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Abstract

Objective: Genomic alterations in Hürthle cell carcinomas (HCC) include chromosomal losses, mitochondrial DNA 
mutations, and changes in the expression profile of the PI3K-AKT-mTOR and Wnt/β-catenin pathways. This study aimed 
at characterizing the mutational profile of HCC.
Methods: Next-generation sequencing (NGS) of 40 HCC using a 102-gene panel including, among others, the MAPK, 
PI3K-AKT-mTOR, Wnt/β-catenin, and Notch pathways. HCC was widely invasive in 57.5%, and lymph node and distant 
metastases were diagnosed in 5% and 7.5% of cases. During follow-up, 10% of patients presented with persistent/
recurrent disease, but there were no cancer-related deaths.
Results: Genetic alterations were identified in 47.5% of HCC and comprised 190 single-nucleotide variants and 5 
insertions/deletions. The Wnt/β-catenin pathway was most frequently affected (30%), followed by MAPK (27.5%) and 
PI3K-AKT-mTOR (25%). FAT1 and APC were the most frequently mutated genes and present in 17.5%. RAS mutations 
were present in 12.5% but no BRAF mutation was found. There was no association between the mutational profile and 
clinicopathological features. 
Conclusions: This series of HCC presents a wide range of mutations in the Wnt/β-catenin, MAPK and PI3K-AKT-mTOR 
pathways. The recurrent involvement of Wnt/β-catenin pathway, particularly mutations in APC and FAT1, are of 
particular interest. The data suggest that mutated FAT1 may represent a potential novel driver in HCC tumorigenesis 
and that the Wnt/β-catenin pathway plays a critical role in this distinct thyroid malignancy.

Introduction

Hürthle cell carcinomas (HCC) represent about 3% of 
thyroid cancers. It is defined as a tumor composed of more 
than 75% of Hürthle cells - large cells with mitochondria-
rich eosinophilic granular cytoplasm, large centrally 
located nuclei, and prominent nucleoli. It differs from 
Hürthle cell adenomas (HCA) by the presence of capsular 

and/or vascular invasion or metastasis (1). The latest 
edition of the WHO classification of tumors distinguished 
HCC from follicular thyroid cancer due to distinct clinical 
behavior and recent molecular findings (1). Hürthle cell 
carcinomas tend to be associated with poorer outcomes 
compared to papillary or follicular thyroid cancers (PTC, 
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FTC). Retrospective analysis of a single-center experiences 
in the follow-up of HCC demonstrated 5-year cumulative 
probability of survival of 85%, which was worse in 
patients with distant metastases at diagnosis (24%) (2). In 
that study, clinical recurrence or death occurred in 44% of 
patients after initial response to therapy, but none of those 
had minimally invasive carcinomas (2). Moreover, despite 
improved survival rates attributed to radioactive iodine 
therapy (RAI) (3), the response of metastatic HCC to RAI 
is often very limited and not comparable to metastatic 
differentiated thyroid carcinomas (DTC) (2, 4, 5).

The molecular pathogenesis of HCC is less well 
characterized compared to PTC and FTC. Chromosomal 
changes and mitochondrial mutations are frequent events 
in the pathogenesis of HCC (6, 7). Transcriptome analysis 
revealed differences in the expression profiles between 
widely invasive HCC (HWIDE) and minimally invasive 
HCC (HMIN). The PI3K-AKT-mTOR and Wnt/β-catenin 
pathways appear to be highly active in HWIDE (8). Two 
recent landmark studies have provided significant insights 
into the genomic landscape of these neoplasias (9, 10). 
Widespread chromosomal losses, prevalent chromosomal 
5 and 7 duplications, and recurrent mitochondrial DNA 
mutations were among the most prevalent findings (9, 10). 
A high rate of mitochondrial mutations affecting complex 
I subunits was observed in HCC. However, complex I 
alterations were also present in HCA (10), indicating that 
additional events are necessary for tumor progression. In 
these two seminal studies, the reported recurrent mutations 
in HCC were heterogeneous and different from each other 
(9, 10). Using the MutSig algorithm, the study by Ganly 
et  al. reported 23 significantly mutated genes, including 
EIF1AX (mutated in 11% of HCC), MADCAM1 (20%), 
UBXN11 (9%) and NRAS (9%) (9), while the study by Gopal 
and colleagues identified frequent mutations in DAXX 
(17%), TP53 (12%), NRAS (7%) and NF1 (17%) (10). Of note, 
the characteristic mutations and rearrangements associated 
with PTC and FTC are rarely found in HCC (9, 10).

