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Abstract In this work we are interested in the central configurations of the planar
1 + 4 body problem where the satellites have different infinitesimal masses and two of
them are diametrically opposite in a circle. We can think of this problem as a stacked central
configuration too. We show that the configurations are necessarily symmetric and the other
satellites have the same mass. Moreover we prove that the number of central configurations
in this case is in general one, two or three and, in the special case where the satellites diamet-
rically opposite have the same mass, we prove that the number of central configurations is
one or two and give the exact value of the ratio of the masses that provides this bifurcation.

Keywords Central configurations · Planar coorbital satellites · Bifurcation ·
Symmetry · Stacked central configurations

1 Introduction

The N-body problem concerns the study of the dynamics of N point masses subject to
their mutual Newtonian gravitational interaction. If N > 2, it is impossible to obtain a
general solution to this problem because of its non-integrability; hence, particular solutions
are very important in this case. Central configurations are the configurations for which the
total Newtonian acceleration of every body is equal to a constant multiplied by the position
vector of this body with respect to the center of mass of the configuration. One of the reasons
why central configurations are interesting is that they allow us to obtain explicit homographic
solutions of the N-body problem i. e. motion where the configuration of the system changes its
size but keeps its shape. Secondly, they arise as the limiting configuration of a total collapse.
The papers dealing with central configurations have focused on several aspects such as finding
examples of particular central configurations, giving the number of central configurations and
studying their symmetry, stability, stacking properties, etc. A stacked central configuration is

A. Oliveira (B)
Núcleo de Formação Docente, Universidade Federal de Pernambuco, Caruaru, PE CEP 55002-970, Brazil
e-mail: allyson.oliveira@ufpe.br

123



A. Oliveira

a central configuration that contains others central configurations by dropping some bodies.
Some references on this theme are Hagihara (1970), Saari (1980, 2005) and Wintner (1941).

This work deals with central configurations of the planar 5-body problem, in which there
is one dominant mass and four infinitesimal masses, called satellites, on a plane. The planar
1 + n body problem was treated by Maxwell (1859) who was trying to construct a model
for Saturn’s rings. There are many other contributions in the literature for this problem.
Considering satellites with equal masses, Casasayas et al. (1994) improved a previous result
of Glen Hall in an unpublished work proving that the regular polygon is the only central
configuration if n ≥ e73. Cors et al. (2004) proved that there are only three symmetric central
configurations of the 1 + 4 body problem and obtained numerically evidences that there is
only one central configuration if n ≥ 9 and every central configuration is symmetric with
respect to a straight line. This last statement was proven by Albouy and Fu (2009) in the case
1 + 4 showing that all central configurations of four identical satellites are symmetric.

In a recent paper, Oliveira and Cabral (2012) worked with stacked planar central con-
figuration of the 1 + n body problem in two cases: First, adding one satellite to a central
configuration with different satellites and the second, adding two satellites considering equal
all infinitesimal masses. Renner and Sicardy (2004) obtained results about finding the infin-
itesimal masses that make up a central configuration, if a configuration of the co-orbital
satellites is fixed. They also studied the linear stability of this configuration. Corbera et al.
(2011) considering the 1+3 body problem, found two different classes exhibiting symmetric
and non-symmetric configurations. When two infinitesimal masses are equal, they provide
evidence that the number of central configurations varies from five to seven.

In this work we are interested in the central configurations of the planar 1 + 4 body
problem where the satellites have different masses. The satellites lie on a circle centered at
the big mass and we treat the case where two of them are diametrically opposite. Observe
that this problem is a stacked central configuration too since the collinear 1+2 configuration
is a central one.

2 Preliminaries

We develop in this section the formulation of this well known problem. Basically the reference
is our previous work (Oliveira and Cabral 2012). More details can be found in (Casasayas et al.
1994). Consider N point masses, m1, . . . , m N , in the plane subject to their mutual Newtonian
gravitational interaction. Let qi ∈ R

2 be the position of the mass mi . The equations of motion
in an inertial reference frame with origin at the center of mass are given by

mi q̈i =
N∑

j=1
j �=i

mi m j
q j − qi

‖q j − qi‖3 , i = 1, . . . , N .

