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Abstract. This paper deals with Gevrey global solvability on the N -dimen-
sional torus (TN � R

N/2πZN ) to a class of nonlinear first order partial
differential equations in the form Lu−au− bu = f , where a, b, and f are
Gevrey functions on T

N and L is a complex vector field defined on T
N .

Diophantine properties of the coefficients of L appear in a natural way in
our results. Also, we present results in C∞ context.
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1. Introduction

For n ≥ 1, let T
n+1 � R

n+1/2πZ
n+1 be the (n + 1)-dimensional torus, where

the coordinates are denoted by (x, t) ∈ T
n × T

1, with x = (x1, . . . , xn) ∈ T
n.

Let s ≥ 1 be a real number. Recall that a complex-valued function f is
an s-Gevrey function on T

n+1, if f is C∞ and there exist positive constants
C and R such that, for all α ∈ Z

n+1
+ and all (x, t) ∈ T

n+1, one has

|∂αf(x, t)| ≤ CR|α|α!s.

In this paper we will make use of the well-known characterizations of
Gevrey functions via Fourier series. A complex-valued function f(x, t) is an
s-Gevrey function on T

n+1 if f is C∞ and there exist positive constants C and
ε such that

|f̂(J, k)| ≤ Ce−ε(‖J‖+|k|)1/s

, ∀ (J, k) ∈ Z
n × Z,
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where f̂(J, k) denotes the (J, k)-coefficient of the Fourier series of f(x, t). Also,
f(x, t) is an s-Gevrey function on T

n+1 if f is C∞ and there exist positive
constants C, h and ε such that

|∂m
t f̂(J, t)| ≤ Chmm!se−ε‖J‖1/s

, ∀ m ∈ Z+, ∀ J ∈ Z
n,

where f̂(J, t) denotes the J-th coefficient of the partial Fourier series of f(x, t)
in the x-variable.

Denote Gs(Tn+1) the space of s-Gevrey functions on T
n+1. Note that

G1(Tn+1) is the space of real-analytic functions on T
n+1. For more about

Gevrey functions see [20].
For fixed s ≥ 1, we are interested in the existence of solutions in Gs(Tn+1)

to a class of first-order partial differential equations given by Pu = f, where
f ∈ Gs(Tn+1) and P : Gs(Tn+1) → Gs(Tn+1) has the form

Pu =
∂u

∂t
+

n∑

j=1

Cj
∂u

∂xj
+ Au + Bū, (1)

with A,B,Cj ∈ Gs(Tn+1).
Motivated by [4], we say that P is s−solvable on T

n+1 if for every f
in a subspace of Gs(Tn+1) of finite codimension there exists u ∈ Gs(Tn+1)
such that Pu = f in T

n+1. Also, we say that P is s−globally hypoelliptic if
u ∈ D ′(Tn+1) and Pu ∈ Gs(Tn+1) imply that u ∈ Gs(Tn+1).

This paper is a follow-up to the paper [4], where the C∞ solvability was
studied in the two dimensional torus T

1 × T
1.

In the case where P is linear, that is, in the case where B = 0, the s-
solvability problem on T

n+1 is treated in [8]. On the other hand, in the case
where B �= 0, the operator P is not anymore C-linear; the C∞ solvability on
T

2 was treated in [4]. For related papers see [2,3,6,7,9,11,12,14,16,18].
Our results are linked to Diophantine properties of the coefficients of P .
This work is organized as follows. In Sect. 2, we present a complete char-

acterization of the s-solvability and s-hypoellipticity in the case where P has
constant coefficients. In Sect. 3, we deal with the s-solvability for the class of
operators with coefficients depending on t given by

Pu =
∂u

∂t
−

n∑

j=1

(pj(t) + iλjq(t))
∂u

∂xj
− (r(t) + iδq(t))u − αq(t)ū,

where pj , q, r ∈ Gs(T1; R), q �≡ 0, δ ∈ R, α ∈ C\{0}, and λj ∈ R, j = 1, · · · , n.
Also, we present results in C∞ context.

2. Operators with Constant Coefficients

In this section we will consider operators P given in the form (1) in the
case where P has constant coefficients. More precisely, let s ≥ 1 and let
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P : Gs(Tn+1) → Gs(Tn+1) be given by

Pu =
∂u

∂t
+

n∑

j=1

Cj
∂u

∂xj
− Au − Bū, (2)

where A,B,Cj ∈ C, j = 1, · · · , n. We denote C = (C1, · · · , Cn) ∈ C
n.