A more developed understanding of the somatic 
alterations in HCC remains of relevance and may 
facilitate the preoperative diagnosis, in particular, 
because commercially available molecular tests still fail 
in accurately distinguishing HCA from HCC despite 
improvements in recently updated versions (11, 12).

The aims of this study were to characterize the 
mutational profile in HCC using a next-generation 
sequencing (NGS) gene panel covering genes in pathways 
known to be active in HCC, or involved in other thyroid 
tumors, and to correlate the molecular findings with 
clinical-pathological features and outcomes.

Subjects and methods

Subjects

Formalin-fixed paraffin-embedded (FFPE) surgical 
specimens of HCC and HCA were selected for genomic 
analyses. The samples were obtained from patients who 
underwent thyroidectomy at the Hospital das Clinicas 
and the Instituto do Cancer do Estado de Sao Paulo between 
1998 and 2017. Patient data, treatment modalities, and 
outcomes were collected through a retrospective chart 
review. The response to therapy was described according 
to the American Thyroid Association classification (13). 
The data were anonymized prior to further analysis. The 
study was approved by the Research Ethics Committee of 
the University of Sao Paulo.

An experienced pathologist reviewed all specimens 
to confirm the diagnosis and to select appropriate tissue 
samples for DNA extraction. Tumors were classified as: (1) 
HMIN, if it was encapsulated, harboring <4 foci of vascular 
invasion (within or immediately outside the tumor 
capsule), and without either gross invasion of the tumor 
capsule or vascular invasion of extrathyroid vessels and 
(2) HWIDE, if the tumor was encapsulated with ≥4 foci 
of vascular invasion, presence of widespread infiltration 
of adjacent thyroid or extrathyroidal tissue, and/or the 
presence of extrathyroidal vascular invasion.

Next-generation sequencing

DNA was extracted from 40 HCC and their respective 
normal thyroid tissues, as well as 10 unpaired HCA, using 
a commercially available QIAamp® DNA FFPE Tissue 
kit (Qiagen, Düsseldorf, Germany). The nucleic acid 
concentration was determined with a Qubit® dsDNA 
High Sensitivity assay (Life Technologies, Carlsbad, USA), 
and DNA quality was determined with the DNA integrity 
score obtained from real-time PCR analysis.

Next-generation sequencing was performed using 
the SureSelectXTHS Target Enrichment System protocol 
(Agilent Technologies, Santa Clara, USA). The customized 
capturing panel was developed to include 102 genes 
within pathways previously described to play important 
roles in thyroid tumorigenesis such as the MAPK, 
PI3K-AKT-mTOR, Wnt/β-catenin and Notch pathways 
(Table 1). NGS libraries were prepared using SureSelectXT 

HS library preparation kit according to the manufacturer’s 
protocol. DNA was sheared using focused-ultrasonicator 
(Covaris), and the fragments were end-paired, adenylated, 
ligated to Illumina sequencing adapters, and amplified 
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by PCR. Hybridization capture was performed using the 
SureSelectXT HS capture probe set, and captured libraries 
were enriched by PCR. Final libraries were quantified using 
the Agilent qPCR NGS Library Quantification kit, and the 
quality was analyzed by the Agilent 2200 TapeStation 
System. Normalized libraries were sequenced on the 
NextSeq (Illumina Inc, San Diego, EUA) using paired-end 
2x 125-bp cycles. The average depth of coverage obtained 
was 1,111X (median 364.5, range 2.49–18 771.14). Four 
HCC samples with a mean coverage <50 times were 
maintained despite the low coverage because HCC is a 
rare malignancy and these cases had mutations identified 
by at least two somatic variant callers, including one 
NRAS mutation.

