Solvability of a Class of First Order Differential Operators on the Torus

Marcelo F. de Almeida and Paulo L. Dattori da Silva®

Abstract

This paper deals with Gevrey global solvability on the N-dimensional torus ($\mathbb{T}^{N} \simeq \mathbb{R}^{N} / 2 \pi \mathbb{Z}^{N}$) to a class of nonlinear first order partial differential equations in the form $L u-a u-b \bar{u}=f$, where a, b, and f are Gevrey functions on \mathbb{T}^{N} and L is a complex vector field defined on \mathbb{T}^{N}. Diophantine properties of the coefficients of L appear in a natural way in our results. Also, we present results in C^{∞} context.

Mathematics Subject Classification. Primary 35A01, Secondary 35F20.
Keywords. Gevrey functions, global solvability, global hypoellipticity, vekua type equations, periodic solutions, fourier series.

1. Introduction

For $n \geq 1$, let $\mathbb{T}^{n+1} \simeq \mathbb{R}^{n+1} / 2 \pi \mathbb{Z}^{n+1}$ be the $(n+1)$-dimensional torus, where the coordinates are denoted by $(x, t) \in \mathbb{T}^{n} \times \mathbb{T}^{1}$, with $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{T}^{n}$.

Let $s \geq 1$ be a real number. Recall that a complex-valued function f is an s-Gevrey function on \mathbb{T}^{n+1}, if f is C^{∞} and there exist positive constants C and R such that, for all $\alpha \in \mathbb{Z}_{+}^{n+1}$ and all $(x, t) \in \mathbb{T}^{n+1}$, one has

$$
\left|\partial^{\alpha} f(x, t)\right| \leq C R^{|\alpha|} \alpha!^{s} .
$$

In this paper we will make use of the well-known characterizations of Gevrey functions via Fourier series. A complex-valued function $f(x, t)$ is an s-Gevrey function on \mathbb{T}^{n+1} if f is C^{∞} and there exist positive constants C and ϵ such that

$$
|\hat{f}(J, k)| \leq C e^{-\epsilon(\|J\|+|k|)^{1 / s}}, \forall(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}
$$

where $\hat{f}(J, k)$ denotes the (J, k)-coefficient of the Fourier series of $f(x, t)$. Also, $f(x, t)$ is an s-Gevrey function on \mathbb{T}^{n+1} if f is C^{∞} and there exist positive constants C, h and ϵ such that

$$
\left|\partial_{t}^{m} \hat{f}(J, t)\right| \leq C h^{m} m!^{s} e^{-\epsilon\|J\|^{1 / s}}, \quad \forall m \in \mathbb{Z}_{+}, \quad \forall J \in \mathbb{Z}^{n}
$$

where $\hat{f}(J, t)$ denotes the J-th coefficient of the partial Fourier series of $f(x, t)$ in the x-variable.

Denote $G^{s}\left(\mathbb{T}^{n+1}\right)$ the space of s-Gevrey functions on \mathbb{T}^{n+1}. Note that $G^{1}\left(\mathbb{T}^{n+1}\right)$ is the space of real-analytic functions on \mathbb{T}^{n+1}. For more about Gevrey functions see [20].

For fixed $s \geq 1$, we are interested in the existence of solutions in $G^{s}\left(\mathbb{T}^{n+1}\right)$ to a class of first-order partial differential equations given by $P u=f$, where $f \in G^{s}\left(\mathbb{T}^{n+1}\right)$ and $P: G^{s}\left(\mathbb{T}^{n+1}\right) \rightarrow G^{s}\left(\mathbb{T}^{n+1}\right)$ has the form

$$
\begin{equation*}
P u=\frac{\partial u}{\partial t}+\sum_{j=1}^{n} C_{j} \frac{\partial u}{\partial x_{j}}+A u+B \bar{u}, \tag{1}
\end{equation*}
$$

with $A, B, C_{j} \in G^{s}\left(\mathbb{T}^{n+1}\right)$.
Motivated by [4], we say that P is s-solvable on \mathbb{T}^{n+1} if for every f in a subspace of $G^{s}\left(\mathbb{T}^{n+1}\right)$ of finite codimension there exists $u \in G^{s}\left(\mathbb{T}^{n+1}\right)$ such that $P u=f$ in \mathbb{T}^{n+1}. Also, we say that P is s-globally hypoelliptic if $u \in \mathscr{D}^{\prime}\left(\mathbb{T}^{n+1}\right)$ and $P u \in G^{s}\left(\mathbb{T}^{n+1}\right)$ imply that $u \in G^{s}\left(\mathbb{T}^{n+1}\right)$.