For f ∈ Gs(Tn+1) we are interested in finding u ∈ Gs(Tn+1) solution to
Pu = f in T

n+1. By using Fourier series we can write

u(x, t) =
∑

(J,k)∈Zn+1

uJ,ke(J·x+kt)i and f(x, t) =
∑

(J,k)∈Zn+1

fJ,ke(J·x+kt)i.

The equation Pu = f leads us to the system
⎧
⎪⎨

⎪⎩

[i(k + C · J) − A]uJ,k − Bu−J,−k = fJ,k

−BuJ,k + [i(k + C · J) − A]u−J,−k = f−J,−k

(3)

and, consequently,

ΔJ,kuJ,k = [i(k + C · J) − A]fJ,k + Bf−J,−k , (4)

where

ΔJ,k = [i(k + C · J) − A][i(k + C · J) − A] − BB
= −|k + C · J |2 + |A|2 − |B|2 − 2iRe(A(k + C · J)).

(5)

Hence, in order to find a solution u ∈ Gs(Tn+1) to the equation Pu = f in
T

n+1 we have to find a sequence (uJ,k) satisfying (4) and, moreover, such that
the series u(x, t) =

∑
(J,k)∈Zn+1

uJ,ke(J·x+kt)i converges in the Gs topology in

T
n+1.

Theorem 1. Let P be given by (2). Then, P is s-solvable on T
n+1 if and only

if for every ε > 0 there is Cε > 0 such that

|ΔJ,k| ≥ Cεe
−ε(‖J‖+|k|)1/s

, for all (J, k) ∈ Z
n × Z with ‖J‖ + |k| ≥ Cε, (6)

where ΔJ,k is given by (5).

Proof. First, assume that (6) holds. Hence,

Ω = {(J, k) ∈ Z
n × Z : ΔJ,k = 0},

is a finite set.
Define F = {f ∈ Gs(Tn+1) : fJ,k = 0 for (J, k) ∈ Ω}. Then, F is a

finite codimension subspace of Gs(Tn+1). Let f ∈ F and let Cε > 0 and ε > 0
be such that

|f̂(J, k)| ≤ Cεe
−ε(‖J‖+|k|)1/s

, ∀ (J, k) ∈ Z
n × Z.
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By using (6) for ε/2 we obtain that the sequence (uJ,k) given by (4) satisfies

|uJ,k| ≤ CεC
−1
ε/2(|i(k + C · J) − A| + |B|)e− ε

2 (‖J‖+|k|)1/s

≤ C̃e− ε
4 (‖J‖+|k|)1/s

,

for some C̃ > 0 and ‖J‖ + |k| large enough. Hence, P is s-solvable on T
n+1 in

this case.
Conversely, assume that (6) fails. Then, we can find ε0 > 0, Cε0 > 0, and

a sequence (J�, k�) ∈ Z
n × Z, satisfying

|ΔJ�,k�
| < Cε0 e−ε0(‖J�‖+|k�|)1/s

, with ‖J�‖ + |k�| ≥ �.

Assume that ΔJ�k�
= 0 for infinitely many values of � ∈ Z+. By passing

to a subsequence if necessary, we may assume that ΔJ�k�
= 0 for every � ∈ Z+.

Hence, if the equation Pu = f has a solution u on T
n+1 then, by (3 and

4), the Fourier coefficients of f must satisfy, for each � ∈ Z+,
(i) either fJ�,k�

= 0 or f−J�,−k�
= 0, if B = 0;

(ii) [i(k� + C · J�) − A]fJ�,k�
+ Bf−J�,−k�

= 0, if B �= 0.
This implies that f has to satisfy infinitely many compatibility conditions.
Therefore, the image PGs(Tn+1) has infinite codimension and P is not s-
solvable on T

n+1.
We stressed that (i) and (ii) are compatibility conditions in two different

situations; that is, (i) are compatibility conditions in the linear case, while (ii)
are compatibility conditions in the non C-linear case.

Finally, assume that ΔJ�,k�
= 0 only for a finite number of values of

� ∈ Z+. Hence, by passing to a subsequence, we may assume

0 < |ΔJ�,k�
| < Cε0 e−ε0(‖J�‖+|k�|)1/s

, � ∈ Z+ (7)

and, also, that for some m all jm�’s are nonzero and have the same sign, where
jm� is the m-th coordinate of J�.