Raw-sequencing data (FASTQ files) were aligned to the 
hg19+decoy human genome build using bwa (14). Quality 
score recalibration and realignment around indels were 
performed using the Genome Analysis Toolkit (version 
3.2.2, broadinstitute.org/gatk) (15). FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) and 
Qualimap (16) were used to assess the quality of the reads 
and sequencing coverage metrics. NGSCheckMate (17) 
was used to assess normal-tumor pairing. 

Somatic alterations from normal-matched samples 
were independently identified by three callers: Lofreq 
(18), Mutect2 (19) and Lancet (20). Variants were included 
when recognized by at least two callers. In unpaired 
tumors, the single-sample somatic variant caller Pisces 
(https://github.com/Illumina/Pisces) was used to search 
for filtered and known mutations in the following genes: 
FAT1, APC, KRAS, HRAS, NRAS, BRAF, TERT promoter, 
TP53, PTEN, MEN1, and TSHR. 

In this analysis, variants present in ≥5% of the reads and 
in <0.5% of individuals from the 1000 genomes database 
were included. All variants were manually reviewed using 
the Integrative Genomics Viewer (IGV) (21). 

Genetic variants valid on IGV were grouped in the 
following categories: (i) known driver mutations involved 

in thyroid carcinogenesis; (ii) alterations previously 
described in the COSMIC70 database; (iii) frameshift or 
stop codon mutations; (iv) single-nucleotide variants 
(SNV) predicted as deleterious by one or more in silico tools 
(Polyphen, Mutation Taster, PROVEAN, and FATHMM); 
and (v) all the other genomic alterations.

The association between molecular alterations, 
pathological features (HWIDE or HMIN), and outcomes 
(lymph nodes or distant metastases, recurrent/persistent 
disease and response to therapy) were assessed.

Statistical analysis

Data were processed using IBM SPSS Statistics for Windows 
version 24.0 (IBM, Armonk, NY). Two-tailed p values were 
used and p values < 0.05 were considered statistically 
significant. Categorical variables are presented as absolute 
and relative (percentages) frequencies. Differences were 
evaluated by Pearson’s chi-square test and Fisher’s exact 
test when appropriate. Continuous variables are presented 
as mean ± s.d. or median (range). Differences among 
studied subgroups were determined using Student’s t-test 
if presenting normal distribution, and the Mann–Whitney 
U test for non-normal distributions.

Results

Clinical and pathological characteristics of HCC

A total of 23 patients with HWIDE and 17 with HMIN 
were selected for analysis. Clinical and pathological 
features are presented in Table 2. The mean HCC size was 
5.2 ± 3.0 cm, and tumors were significantly larger among 
patients with HWIDE (P = 0.014). Lymph node metastases 
were diagnosed in 5% of subjects, and distant metastases 
in 7.5%. RAI therapy was performed in 78.4% of the 
patients. After a mean follow-up period of 69.6 ± 57.4 
months, 10% of patients had persistent/recurrent disease. 

Table 1 Genes included in the next-generation sequencing panel for the analysis of Hürthle cell thyroid neoplasias.

Pathways Genes

MAPK ALK, BRAF, CCDC6, EGFR, EML4, ERBB2, ETV6, FGFR1, FGFR2, FGFR3, FLT3, FLT4, HRAS, KDR, KIT, KRAS, 
MAP2K1, MAP2K2, MAPK1, MAPK3, MET, NCOA4, NRAS, NTRK1, NTRK3, PAX8, PDGFRA, PDGFRB, PPARG, 
RET, ROS1

PI3K-AKT-mTOR AGAP2, AKT1, AKT2, FOXO1, INPP5D, IRS1, IRS2, IRS4, MTOR, NFKB1, PDPK1, PIK3CA, PIK3CG, PIK3R1, PIK3R4, 
PIK3R5, PTEN, RHEB, RICTOR, SRC, STK11, TSC1, TSC2

Wnt/β-catenin AMER1, APC, AXIN1, AXIN2, CCND1, CDK4, CSNK1A1, CSNK1D, CSNK1E, CTNNB1, CYLD, DKK1, DVL1, DVL2, 
FAT1, FLCN, FZD1, GNAS, GSK3B, HNF1A, JAK2, LRP5, LRP6, PPP2R1A, RNF43, SFRP1, TCF4, ZNRF3

Notch FBXW7, MIR146A, MYC, NOTCH1, NOTCH2, NUMB
Others BCR, DICER1, KEAP1, MAP4, MEN1, NFE2L2, NDUFA13 (GRIM19), SLC5A5, TERT promoter, TIMM44, TP53, 

TRIM62, TSHR, TWIST1
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Metastases, recurrences, as well as incomplete responses 
to therapy were restricted to patients with HWIDE. There 
was no cancer-related death.