Let M = diag{m1, m1, . . . , m N , m N } be the matrix of masses and let q = (q1, . . . , qN ),

qi ∈ R
2 be the position vector. The equations above become

Mq̈ = ∂V

∂q
,

where V (q1, . . . , qN ) =
∑

1≤i< j≤N

mi m j

‖qi − q j‖ is the Newtonian potential.
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A non-collision configuration q = (q1, . . . , qN ) with
∑N

i=1 mi qi = 0 is a central config-
uration if there exists a positive constant λ such that

M−1 ∂V

∂q
= λq.

Let q(ε) = (q0(ε), q1(ε), . . . , qn(ε)) be a central configuration of the planar N body
problem with masses m0 = 1 and mi = μiε, i = 1, . . . , n, where n = N − 1. We say that
q = (q0, q1, q2, . . . , qn) is a central configuration of the planar 1 + n body problem if there
exists limε→0 q(ε) and this limit is equal to q .

In this work we deal only with non-coalescent central configuration of the planar 1 + n
body problem, i.e. we exclude the case where two small bodies coincide at the limit [see
Moeckel (1997)].

In all central configurations of the planar 1 + n body problem the n small bodies, called
satellites, lie on a circle centered at the big mass (Casasayas et al. 1994), i.e. they are coor-
bital. Since we are interested in central configurations modulo rotations and homothetic
transformations, we can assume that the circle has radius 1 and q1 = (1, 0).

We take as coordinates the angles θi between two consecutive satellites. See Casasayas
et al. (1994) for details. In these coordinates the configuration space is the simplex

� = {θ = (θ1, . . . , θn);
n∑

i=1

θi = 2π, θi > 0, i = 1, . . . , n}

and the equations characterizing the central configurations of the planar 1+n body problem
are

μ2 f (θ1) + μ3 f (θ1 + θ2) + · · · + μn f (θ1 + θ2 + · · · + θn−1) = 0,

μ3 f (θ2) + μ4 f (θ2 + θ3) + · · · + μ1 f (θ2 + θ3 + · · · + θn) = 0,

μ4 f (θ3) + μ5 f (θ3 + θ4) + · · · + μ2 f (θ3 + θ4 + · · · + θn + θ1) = 0,

· · · (1)

μn f (θn−1) + · · · + μn−2 f (θn−1 + θn + θ1 + · · · + θn−3) = 0,

μ1 f (θn) + μ2 f (θn + θ1) + · · · + μn−1 f (θn + θ1 + θ2 + · · · + θn−2) = 0,

θ1 + · · · + θn = 2π,

θi > 0,

where f (x) = sin(x)

(
1 − 1

8| sin3(x/2)|
)

.

Proposition 1 Every solution (θ1, . . . , θn) of the system (1) is a non-coalescent central con-
figuration of the planar 1 + n body problem associated to the mass parameters μ1, . . . , μn.

Proof See Casasayas et al. (1994). �	
The following results exhibit the main properties of the function f . Their proof can be

found in Albouy and Fu (2009).

Lemma 1 The function

f (x) = sin(x)

(
1 − 1

8| sin3(x/2)|
)

, x ∈ (0, 2π)
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Fig. 1 The function f (x) =
sin(x)

(
1 − 1

8| sin3(x/2)|
)

Fig. 2 The 1 + 4 body problem
with two diametrically opposite
satellites

satisfies:

(i) f (π/3) = f (π) = f (5π/3) = 0;
(ii) f (π − x) = − f (π + x),∀x ∈ (0, π);

(iii) f ′(x) = cos(x) + 3 + cos(x)

16| sin3(x/2)| ≥ f ′(π) = −7/8, for all x ∈ (0, 2π);
(iv) f ′′′(x) > 0, for all x ∈ (0, 2π);
(v) In (0, π) there is a unique critical point θc of f such that θc > 3π/5, f ′(θ) > 0 in

(0, θc) and f ′(θ) < 0 in (θc, π).