Let Ω = {(J�, k�); � ∈ Z+} and note that Ω is an infinite set.
Assume that B �= 0. Let Ω0 be an infinite subset of Ω and define

f(x, t) =
∑

(J,k)∈Ω0

ΔJ,kei(J·x+kt).

It follows from (7) that f ∈ Gs(Tn+1). Note that f−J,−k = 0 for (J, k) ∈ Ω0,
because according our assumption each jm� (the m-th coordinate of J�) must
have the same sign. Let u be a solution to the equation Pu = f . Simple
calculations show us that we can write u = w + v, where

v(x, t) =
∑

(J,k)∈Ω0

Be−i(J·x+kt) +
∑

(J,k)∈Ω0

[
i(k + C · J) − A

]
ei(J·x+kt) (8)

and the Fourier series of w contains only frequencies (J, k) �∈ Ω0 ∪ (−Ω0).
Hence, v ∈ D ′(Tn+1)\Gs(Tn+1) and, consequently, u ∈ D ′(Tn+1)\Gs(Tn+1).
As before, PGs(Tn+1) has infinite codimension in Gs(Tn+1).
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Now, assume that B = 0. Then, either

|i(k� + C · J�) − A| < C
1
2
ε0 e− ε0

2 (‖J�‖+|k�|)1/s

(9)

or

| − i(k� + C · J�) − A| < C
1
2
ε0 e− ε0

2 (‖J�‖+|k�|)1/s

(10)

for infinitely many values of � ∈ Z+. By passing to a subsequence, we may
assume that either (9) or (10) holds for every � ∈ Z+. We will assume that
(9) holds for every � ∈ Z+ (the case (10) is analogous). Let Ω0 be an infinite
subset of Ω and define f ∈ Gs(Tn+1) by

f =
∑

(J,k)∈Ω0

[i(k + C · J) − A]ei(J·x+kt),

Let u be a solution to the equation Pu = f . As before, we can write u = w+v,
where

v(x, t) =
∑

(J,k)∈Ω0

ei(J·x+kt) ∈ D ′(Tn+1)\Gs(Tn+1) (11)

and the Fourier series of w contains only frequencies (J, k) �∈ Ω0 ∪ (−Ω0);
hence, u ∈ D ′(Tn+1) \ Gs(Tn+1). Therefore, P is not s-solvable on T

n+1. �

In the C∞ context, we say that P (given by (2) and viewed as an op-
erator acting in C∞(T2)) is solvable on T

n+1 if for every f in a subspace of
C∞(Tn+1) of finite codimension there exists u ∈ C∞(Tn+1) such that Pu = f
in T

n+1. Also, we say that P is globally hypoelliptic if u ∈ D ′(Tn+1) and
Pu ∈ C∞(Tn+1) imply that u ∈ C∞(Tn+1).

Similiar arguments used in the proof of Theorem 1 can be used to obtain
the following C∞ version:

Theorem 2. Let P be given by (2). Then, P is solvable on T
n+1 if and only if

there is a constant γ > 0 such that

|ΔJ,k| ≥ 1
(‖J‖ + |k|)γ

, for all (J, k) ∈ Z
n × Z and ‖J‖ + |k| ≥ γ, (12)

where ΔJ,k is given by (4).

Remark 1. Comparing Theorem 2 with Theorem 1 of [4], now Im(C) �= 0 is not

enough to guarantee that L =
∂u

∂t
+

∑n

j=1
Cj

∂u

∂xj
is elliptic and, consequently,

that ΔJ,k satisfies (12). For instance, taking C = (i, 0, · · · , 0) and A = B = 1
we have Im(C) �= 0 and ΔJ,0 = 0 for all J = (0, j2, · · · , jn).

The next result shows that if |B| > |A| then the non C-linearity of P is
strong enough to guarantee the solvability.

Corollary 1. Let P be given by (2). If |B| > |A| then P is solvable and s-
solvable on T

n+1.
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Proof. We have

|ΔJ,k| ≥ |Re(ΔJ,k)| = | − |k + C · J |2 + |A|2 − |B|2| ≥ |B|2 − |A|2 > 0,

for all (J, k) ∈ Z
n × Z. �

Corollary 2. Let s ≥ 1 and let P : Gs(T2) → Gs(T2) be given by

Pu =
∂u

∂t
+ C

∂u

∂x
− Au − Bū,

where A,B,C ∈ C. If ImC �= 0 then P is s-solvable on T
2.