This paper is a follow-up to the paper [4], where the C^{∞} solvability was studied in the two dimensional torus $\mathbb{T}^{1} \times \mathbb{T}^{1}$.

In the case where P is linear, that is, in the case where $B=0$, the s solvability problem on \mathbb{T}^{n+1} is treated in [8]. On the other hand, in the case where $B \neq 0$, the operator P is not anymore \mathbb{C}-linear; the C^{∞} solvability on \mathbb{T}^{2} was treated in [4]. For related papers see $[2,3,6,7,9,11,12,14,16,18]$.

Our results are linked to Diophantine properties of the coefficients of P.
This work is organized as follows. In Sect. 2, we present a complete characterization of the s-solvability and s-hypoellipticity in the case where P has constant coefficients. In Sect. 3, we deal with the s-solvability for the class of operators with coefficients depending on t given by

$$
P u=\frac{\partial u}{\partial t}-\sum_{j=1}^{n}\left(p_{j}(t)+i \lambda_{j} q(t)\right) \frac{\partial u}{\partial x_{j}}-(r(t)+i \delta q(t)) u-\alpha q(t) \bar{u},
$$

where $p_{j}, q, r \in G^{s}\left(\mathbb{T}^{1} ; \mathbb{R}\right), q \not \equiv 0, \delta \in \mathbb{R}, \alpha \in \mathbb{C} \backslash\{0\}$, and $\lambda_{j} \in \mathbb{R}, j=1, \cdots, n$.
Also, we present results in C^{∞} context.

2. Operators with Constant Coefficients

In this section we will consider operators P given in the form (1) in the case where P has constant coefficients. More precisely, let $s \geq 1$ and let
$P: G^{s}\left(\mathbb{T}^{n+1}\right) \rightarrow G^{s}\left(\mathbb{T}^{n+1}\right)$ be given by

$$
\begin{equation*}
P u=\frac{\partial u}{\partial t}+\sum_{j=1}^{n} C_{j} \frac{\partial u}{\partial x_{j}}-A u-B \bar{u} \tag{2}
\end{equation*}
$$

where $A, B, C_{j} \in \mathbb{C}, j=1, \cdots, n$. We denote $C=\left(C_{1}, \cdots, C_{n}\right) \in \mathbb{C}^{n}$.
For $f \in G^{s}\left(\mathbb{T}^{n+1}\right)$ we are interested in finding $u \in G^{s}\left(\mathbb{T}^{n+1}\right)$ solution to $P u=f$ in \mathbb{T}^{n+1}. By using Fourier series we can write

$$
u(x, t)=\sum_{(J, k) \in \mathbb{Z}^{n+1}} u_{J, k} e^{(J \cdot x+k t) i} \quad \text { and } \quad f(x, t)=\sum_{(J, k) \in \mathbb{Z}^{n+1}} f_{J, k} e^{(J \cdot x+k t) i}
$$

The equation $P u=f$ leads us to the system

$$
\begin{cases}{[i(k+C \cdot J)-A] u_{J, k}-B \overline{u_{-J,-k}}} & =f_{J, k} \tag{3}\\ -\bar{B} u_{J, k}+[i(k+\bar{C} \cdot J)-\bar{A}] \overline{u_{-J,-k}} & =\overline{f_{-J,-k}}\end{cases}
$$

and, consequently,

$$
\begin{equation*}
\Delta_{J, k} u_{J, k}=[i(k+\bar{C} \cdot J)-\bar{A}] f_{J, k}+B \overline{f_{-J,-k}}, \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta_{J, k} & =[i(k+C \cdot J)-A][i(k+\bar{C} \cdot J)-\bar{A}]-B \bar{B} \\
& =-|k+C \cdot J|^{2}+|A|^{2}-|B|^{2}-2 i \operatorname{Re}(A(k+\bar{C} \cdot J)) . \tag{5}
\end{align*}
$$

Hence, in order to find a solution $u \in G^{s}\left(\mathbb{T}^{n+1}\right)$ to the equation $P u=f$ in \mathbb{T}^{n+1} we have to find a sequence ($u_{J, k}$) satisfying (4) and, moreover, such that the series $u(x, t)=\sum_{(J, k) \in \mathbb{Z}^{n+1}} u_{J, k} e^{(J \cdot x+k t) i}$ converges in the G^{s} topology in \mathbb{T}^{n+1} 。