Lemma 2 Consider four points t L
1 , t R

1 , t L
2 , t R

2 such that 0 < t L
1 < t L

2 < θc < t R
2 < t R

1 <

2π, f (t L
1 ) = f (t R

1 ) = f1 and f (t L
2 ) = f (t R

2 ) = f2. Then t L
2 + t R

2 < t L
1 + t R

1 .

Corollary 1 Consider 0 < t1 < θc < t2 < 2π. If f (t1) ≥ f (t2) then t1 + t2 > 2θc > 6π/5.

3 Main results

We now consider the planar problem of 1 + 4 bodies, where the four satellites do not
necessarily have the same masses. The goal is to find all central configurations with two
diametrically opposite satellites. We call them the collinear satellites. See Fig. 2. In this way
we have a central configuration of the planar 1+2 body problem in which the satellites and the
massive body are collinear. Hence we also get stacked central configurations as introduced
by Hampton (2005).
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Since f (x) = − f (2π − x), in the case n = 4, the system (1) becomes

μ2 f1 + μ3 f12 = μ4 f4,

μ3 f2 + μ4 f23 = μ1 f1,

μ4 f3 + μ1 f34 = μ2 f2, (2)

μ1 f4 + μ2 f14 = μ3 f3,

θ1 + θ2 + θ3 + θ4 = 2π,

where

fi = f (θi ) and fi j = f (θi + θ j ).

First we consider the case where the two collinear satellites are arranged consecutively in
the circle, like the case (i i) in Fig. 2. The next result shows that it is impossible to have a
central configuration like that.

Theorem 1 Let (θ1, θ2, θ3, θ4) be a non-coalescent central configuration of the planar 1+ 4
body problem associated to mass parameters μ1, μ2, μ3, μ4. Then the massive body and any
two consecutive satellites cannot be collinear, i. e. θi �= π for all i = 1, 2, 3, 4.

Proof Suppose without loss of generality that θ4 = θ1 + θ2 + θ3 = π . The system (2)
becomes

μ2 f1 = μ3 f (π + θ3), (3)

μ3 f2 = μ4 f (π + θ1) + μ1 f1, (4)

μ4 f3 + μ1 f34 = μ2 f2, (5)

μ3 f3 = μ2 f (π + θ1), (6)

Suppose that f (π + θ1) ≥ 0. Then π + θ1 ≥ 5π/3 and we get θ1 ≥ 2π/3 and θ2 + θ3 ≤
π/3. So θ3 < π/3 and f3 < 0 hence Eq. (6) is impossible. Therefore f (π + θ1) < 0.
Analogously f (π + θ3) < 0.

From (3) and (6), we get f1, f3 < 0. So θ1 < π/3, θ3 < π/3 and consequently θ2 > π/3
and f2 > 0. Hence the right side of (4) is negative and its left side is positive. This concludes
the proof. �	

The remaining results concern the case (i) in Fig. 2 namely the collinear satellites are not
consecutive in the circle. First we prove that the configuration is symmetric and the other
satellites are identical.

Theorem 2 Let (θ1, θ2, θ3, θ4) be a non-coalescent central configuration of the planar 1+ 4
body problem associated to mass parameters μ1, μ2, μ3, μ4. Suppose that the massive body
and the satellites with masses μ1 and μ3 are collinear, i.e. θ1 + θ2 = π = θ3 + θ4. Then
θ1 = θ4 and θ2 = θ3, i.e. the configuration is symmetric. Furthermore the other satellites
have the same mass μ2 = μ4.