Proof. The vector field L = ∂/∂t + C ∂/∂x is elliptic, since ImC �= 0. Hence,
as showed in [4], |Δj,k| satisfies (12) and, therefore, (6). �

Corollary 3. Let P be given by (2). If P is solvable on T
n+1 then P is s-solvable

on T
n+1.

In general the reciprocal of Corollary 3 is not true, as we can see in the
example 1 below.

Conditions (6 and 12) are linked to the notion of (exponential) Liouville
numbers.

Let α be an irrational number. We say that α is a Liouville number if for
every N ∈ Z+ there is K > 0 such that the inequality

∣∣∣∣α − p

q

∣∣∣∣ < Kq−N (13)

has infinitely many solutions p/q ∈ Q, with p ∈ Z and q ∈ Z+. Also, we say
that α is an exponential Liouville number of order s ≥ 1 if there exists ε > 0
such that the inequality

∣∣∣∣α − p

q

∣∣∣∣ < e−εq1/s

(14)

has infinitely many solutions p/q ∈ Q, with p ∈ Z and q ∈ Z+.
Recall that an irrational number α has an unique continued fraction

expansion

α = [a0 : a1, a2, a3, · · · ] = a0 +
1

a1 +
1

a2 +
1

a3 +
1
. . .

where a0 ∈ Z and an ∈ Z+ for n ≥ 1.

Example 1. Let s ≥ 1 and let P : Gs(T2) → Gs(T2) be given by

Pu =
∂u

∂t
+ α

∂u

∂x
− iu − ū,
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where α = [1 : 10, 102!, · · · , 10n!, · · · ].
The irrational α is a Liouville number (see [15]), but it is not an expo-

nential Liouville number of order s, for any s ≥ 1 (see [1] and [13]).
We claim that P is not solvable on T

2 (viewed as an operator acting in
C∞(T2)), but P is s-solvable. Indeed, we have that

|Δj,k| = |k − αj|2.
Since α is a Liouville number, for every γ > 0 there is a sequence (p�, q�) ∈
Z

2, with q� → ∞, such that |q�α − p�| < q−γ
� , for all � ≥ 1; equivalently,

for every γ > 0 there is a sequence (p�, q�) ∈ Z
2, with q� → ∞, such that

|q�α − p�| < (|p�| + q�)−γ , for all � ≥ 1. Hence, (12) is not satisfied and,
consequently, P is not solvable on T

2. On the other hand, since α is not an
exponential Liouville number of order s, for every ε > 0 there is Cε > 0 such
that |jα − k| ≥ Cεe

−ε(|k|+|j|)1/s

, for all (j, k) ∈ (Z × Z) \ {(0, 0)}. Hence, (6) is
satisfied and, consequently, P is s-solvable on T

2. �

The arguments used in the proof of Theorem 1 can be used to prove the
following.

Theorem 3. Let P be given by (2). Then, P is s-globally hypoelliptic if and
only if (6) is satisfied. Also, P is globally hypoelliptic if and only if (12) is
satisfied.

It follows from Theorems 1, 2, and 3 that

Corollary 4. Let P be given by (2). Then, P is s-solvable on T
n+1 if and only

if P is s-globally hypoelliptic. Also, P is solvable on T
n+1 if and only if P is

globally hypoelliptic.

Now, let us return to our problem in a special situation: the case where

L =
∂u

∂t
+

n∑

j=1

Cj
∂u

∂xj

is a real vector field; that is, Cj ∈ R, for j = 1, · · · , n.
Natural Diophantine conditions (DC)s and (DC) appear. For fixed s ≥ 1,

we say that (ξ, η) ∈ R
n × R satisfies (DC)s if for every ε > 0 there is Cε > 0

such that
(DC)s |k + ξ · J − η| ≥ Cεe

−ε(‖J‖+|k|)1/s

,
for all (J, k) ∈ Z

n × Z, with ‖J‖ + |k| ≥ Cε. Also, we say that (ξ, η) ∈ R
n × R

satisfies (DC) if there is a constant γ > 0 such that

(DC) |k + ξ · J − η| ≥ 1
(‖J‖ + |k|)γ

for all (J, k) ∈ Z
n × Z and ‖J‖ + |k| ≥ γ.