Somatic mutations in HCC

Somatic alterations were identified in 19 of the 40 
(47.5%) HCC cases, 9 HWIDE and 10 HMIN. Altogether, 
we identified 190 somatic SNVs and 5 insertions/
deletions (indels; Supplementary Table 1 (see section 
on Supplementary materials at the end of the article)). 
These SNVs included 181 nonsynonymous variants, 8 
premature stop mutations, and 1 synonymous variant. In 
HWIDE, the median number of mutations per tumor was 
11 (ranging 1–88), whereas HMIN had a median of 1.5 
(1–5) mutations per tumor (P = 0.105).

Mutations in the pathways covered by the panel 
were mainly found among HWIDE cases (Table 3). The 
Wnt/β-catenin was the most frequently mutated pathway 
(Fig. 1), followed by the MAPK and the PI3K-AKT-mTOR 
pathways (Fig. 2).

FAT1 and APC were the most frequently altered genes 
(Fig. 3). The APC gene harbored 18 mutations in 7 (17.5%) 
HCCs, 5 of which were HWIDE. Two APC mutations, 
p.R805Q and p.E1064*, have been previously described in 
colon carcinomas. The other mutations were predicted to 

be deleterious by in silico tools, in particular, the p.P2747L 
APC mutation which was detected in 2 HCCs and 1 HCA 
(Table 4).

There were 12 somatic FAT1 mutations in 7 HCCs, 
5 of which were HWIDEs. All the mutations were in 
either the cadherin or the cytoplasmic domains. The 
p.R1268Q FAT1 mutation detected in three HCCs has 
been previously identified in glioblastoma multiforme 
(22). Nine mutations were predicted to be deleterious 
by in silico tools and 1 premature stop codon mutation 
(p.W948X) was detected (Table 4). Three somatic FAT1 
variants identified in 6 other HCC cases were observed as 
germline polymorphisms in the 1000 Genomes database 
(rs77834784, rs3796648 and rs2304867), suggesting that 
these might be passenger events. One HCA harbored a 
FAT1 mutation (p.I1127V) that was only predicted to be 
deleterious by Mutation Taster but not by the other used 
tools (Table 4). Five HCCs (4 HWIDEs and 1 HMIN) had 
concomitant mutations in both the FAT1 and APC genes 
(Fig. 3).

Other recurrently mutated genes within the Wnt/β-
catenin pathway included AXIN2 (10%), LRP5 (10%), 
DVL2 (7.5%), CSNK1D (5%), DVL1 (5%), GNAS (5%), 
LRP6 (5%), ZNRF3 (5%) and AMER1 (5%) (Figs 1 and 3).

A frequently mutated gene in the PI3K-AKT-mTOR 
pathway was MTOR (12.5%). MTOR somatic mutations 

Table 2 Clinical features of patients with Hürthle cell carcinomas, HWIDE and HMIN.

HWIDE (n = 23) HMIN (n = 17) P-value

Age (years) 58.6 ± 16.2 52.3 ± 12.5 0.212
Female (%) 17 (77.3) 14 (82.4) 0.697
Tumor size (cm) 6.1 ± 3.1 3.8 ± 2.1 0.014
Radioiodine treatment (%)* 19 (86.4) 10 (66.7) 0.153
Lymph node metastasis (%)* 2 (9.1) – 0.230
Distant metastasis (%)* 3 (13.6) – 0.136
Recurrence and/or persistence (%)* 4 (18.2) – 0.080
Incomplete biochemical/structural response at final evaluation (%)* 4 (18.2) – 0.091
Follow-up (months) 51.1 ± 43.7 96.9 ± 65.5 0.015

*Percentage refers to patients whose follow-up data were available.

Table 3 Somatic mutations of signaling pathways in Hürthle cell carcinomas, HWIDE and HMIN.