Proof Since f (π) = 0, we get

μ2 f1 = μ4 f4, (7)

μ3 f2 + μ4 f23 = μ1 f1, (8)

μ4 f3 = μ2 f2, (9)

μ1 f4 + μ2 f14 = μ3 f3. (10)
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Hence, by (7) and (9)

f1 f3 = f2 f4. (11)

From (7), f1 = 0 if and only if f4 = 0. As the only root in (0, π) of f is π/3, then if f1 = 0
or f4 = 0 we get θ1 = θ4 = π/3. Analogously if f2 = 0 or f3 = 0, then θ2 = θ3 = π/3.
Therefore we will suppose that fi �= 0, i = 1, 2, 3, 4 or equivalently θi �= π/3, 2π/3.

From (11) and by hypothesis θ2 = π − θ1, θ3 = π − θ4 we have

l(θ1) = l(θ4), (12)

where l(x) = f (x)

f (π − x)
, x �= 2π/3.

Note that by (9) f2, f3 have the same sign. Since f is negative in (0, π/3) and positive in
(π/3, π) then 0 < θ2, θ3 < π/3 or π/3 < θ2, θ3 < π. But θ1 + θ2 = θ3 + θ4 = π , hence
2π/3 < θ1, θ4 < π or 0 < θ1, θ4 < 2π/3. So by (12) it is sufficient to show that l|(0,2π/3)

and l|(2π/3,π) are injective to prove θ1 = θ4.
We have

l ′(x) = f ′(x) f (π − x) + f (x) f ′(π − x)

( f (π − x))2

If x ∈ (2π/3, π) then f ′(x) < 0, f (π − x) < 0, f (x) > 0 and f ′(π − x) > 0.
So l ′(x) > 0 and hence l|(2π/3,π) is injective.

Let p(x) = f ′(x) f (π − x) + f (x) f ′(π − x) be the numerator of l ′(x).

p′(x) = f ′′(x) f (π − x) − f (x) f ′′(π − x).

Suppose that 0 < x < π/2. We get x < π − x and consequently f ′′(x) < f ′′(π − x).
If f (x) ≥ f (π − x) Corollary 1 gives π = x + (π − x) > 2θc > 6π/5. So

f (x) < f (π − x).

As f ′′(π − x) < 0 and f (π − x) > 0 we have

f (x) f ′′(π − x) > f (π − x) f ′′(π − x) > f (π − x) f ′′(x).

So p′(x) < 0 in (0, π/2). Since p(x) = p(π − x), if x ∈ (π/2, π) then p′(x) > 0.
Therefore x = π/2 is the point of minimum of p and consequently

p(x) ≥ p(π/2) = 2 f ′(π/2) f (π/2) > 0.

Thus l ′(x) > 0 and hence θ1 = θ4 and θ2 = θ3.
Now if μ2 �= μ4, by (7), (8), (9) and (10) we get f (θ1) = f (θ2) = f (2θ1) = f (2θ2) = 0.

But this is impossible because the roots of f in (0, 2π) are π/3, π and 5π/3. �	
In the next result we count the central configurations of this problem in the general case.

By the last theorem the configurations are symmetric and two satellites have the same infini-
tesimal masses. The next theorem also shows that an additional equality of some infinitesimal
masses are equivalent to the existence of special configurations as a square and a kite.

Theorem 3 Let (θ1, θ2, θ3, θ4) be a non-coalescent central configuration of the planar
1 + 4 body problem associated to mass parameters μ1, μ2, μ3, μ4. Suppose that θ1 + θ2 =
θ3 + θ4 = π . Then for all values of the mass parameters the number of classes of central
configuration is one, two or three. Moreover the square (π/2, π/2, π/2, π/2) is a central
configuration if and only if μ3 = μ1 and the kite (2π/3, π/3, π/3, 2π/3) is a central con-
figuration if and only if μ1 = μ2
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Proof By Theorem 2 we know that μ2 = μ4, θ1 = θ4, θ2 = θ3 = π − θ1. So the Eqs. (7)
and (9) are redundant and (8) and (10) are equivalent to each other and they become

f (θ1) + μ2

μ1
f (2θ1) + μ3

μ1
f (π + θ1) = 0. (13)

We must see how many roots in (0, π) has the function

g(x) = f (x) + μ2

μ1
f (2x) + μ3

μ1
f (π + x).