In the situation where Im(C) = 0, Theorems 1 and 3 can be rewritten as
follows:
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Theorem 4. Let s ≥ 1 and let P be given by (2). Assume that Im(C) = 0.
Then, P is s-solvable on T

n+1 if and only if one of the following conditions is
satisfied:

(i) |B| > |A|;
(ii) |B| < |A|, and Re(A) �= 0;
(iii) the vector (C,

√|A|2 − |B|2) is in R
n+1, and satisfies (DC)s.

Also, we have:

Theorem 5. Let s ≥ 1 and let P be given by (2). Assume that Im(C) = 0.
Then, P is not s-globally hypoelliptic if and only if the following condition is
satisfied:

(iv) |B| ≤ |A|, the vector (C,
√|A|2 − |B|2) does not satisfy (DC)s and, more-

over, one has Re(A) = 0 when |B| < |A|.
The proof of Theorems 4 and 5 can be obtained by applying the similar

arguments that in the proof of Theorems 1 and 2 of [4] and it will be omitted
here.

Also, we could state C∞ versions of the Theorems 4 and 5 replacing
(DC)s by (DC).

3. A Class of Operators with Variable Coefficients

In this section we will consider a class of operators P : Gs(Tn+1) → Gs(Tn+1)
with variable coefficients.

Let s ≥ 1 and let

L =
∂

∂t
−

n∑

j=1

(pj(t) + iλjqj(t))
∂

∂xj
, (15)

be a complex vector field defined on T
n
x × T

1
t , where q, pj ∈ Gs(T1

t ; R), j =
1, · · · , n, qj �≡ 0 for some j, and (λ1, · · · , λn) ∈ R

n.
We will assume that L satisfies the Nirenberg-Treves condition (P);

hence, L is locally solvable (see, for instance, [5] or [19]; also, [10]).
Our assumption implies that L has the form

L =
∂

∂t
−

n∑

j=1

(pj(t) + iλjq(t))
∂

∂xj
, q �≡ 0, (16)

where q ∈ Gs(T1) does not change sign on T
1 (see [9]; also, [6])). There is no

loss of generality in assuming that q(t) ≥ 0 for all t ∈ T
1.

Let

p0j =
1
2π

∫ 2π

0

pj(t)dt , mj(t) =
∫ t

0

(pj(τ) − p0j)dτ ,
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and

m(t) = (m1(t), · · · ,mn(t)).

By using partial Fourier series in the variables (x1, . . . , xn) we define the op-
erator T : Gs(Tn+1) → Gs(Tn+1) given by

Tu(x, t) =
∑

J∈Zn

T̂ u(J, t)eix·J , (17)

with

T̂ u(J, t) = û(J, t) ei
∫ t
0 m(τ)·Jdτ , for all J ∈ Z

n.

As showed in [8], T is well-defined and

TLT−1 =
∂

∂t
−

n∑

j=1

(p0j + iλjq(t))
∂

∂xj
,

where T−1, the inverse of T , is given by

T̂−1v(J, t) = v̂(J, t) e−i
∫ t
0 m(τ)·Jdτ , for all J ∈ Z

n.

From now on we will assume that our operator L has the form

L =
∂

∂t
−

n∑

j=1

(p0j + iλjq(t))
∂

∂xj
. (18)

3.1. Complex Case

Assume that (λ1, · · · , λn) ∈ R
n\{0}.

Let

P : Gs(Tn+1) → Gs(Tn+1)

be the operator defined by

Pu = Lu − (r(t) + iδq(t))u − αq(t)ū, (19)

where L is given by (18), r ∈ Gs(T1; R), δ ∈ R and α ∈ C \ {0}.
Let

p0 = (p01, · · · , p0n) and λ = (λ1, · · · , λn),

where p0j and λj are given in (18). Define

Q(t) =

∫ t

0

q(σ)dσ , R(t) =

∫ t

0

r(σ)dσ , q0 =

∫ 2π

0

q(σ)dσ , and r0 =

∫ 2π

0

r(σ)dσ .

We have q0 > 0, since 0 ≤ q �≡ 0.
Let

A0 = r0 + iδq0, B0 = αq0, and C0 = 2πp0 + iq0λ.

Note that C0 = (2πp01+iλ1q0, · · · , 2πp0n+iλnq0) ∈ C
n. Also, for each J ∈ Z

n

let

ρJ =
√

(λ · J − iδ)2 + |α|2,
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where we choose ρJ to have Re(ρJ ) ≥ 0.
Now, we are ready to present the main result of this section.