Pathway/Genes
HWIDE HMIN Total

Cases (n = 23) Mutations (n = 174) Cases (n = 17) Mutations (n = 21) Cases (n = 40) Mutations (n = 195)

Wnt/β-catenin 7 (30.4%)  64 (36.8%) 5 (29.4%)  9 (42.9%) 12 (30.0%)  73 (37.4%)
FAT1 5 (21.7%) 10 (5.7%) 2 (11.8%) 2 (9.5%)  7 (17.5%) 12 (6.2%)
APC 5 (21.7%) 15 (8.6%) 2 (11.8%)  3 (14.3%)  7 (17.5%) 18 (9.2%)
MAPK 6 (26.0%)  40 (23.0%) 5 (29.4%)  5 (23.8%) 11 (27.5%)  45 (23.1%)
PI3K-AKT-mTOR 7 (30.4%)  41 (23.6%) 3 (17.6%)  6 (28.6%) 10 (25.0%)  47 (24.1%)
Notch 4 (17.4%) 11 (6.3%) – –  4 (10.0%) 11 (5.6%)
Other genes 4 (17.4%)  18 (10.3%) 1 (5.9%) 1 (4.8%)  5 (12.5%) 19 (9.7%)
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were observed in 12.5% of HCC, and these mutations 
affected the mTOR HEAT repeats region (p.R241H, 
p.E270K, p.A400V, and p.V1260I) and its kinase domain 
(p.G2337E) (Table 4). Other mutated genes within this 
pathway included AGAP2 (15%), AKT2 (10%), PI3KR4 
(10%), IRS2 (7.5%) and IRS1 (5%) (Figs 2 and 3).

The MAPK pathway harbored mutations in 27.5% of 
the HCCs included in this study, and the most frequently 
altered genes were ALK (10%), FGFR3 (10%), KDR (10%), 
KIT (7.5%), NRAS (7.5%), FLT4 (5%) and MET (5%) (Figs 
2 and 3). NRAS was mutated in 3 HCCs; the p.Q61R NRAS 
mutation was identified in 2 carcinomas, and the p.Q61K 
NRAS mutation was identified in 1 carcinoma. The 
p.Q61R NRAS mutation was also observed in 2 HCAs. One 
HCC harbored a p.N54E HRAS mutation, and another 
carcinoma harbored the p.G12C KRAS mutation (Fig. 3).

Two novel mutations in the TERT promoter 
(chr5:1,295,594 G>A, chr5:1,295,494 A>G) were observed 

in two HWIDEs, both without lymph node or distant 
metastases. There were two non-metastatic HCC with 
mutations in the gene that encodes the sodium-iodide 
symporter, SLC5A5/NIS. One HMIN had a single mutation 
in PTEN (p.L281F) (Fig. 3). No mutations in BRAF or TP53 
were identified.

No significant association between the molecular 
profile and outcomes was observed. The 2 HCC associated 
with lymph node metastases did not harbor any mutations 
in the studied genes. Only a single tumor out of 3 with 
concomitant distant metastases (HWIDE8) harbored a 
mutation in ROS1, which is part of the MAPK pathway. 
This patient was the only subject with persistent disease 
and, hence, with an incomplete response to therapy, who 
had a mutation in the genes covered by our customized 
panel.

Discussion

Despite growing knowledge about the genomic landscape 
of HCC, the driver events and the spectrum of genomic 
alterations responsible for this mitochondria-rich 
neoplasia that is distinct from other thyroid follicular cell-
derived carcinomas remain incompletely characterized. 
The data presented here demonstrate recurrent mutations 
in the Wnt/β-catenin, MAPK and PI3K-AKT-mTOR 
pathways in HCC, involving, in particular, the FAT1 
and APC genes, which are implicated in Wnt/β-catenin 
activation.

Somatic mutations frequently associated with PTC 
and FTC are uncommon in HCC. According to the 
thyroid cancer datasets in The Cancer Genome Atlas 
(TCGA), BRAF mutations are present in up to 60% of 
PTCs (23, 24). Although Gopal et  al. (10) identified 2 
HCCs with BRAF mutations, the series presented here 
was negative for BRAF mutations, a finding that is in line 
with the data reported by Ganly  et al. (9). RAS mutations 

Figure 1
Frequency of Hürthle cell carcinomas harboring somatic 
mutations in genes from the Wnt/β-catenin pathway.