It is easy to see that g(x) → −∞ as x → 0+ and g(x) → +∞ as x → π−. So for
any μ1, μ2, μ3 > 0 there is at least one solution of g(x) = 0 in (0, π). Moreover, since

g′′′(x) = f ′′′(x) + 8
μ2

μ1
f ′′′(2x) + μ3

μ1
f ′′′(π + x) > 0, there are at most 3 roots of g in

(0, π).
Observe that, by Lemma 1,

g(π/2) = f (π/2) + μ2

μ1
f (π) + μ3

μ1
f (π + π/2)

= f (π/2) + μ3

μ1
f (π + π/2)

= f (π/2) − μ3

μ1
f (π − π/2)

= f (π/2)

(
1 − μ3

μ1

)
.

Hence g(π/2) = 0 if and only if μ3 = μ1. Likewise

g(2π/3) = f (2π/3) + μ2

μ1
f (4π/3) + μ3

μ1
f (5π/3)

= f (2π/3) − μ2

μ1
f (2π/3)

= f (2π/3)

(
1 − μ2

μ1

)
.

So g(2π/3) = 0 if and only if μ2 = μ1. �	
Remark 1 Theorem 3 shows that if μ1 = μ2 = μ4 then the kite (2π/3, π/3, π/3, 2π/3) is
a central configuration for all μ3 and if μ1 = μ2 = a and μ2 = μ4 = b, then for all a, b the
square (π/2, π/2, π/2, π/2) is a central configuration.

The special case where the collinear satellites have the same mass is completely treated
in the next theorem. We have now two parameters of masses, μ1 = μ3 and μ2 = μ4. The
ratio μ2/μ1 provides a parameter for bifurcation in the number of central configuration of
this problem. We give its exact value in the theorem.

Theorem 4 Let (θ1, θ2, θ3, θ4) be a non-coalescent central configuration of the planar 1+ 4
body problem associated to mass parameters μ1, μ2, μ3, μ4. Assume that θ1 = θ4, θ2 =
θ3 = π −θ1. Suppose that μ1 = μ3. If μ2/μ1 ≤ 3

√
2

7 there is a unique central configuration:

the square θi = π/2, i = 1, 2, 3, 4. If μ2/μ1 > 3
√

2
7 there are two central configurations:

the square and the kite (θ1, π − θ1, π − θ1, θ1) where θ1 ∈ (π/6, π/2). In fact the function

mapping μ2/μ1 ∈ ( 3
√

2
7 ,+∞) to θ1 ∈ (π/6, π/2) in the kite configuration is a bijective

function.
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Proof Let a = μ2/μ1. The central configurations are determined by the equation

f (θ1) + a f (2θ1) + f (π + θ1) = 0, (14)

with θ1 ∈ (0, π). Again, consider the function g : (0, π) → R given by

g(x) = f (x) + a f (2x) + f (π + x).

Since g′′′(x) > 0, then g′′(x) = f ′′(x)+ 4a f ′′(2x)+ f ′′(π + x) is increasing. Moreover
g′′(π/2) = 0 because f ′′(π − x) = − f ′′(π + x), so x = π/2 is the minimal point of g′(x)

in (0, π).
We obtain

g′(π/2) = f ′(π/2) + 2a f ′(π) + f ′(3π/2) (15)

= 2 f ′(π/2) + 2a f ′(π) (16)

= 2

(
3
√

2

8
− 7a

8

)
(17)

= 1

4
(3

√
2 − 7a) (18)

So if a ≤ 3
√

2
7 then g′(x) ≥ g′(π/2) ≥ 0 and consequently g has only one root in (0, π).

As x = π/2 is always a root of g, then we have only the square (π/2.π/2, π/2, π/2).