Theorem 6. Let P be given by (19). Assume that the coefficients of P satisfy:
(I) |α| �= |δ|;
(II) there is no (J, k) ∈ Z

n × Z satisfying
{
Re(A0(2kπ + J · C0)) = 0

|2kπ + J · C0|2 = |A0|2 − |B0|2 ; and

(III) for every ε > 0 there is Cε > 0 such that

min
{∣∣e−ρJq0 − er0+2πiJ·p0

∣∣ ,
∣∣1 − er0−ρJq0+2πiJ·p0

∣∣} ≥ Cεe
−ε‖J‖1/s

for all (J, k) ∈ Z
n × Z, with ‖J‖ ≥ Cε.

Then, for every f ∈ Gs(Tn+1), there is u ∈ Gs(Tn+1) solution to the equation
Pu = f in T

n+1.

Proof. The proof of this Theorem, which amounts to an adaptation of the
proof of Theorem 7 of [4], will be sketched here.

Given f ∈ Gs(Tn+1) it will be found u ∈ Gs(Tn+1) solution to Pu = f
in T

n+1. By using partial Fourier series in the variables (x1, · · · , xn) we have

u(x, t) =
∑

J∈Zn

uJ(t)eiJ·x and

f(x, t) =
∑

J∈Zn

fJ(t)eiJ·x.

Hence, for each J ∈ Z
n the equation Pu = f leads to

{
u′

J − [i(p0 + iλq(t)) · J + r(t) + iδq(t)]uJ − αq(t)u−J = fJ

u−J
′ − [i(p0 − iλq(t)) · J + r(t) − iδq(t)]u−J − αq(t)uJ = f−J

(20)

For each J ∈ Z
n, let

wJ =
(

uJ

u−J

)
and FJ =

(
fJ

f−J

)
.

We can rewrite (20) as

w′
J = MJwJ + FJ , (21)

where

MJ =
(

i(p0 + iλq(t)) · J + r(t) + iδq(t) αq(t)
αq(t) i(p0 − iλq(t)) · J + r(t) − iδq(t)

)
.

In order for the function wJ to be a 2π-periodic solution of (21), the function

yJ = e−iJ·p0t−R (t)wJ (22)

has to satisfy

y′
J = q(t)NJyJ + e−iJ·p0t−R (t)

FJ , (23)
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and, also,

yJ(0) = e2πiJ·p0+r0yJ(2π) ,

where

NJ =
(−λ · J + iδ α

α λ · J − iδ

)
.

The eigenvalues ρJ and σJ of NJ are given by

ρJ =
√

(λ · J − iδ)2 + |α|2) and σJ = −ρJ ;

recall that Re(ρJ ) ≥ 0. It follows from (I) that ρJ �= 0 and, consequently, NJ

is invertible. It is easy to see that the eigenvectors of NJ corresponding to ±ρJ

are

V ±
J =

(
α

(λ · J − iδ) ± ρJ

)
.

For each J ∈ Z
n, let TJ = (V +

J V −
J ). Then

T−1
J NJTJ = ρJ

(
1 0
0 −1

)
,

and (23) becomes

y′
J = q(t)ρJTJ

(
1 0
0 −1

)
T−1

J yJ + e−iJ·p0t−R (t)TJT−1
J FJ . (24)

For each J ∈ Z
n, let zJ = T−1

J yJ . The differential equation (24) leads us
to

z′
J = ρJq(t)

(
1 0
0 −1

)
zJ + e−iJ·p0t−R (t)T−1

J FJ (25)

restricted to zJ(0) = e2πiJ·p0+r0zJ(2π).
For J ∈ Z

n, let

ZJ (t) =
(

eρJ Q̃(t) 0
0 e−ρJQ(t)

)
,

where Q̃(t) = −
∫ 2π

t

q(σ)dσ.

We will seek for solutions of (25) in the form zJ(t) = ZJ(t)CJ (t). Let

GJ (t) =
(

G1J(t)
G2J(t)

)
= T−1

J FJ (t).