Figure 2
Frequency of Hürthle cell carcinomas 
harboring somatic mutations in genes 
from the MAPK and PI3K-AKT-mTOR 
pathways.
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were observed in 5/40 HCC (12.5%) in our cohort, a rate 
that is similar to PTCs (24), but far less frequent than 
described in FTCs (48%) (8, 9, 25). However, the MAPK 
pathway is also relevant in HCC since a quarter of the 

carcinomas in our series harbored mutations in genes 
within this pathway.

The Wnt/β-catenin and PI3K-AKT-mTOR pathways 
were described as being highly active in HWIDE (8). This 

Figure 3
Genomic profile of Hürthle cell carcinomas 
according to the signaling pathways, 
pathogenicity and frequency of cases with 
mutations in each gene.

Table 4 Somatic APC, FAT1 and MTOR mutations in Hürthle cell carcinomas.

Gene/Exon Point mutation Amino-acid change Pathogenicity Allele frequency (%)

APC
 11 c.C959T p.S320L Deleteriousa,b,c,d 12
 11 c.G1214A p.R405Q Deleteriousa,b,d 12
 12 c.G1375A p.D459N Deleteriousa,b,d 23
 13 c.G1426A p.A476T Deleteriousa,b,d 11
 17 c.C2302A p.H768N Deleteriousa,b,c 11
 17 c.G2392A p.D798N Deleteriousa,b,c,d 9–25
 17 c.G2414A p.R805Q COSM1432203e 9
 17 c.G3190T p.E1064* COSM3428825e 12
 17 c.G5062A p.D1688N Deleteriousb,c,d 44
 17 c.G5695A p.E1899K Deleteriousb,c 9
 17 c.C7028T p.S2343F Deleteriousa,b,c,d 10
 17 c.C7588T p.R2530W Deleteriousa,b,c,d 7–11
 17 c.G7628A p.R2543K Deleteriousb,c,d 12
 17 c.C8240T p.P2747L Deleteriousc 5–12
FAT1
 2 c.G2843A p.W948* Stop codon 10
 5 c.G3832A p.D1278N Deleteriousa,b,c,d 11
 5 c.G3803A p.R1268Q COSM5946179f 9–55
 8 c.G4420A p.E1474K Deleteriousa,b 20
 10 c.C4988T p.A1663V Deleteriousa,b,d 9
 10 c.C6698T p.T2233I Deleteriousa,b,d 8
 10 c.G7744A p.V2582M Deleteriousa,b,d 9
 14 c.C9557T p.P3186L Deleteriousa,b 14
 19 c.G10594A p.D3532N Deleteriousb 16
 25 c.G12880A p.G4294R Deleteriousb,c,d 11
MTOR
 4 c.504+5G>A Splicing 11
 5 c.G641A p.R214H Deleteriousa,b,d 7
 6 c.G808A p.E270K COSM893952g 11
 8 c.C1199T p.A400V Deleteriousa,b,d 18
 25 c.G3778A p.V1260I Deleteriousb,d 10
 50 c.G7010A p.G2337E Deleteriousa,b,c,d 13

The mutations were submitted to in silico analyses with various prediction tools, and queried for the presence in previous reports in other malignancies: 
(a) PROVEAN; (b) Mutation Taster; (c) FATHMM; (d) Polyphen; (e) Previously identified in colon carcinoma; (f) Previously identified in glioblastoma 
multiforme; (g) Previously identified in endometrial carcinoma.
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is line with our findings with a total of 30% of all tumors 
with mutations in genes within the Wnt/β-catenin 
pathway, 58.3% of which were HWIDE. Moreover, 25% 
had mutations in PI3K-AKT-mTOR pathway genes, among 
which 70% were HWIDE. The APC gene was the most 
frequently altered gene, with 18 mutations in 17.5% of 
HCCs, although one HCA also had an APC mutation.