If a > 3
√

2
7 then g′(π/2) < 0, so g has three roots in (0, π), namely θ∗

1 , π/2 and θ∗∗
1 . Since

g(π − x) = −g(x) then θ∗∗
1 = π − θ∗

1 and these roots correspond to the same configuration,
the kite (θ1, π − θ1, π − θ1, θ1).

Now we will look for the kite central configuration (θ1, π −θ1, π −θ1, θ1). θ1 agrees with
(14). By the symmetry we can consider θ1 ∈ (0, π/2). If θ1 �= π/6 then (14) is equivalent to

a = − f (π + θ1) − f (θ1)

f (2θ1)
. (19)

If θ1 < π/6 the right-hand side of (19) is negative but the other side is positive. Also
observe that θ1 = π/6 does not agree with (14). So we have no solution in (0, π/6]. Further-
more the right-hand side of (19) satisfies

lim
θ1→π/6+

− f (π + θ1) − f (θ1)

f (2θ1)
= +∞

and

lim
θ1→π/2−

− f (π + θ1) − f (θ1)

f (2θ1)
= lim

θ1→π/2−
− f ′(π + θ1) − f ′(θ1)

2 f ′(2θ1)

= − f ′(π + π/2) − f ′(π/2)

2 f ′(π)
= 3

√
2

7
.

Consider then the surjective function h : (π/6, π/2) → ( 3
√

2
7 ,+∞) given by

h(x) = − f (π + x) − f (x)

f (2x)
.

We claim that h is one-to-one too. In fact it is a decreasing function. To see that we
differentiate h and obtain

( f (2x))2h′(x) = 2 f ′(2x)( f (x) + f (π + x)) − f (2x)( f ′(x) + f ′(π + x)).
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The derivative of the right-hand side of the above equation is given by

4 f ′′(2x)( f (x) + f (π + x)) − f (2x)( f ′′(x) + f ′′(π + x))=4 f ′′(2x)( f (x)− f (π − x))

− f (2x)( f ′′(x) − f ′′(π − x)).

The equality follows from Lemma 1. We claim that the above expression is positive. In
fact, x < π/2, hence π − x > x . It follows that f ′′(π − x) > f ′′(x) because f ′′′(x) > 0.
By Corollary 1 we have f (π − x) > f (x). Moreover f ′′(2x) < 0 and f (2x) > 0 as
x ∈ (π/6, π/2). So the statement is true. This shows that the expression for ( f (2x))2h′(x)

takes its maximum value in limit case x → π/2. But

lim
x→π/2

( f (2x))2h′(x) = lim
x→π/2

(2 f ′(2x)( f (x) + f (π + x))

− f (2x)( f ′(x) + f ′(π + x))) = 0.

Therefore ( f (2x))2h′(x) < 0 if x ∈ (π/6, π/2) and thus h is decreasing in the same
interval. The theorem follows. �	
Remark 2 In Theorems 1, 2 and 4 if we suppose that all satellites have the same mass we
obtain Proposition 11 and 12 in Cors et al. (2004).

4 Conclusions

We studied the relative equilibria of the planar 1 + 4 body problem in the case where two
satellites are diametrically opposite in the circle centered in the massive body. So these
satellites and the big mass are collinear. We show that all central configurations are symmetric
kites and a square and the other two satellites have the same mass. Moreover we prove that
there are one, two or three such configurations and only in the case where the collinear
satellites have different masses it is possible to have three central configurations. If the
collinear satellites have equal masses μ1 and the other satellites have masses μ2 we gave
all relative equilibria and we calculated the value of the ratio μ2/μ1 which provides the
bifurcation from one to two central configurations.

The collinear configuration with two satellites diametrically opposite is a central config-
uration of the planar 1 + 2 body problem. So our approach is a study of stacked central
configurations too. In this way our results show that adding two new satellites to a collinear
1 + 2 configuration we get a new central configuration if and only if the two new satellites
have the same masses, they are put symmetrically and the smaller angle between them and
the line of the collinear satellites varies from π/6 to π/2.
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