The equation (25) leads us to

ZJ (t)C ′
J (t) = e−iJ·p0t−R (t)GJ (t).
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Hence,

CJ(t) =

⎛

⎜⎜⎝
−

∫ 2π

t

e−ρJ Q̃(σ)e−iJ·p0σ−R (σ)G1J (σ)dσ
∫ t

0

eρJQ(σ)e−iJ·p0σ−R (σ)G2J (σ)dσ

⎞

⎟⎟⎠ + KJ ,

for some KJ ∈ R
2; consequently,

zJ(t) =

⎛

⎜⎜⎝
−

∫ 2π

t

eρJ (Q̃(t)−Q̃(σ))e−iJ·p0σ−R (σ)G1J (σ)dσ
∫ t

0

eρJ (Q(σ)−Q(t))e−iJ·p0σ−R (σ)G2J (σ)dσ

⎞

⎟⎟⎠ + ZJ (t)KJ .

Since zJ has to satisfy zJ(0) = eiJ·p02π+r0zJ(2π), we should have

ZJ (0)KJ +

⎛

⎝−
∫ 2π

0

eρJ (Q̃(0)−Q̃(σ))e−iJ·p0σ−R (σ)G1J (σ)dσ

0

⎞

⎠

= eiJ·p02π+r0

⎛

⎝
0∫ 2π

0

eρJ (Q(σ)−Q(2π))e−iJ·p0σ−R (σ)G2J (σ)dσ

⎞

⎠

+e2πiJ·p0+r0ZJ (2π)KJ .

Hence, we have
(
ZJ(0) − e2πiJ·p0+r0ZJ (2π)

)
KJ

=

⎛

⎜⎜⎝

∫ 2π

0

eρJ (Q̃(0)−Q̃(σ))e−iJ·p0σ−R (σ) G1J (σ)dσ
∫ 2π

0

eρJ (Q(σ)−Q(2π))e−iJ·p0(σ−2π)−(R (σ)−r0) G2J (σ)dσ

⎞

⎟⎟⎠ . (26)

Simple calculations show that condition (II) implies that the matrix

ZJ(0) − e2πiJ·p0+r0ZJ (2π) =
(

e−ρJq0 − er0+2πiJ·p0 0
0 1 − e−ρJq0+r0+2πiJ·p0

)

is invertible. Then,

KJ =

⎛

⎜⎜⎝

∫ 2π

0

eρJ (Q̃(0)−Q̃(σ))e−iJ·p0σ−R (σ)

e−ρJq0 − e2πiJ·p0+r0
G1J (σ)dσ

∫ 2π

0

eρJ (Q(σ)−Q(2π))e−iJ·p0(σ−2π)−(R (σ)−r0)

1 − e2πiJ·p0+r0−ρJq0
G2J (σ)dσ

⎞

⎟⎟⎠
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and, therefore,

zJ(t) =

⎛

⎜⎜⎝
−

∫ 2π

t

eρJ (Q̃(t)−Q̃(σ))e−iJ·p0σ−R (σ) G1J (σ)dσ
∫ t

0

eρJ (Q(σ)−Q(t))e−iJ·p0σ−R (σ) G2J (σ)dσ

⎞

⎟⎟⎠

+

⎛

⎜⎜⎝
eρJ Q̃(t)

∫ 2π

0

eρJ (Q̃(0)−Q̃(σ))e−iJ·p0σ−R (σ)

e−ρJq0 − e2πiJ·p0+r0
G1J (σ)dσ

e−ρJQ(t)

∫ 2π

0

eρJ (Q(σ)−Q(2π))e−iJp0σ−R (σ)

1 − e2πiJ·p0+r0−ρJq0
G2J (σ)dσ

⎞

⎟⎟⎠ .

Finally, since wJ = eiJ·p0t+R (t)yJ and yJ = TJzJ we have

uJ(t) = αeiJ·p0t+R (t)(z1J (t) + z2J (t)) ,

where z1J and z2J are the components of zJ .
It follows at once from (III) that z1J and z2J decay rapidly. Analogous

estimates can be obtained for the derivatives z
(m)
1J and z

(m)
2J , m ∈ N. Hence,

(uJ) is of rapid decay as ‖J‖ → ∞.
Therefore, the sequence (uJ) defines a Gs function u(x, t) =

∑

J∈Zn

uJ(t)eiJ·x

solution to Pu = f in T
n+1. �

Similar arguments can be used to prove the following version, where the
coefficients of P can be taken only in C∞(Tn+1) instead Gs(Tn+1):

Theorem 7. Let P be given by (19). Assume that the coefficients of P satisfy:

(I) |α| �= |δ|;
(II) there is no (J, k) ∈ Z

n × Z satisfying
{
Re(A0(2kπ + J · C0)) = 0

|2kπ + J · C0|2 = |A0|2 − |B0|2 ; and

(III) there is γ > 0 such that

min
{∣∣e−ρJq0 − er0+2πiJ·p0

∣∣ ,
∣∣1 − er0−ρJq0+2πiJ·p0

∣∣} ≥ 1
|J |γ

for all (J, k) ∈ Z
n × Z, with |J | ≥ γ.