APC is a tumor suppressor gene known to activate the 
Wnt pathway when mutated, as thoroughly characterized 
in colorectal carcinomas (26). Apart from the p.P2747L 
APC mutation also identified in one of the studied 
adenomas, all mutations were predicted to be deleterious. 
Interestingly, APC mutations are associated with the 
cribriform-morular variant of PTC (CMV-PTC) in subjects 
with familial adenomatous polyposis (FAP) (27, 28). In the 
CMV-PTC, a second somatic hit is necessary in addition 
to the predisposing APC germline mutation for tumor 
development, an example of the Knudson two-hit concept. 
Whole-genome sequencing of CMV-PTC in FAP patients 
harboring germline mutations in APC revealed not only 
a somatic second hit mutation and/or LOH in APC, but 
also mutations in other genes such as BRAF p.V600E and 
KMT2D (28). It is possible that a monoallelic somatic 
variant in a gene different from APC may act as a driver 
in thyroid cells, or a trigger of malignant transformation 
of a cell that carries a pathogenic monoallelic APC variant 
(28). In our series, APC mutations consistently coexisted 
with other genetic alterations, in particular FAT1 (5/7 APC 
mutated tumors), but also with mutations in genes from 
other pathways.

Our study suggests that FAT1 might be a potential 
driver in HCC. FAT1 was recurrently mutated, with 12 
mutations in 17.5% of our HCCs. The PTC included in the 
TCGA (24) were negative for FAT1 mutations, but Ganly 
et al. (9) also observed mutations in FAT1 in a subset (7%) 
of HCCs, which is lower than the frequency observed 
in our cohort, a finding that further illustrates that the 
mutational profile of HCC is remarkably heterogeneous. 
FAT1 mutations may also have a pathogenic role 
in medullary thyroid carcinomas (MTC). Genomic 
characterization of sporadic MTC revealed germline FAT1 
mutations in 4/18 tumors (22.2%), which also included 
copy number losses in chromosome 4, where FAT1 is 
located (29).

FAT1 protein is involved in several cellular activities, 
such as cell adhesion, polarity and migration, in addition 
to its role in the Hippo and Wnt/β-catenin signaling 
pathways (22, 30). FAT1 negatively regulates β-catenin 
nuclear translocation through the cytoplasmic domain, 
restraining the Wnt/β-catenin pathway (22, 31, 32). 

Transcriptome analysis of tumors from TCGA network 
studies showed that low FAT1 expression was associated 
with significant Wnt/β-catenin pathway enrichment 
in glioblastomas and ovarian cancers (22). Colorectal 
carcinomas harboring FAT1 mutations had activated 
Wnt/β-catenin signaling despite the absence of mutations 
in other known drivers within this pathway (22). In breast 
and oral cancer, FAT1 is downregulated (33, 34), while it is 
upregulated and associated with worse prognosis in acute 
lymphoblastic leukemia (35). Aberrant FAT1 processing 
occurs in melanoma (36) and mutations are present in 
pancreatic, head and neck squamous cell carcinomas 
(HNSCC), and, as illustrated in the present and previous 
studies, in HCC (9, 22, 30). The mechanisms through 
which FAT1 mutations impair protein function appear 
to be diverse and require further clarification. In vitro 
studies in MTC cells demonstrated that FAT1 knockdown 
promotes cancer cell proliferation (29). The p.G4294R 
FAT1 mutation identified in one of the HCCs in this study 
is located in the cytoplasmic domain, which is responsible 
for binding to β-catenin. Of note, in HNSCC, FAT1 
knockout did not change cell proliferation but increased 
migration and invasion (30). In in vitro study, FAT1-
domain vectors (encoding amino acid residues 3438–
4588) were transfected into FAT1-knockdown cells. The 
exogenous expression of FAT1-domains in transfected cells 
significantly decreased migration and invasion (30). Most 
of the FAT1 mutations identified in this series are located 
in the extracellular (cadherin) domain. Functionally, the 
extracellular FAT1 domain is probably sufficient to reduce 
cell mobility; hence, mutations disrupting it are thought 
to favor cancer cell migration and invasion (30). Finally, 
Hürthle cells are characterized by the cytoplasmatic 
accumulation of abundant mitochondria (37). An in 
vitro study of smooth muscle cells lacking Fat1 (Fat1KO) 
demonstrated higher proliferation rates of these cells. In 
contrast, limiting mitochondrial respiration, either by 
pharmacologic or genetic interference targeting complex 
I, suppressed the growth advantage of Fat1KO cells, which 
suggest that a Fat1-mediated growth control mechanism 
is intrinsic to mitochondria (38). Therefore, although no 
functional evaluation was performed in the present study, 
based on these aforementioned studies, we hypothesize 
that inactivating FAT1 mutations in HCC might not 
only activate Wnt/β-catenin pathway and promote cell 
invasion, but also provide growth advantages to the 
mitochondria-rich Hürthle cells.

