentido anti-horário.