Then, for every f ∈ C∞(Tn+1), there is u ∈ C∞(Tn+1) solution to the equa-
tion Pu = f in T

n+1.

Comparing Theorem 7 with Theorem 7 of [4], note that conditions (I)
and (II) do not imply (III) when we are working on T

n+1, with n ≥ 2. For
instance:
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Example 2. Consider P : C∞(T3) → C∞(T3) defined by

Pu =
∂u

∂t
− i cos2(t)

2∑

j=1

∂

∂xj
− i

√
2 cos2(t)u − cos2(t)ū.

By using the notation of Theorem 7 we have: α = 1, δ =
√

2, A0 =
−i

√
2π, B0 = π, C0 = i(π, π), λ = (1, 1), r0 = 0, p0 = (0, 0), and q0 = π.
Note that |α| = 1 <

√
2 = |δ|; hence, (I) is satisfied.

Also, for J = (j1, j2), we have:

Re(A0(2kπ + J · C0)) = Re(−i
√

2π(2kπ − i(j1, j2) · (π, π)) = −
√

2π2(j1 + j2);

hence,

Re(A0(2kπ + J · C0)) = 0 ⇒ j2 = −j1.

On the other hand, for J = (j,−j) we have

|2kπ + J · C0|2 = |2kπ + i(j,−j) · (π, π)|2 = (2k)2π2 �= π2 = |A0|2 − |B0|2,
for all k ∈ Z. Hence, (II) is satisfied.

Finally, for J = (j,−j) we have ρJ = i; hence,

1 − er0−ρJq0+2πiJ·p0 = 1 − e−iπ = 0

and, therefore, (III) is not satisfied.

3.2. Real Case

Assume λ = 0 in (18). In this case L is a real vector field in the form

L =
∂

∂t
−

n∑

j=1

p0j
∂

∂xj
, (27)

where p0j ∈ R, for all j = 1, · · · , n.
We define the operator

P : Gs(Tn+1) → Gs(Tn+1)

given by

Pu = Lu − (r(t) + iδq(t))u − αq(t)ū, q �≡ 0, (28)

where L is given by (27), q, r ∈ Gs(T1; R), q(t) ≥ 0 for all t ∈ T
1, δ ∈ R and

α ∈ C \ {0}.

Theorem 8. Let P be given by (28). Using the same notation of theorem 7,
assume that one of the following conditions is satisfied:
(i) |B0| > |A0|;
(ii) |B0| < |A0|, |α| > |δ| and

(�) � ∃ (J, k) ∈ Z
n × Z solution for

{
Re(A0(k + J · p0)) = 0

4π2|k + J · p0|2 = |A0|2 − |B0|2 ;

(iii) |α| < |δ| and r0 �= 0;
(iv) |α| < |δ|, r0 = 0, (�)
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holds and, also, the following Diophantine condition holds:
(DC)′

s for every ε > 0 there is Cε > 0 such that

|2kπ + 2πJ · p0 − q0

√
δ2 − |α|2| ≥ Cεe

−ε‖J‖1/s

for all (J, k) ∈ Z
n × Z, with ‖J‖ ≥ Cε.

Then, given f ∈ Gs(Tn+1) there is a solution u ∈ Gs(Tn+1) of the equa-
tion Pu = f in T

n+1.

We stressed that the Diophantine condition (DC)′
s is slightly stronger

than (DC)s given in Theorem 4.
The proof of Theorem 8 is obtained by proceeding as in the proof of

Theorem 7 and by using the following:

Lemma 1. The diophantine condition (DC)′
s is equivalent to

(DC)′′
s for every ε > 0 there is Cε > 0 such that

|ei(2πJ·p0−q0
√

δ2−|α|2) − 1| ≥ Cεe
−ε‖J‖1/s

for all (J, k) ∈ Z
n × Z, with ‖J‖ ≥ Cε.

The proof of Lemma 1 is a simple adaptation of that of Lemma 13 in [4]
and we will omit here.

As done for Theorem 6, it is possible state a C∞ version of Theorem 8.
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