Regarding prognostic implications associated with 
FAT1 mutations, none of the patients in the series 
presented here had unfavorable outcomes. In human 
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papillomavirus-negative HNSCC, glioma, and ovarian 
cancer, FAT1 mutations have been associated with better 
survival (22, 39, 40).

Although one of the studied HCAs harbored a FAT1 
mutation, this finding does not discard FAT1 as a potential 
driver since RAS and mitochondrial DNA mutations were 
also described in adenomas (9, 10). This finding suggests 
that FAT1 mutations may represent an early event, 
and additional genetic alterations are postulated to be 
necessary to allow tumor progression.

In this study, MTOR was found to be a frequently 
mutated gene within the PI3K-AKT-mTOR pathway. 
mTOR regulates several cellular functions and is 
associated with cell proliferation and cancer progression 
(41). Mutations in MTOR were observed in 12.5% of this 
HCC cohort. The analyses of TCGA data only revealed 
mutation in MTOR in a single case among the 492 PTCs 
(0.2%) (24), while Murugan et  al. showed that 1.2% 
(1/84) poorly differentiated thyroid carcinomas and 
6.1% (2/33) anaplastic thyroid carcinomas (ATC) harbor 
MTOR mutations (42). Rare point mutations of MTOR 
have been reported in a few cancers, but only recently 
functional analyses demonstrated mTOR gain-of-function 
as a consequence of two novel mutations (42): H419R, 
located in the HEAT repeat domain, and G2359E, within 
the kinase domain, were identified in ATC and melanoma 
cell lines and both result in constitutive activation. The 
current model is that these mutations contribute to cancer 
aggressiveness by inducing invasion and metastasis (42). 
Of note, the HCC with MTOR mutations in our series were 
HWIDE tumors, although none of them was associated 
with distant metastases.

Finally, previous genomic studies focused on HCC 
identified mutations known to be associated with aggressive 
histology, such as TERT promoter or TP53 mutations. They 
were not observed in the HCCs included here. The two 
novel mutations in the TERT promoter identified in our 
series are distinct from the C228T and C250T mutations 
and it remains currently unclear whether they have 
any impact on tumor development. In the comparison 
of primary to recurrent tumors, Gopal  et  al. observed 
independent mutations arising in distinct evolutionary 
branches, including TERT promoter and TP53 mutations 
(10). Similarly, loss-of-function mutations in SETD2, a 
gene encoding a methyltransferase that trimethylates 
H3K36 and interacts with p53 to promote its stability, 
were observed in poorly differentiated metastases of two 
HCCs, also suggesting a role of SETD2 in HCC progression 
(43). As in other reports on the genomic characterization 
of HCC (9, 10), the present study is limited by sample 

size. However, both HWIDE and HMIN, as well as HCA, 
have been included. We restricted our analysis to primary 
tumors focusing on the identification of HCC driver 
mutations. Therefore, assertions about the acquisition of 
new mutations favoring metastatic dissemination were 
not possible.

 In summary, the study presented here identified a 
mutational profile of HCC involving genes within the 
Wnt/β-catenin, MAPK and PI3K-AKT-mTOR pathways. 
The finding of recurrent involvement of the Wnt/β-catenin 
pathway, particularly mutations in APC and FAT1, are of 
particular interest. We assume that FAT1 may represent 
a potential novel driver in HCC that may not only 
activate the Wnt/β-catenin pathway but also increase cell 
invasion and migration, and provide a growth advantage 
to mitochondria-rich Hürthle cells, a hypothesis that will 
need further corroboration through functional analyses 
in the future.
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