Theorem 1. Let P be given by (2). Then, P is s-solvable on \mathbb{T}^{n+1} if and only if for every $\epsilon>0$ there is $C_{\epsilon}>0$ such that

$$
\left|\Delta_{J, k}\right| \geq C_{\epsilon} e^{-\epsilon(\|J\|+|k|)^{1 / s}}, \quad \text { for all }(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z} \text { with }\|J\|+|k| \geq C_{\epsilon},
$$

where $\Delta_{J, k}$ is given by (5).
Proof. First, assume that (6) holds. Hence,

$$
\Omega=\left\{(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}: \quad \Delta_{J, k}=0\right\},
$$

is a finite set.
Define $\mathscr{F}=\left\{f \in G^{s}\left(\mathbb{T}^{n+1}\right): f_{J, k}=0\right.$ for $\left.(J, k) \in \Omega\right\}$. Then, \mathscr{F} is a finite codimension subspace of $G^{s}\left(\mathbb{T}^{n+1}\right)$. Let $f \in \mathscr{F}$ and let $C_{\epsilon}>0$ and $\epsilon>0$ be such that

$$
|\hat{f}(J, k)| \leq C_{\epsilon} e^{-\epsilon(\|J\|+|k|)^{1 / s}}, \forall(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}
$$

By using (6) for $\epsilon / 2$ we obtain that the sequence ($u_{J, k}$) given by (4) satisfies

$$
\begin{aligned}
& \left|u_{J, k}\right| \leq C_{\epsilon} C_{\epsilon / 2}^{-1}(|i(k+\bar{C} \cdot J)-\bar{A}|+|B|) e^{-\frac{\epsilon}{2}(\|J\|+|k|)^{1 / s}} \\
& \leq \tilde{C} e^{-\frac{\epsilon}{4}(\|J\|+|k|)^{1 / s}}
\end{aligned}
$$

for some $\tilde{C}>0$ and $\|J\|+|k|$ large enough. Hence, P is s-solvable on \mathbb{T}^{n+1} in this case.

Conversely, assume that (6) fails. Then, we can find $\epsilon_{0}>0, C_{\epsilon_{0}}>0$, and a sequence $\left(J_{\ell}, k_{\ell}\right) \in \mathbb{Z}^{n} \times \mathbb{Z}$, satisfying

$$
\left|\Delta_{J_{\ell}, k_{\ell}}\right|<C_{\epsilon_{0}} e^{-\epsilon_{0}\left(\left\|J_{\ell}\right\|+\left|k_{\ell}\right|\right)^{1 / s}}, \quad \text { with }\left\|J_{\ell}\right\|+\left|k_{\ell}\right| \geq \ell
$$

Assume that $\Delta_{J_{\ell} k_{\ell}}=0$ for infinitely many values of $\ell \in \mathbb{Z}_{+}$. By passing to a subsequence if necessary, we may assume that $\Delta_{J_{\ell} k_{\ell}}=0$ for every $\ell \in \mathbb{Z}_{+}$.

Hence, if the equation $P u=f$ has a solution u on \mathbb{T}^{n+1} then, by (3 and 4), the Fourier coefficients of f must satisfy, for each $\ell \in \mathbb{Z}_{+}$,
(i) either $f_{J_{\ell}, k_{\ell}}=0$ or $f_{-J_{\ell},-k_{\ell}}=0$, if $B=0$;
(ii) $\left[i\left(k_{\ell}+C \cdot J_{\ell}\right)-\bar{A}\right] f_{J_{\ell}, k_{\ell}}+B \overline{f_{-J_{\ell},-k_{\ell}}}=0$, if $B \neq 0$.

This implies that f has to satisfy infinitely many compatibility conditions. Therefore, the image $P G^{s}\left(\mathbb{T}^{n+1}\right)$ has infinite codimension and P is not s solvable on \mathbb{T}^{n+1}.

We stressed that (i) and (ii) are compatibility conditions in two different situations; that is, (i) are compatibility conditions in the linear case, while (ii) are compatibility conditions in the non \mathbb{C}-linear case.

Finally, assume that $\Delta_{J_{\ell}, k_{\ell}}=0$ only for a finite number of values of $\ell \in \mathbb{Z}_{+}$. Hence, by passing to a subsequence, we may assume

$$
\begin{equation*}
0<\left|\Delta_{J_{\ell}, k_{\ell}}\right|<C_{\epsilon_{0}} e^{-\epsilon_{0}\left(\left\|J_{\ell}\right\|+\left|k_{\ell}\right|\right)^{1 / s}}, \quad \ell \in \mathbb{Z}_{+} \tag{7}
\end{equation*}
$$

and, also, that for some m all $j_{m \ell}$'s are nonzero and have the same sign, where $j_{m \ell}$ is the m-th coordinate of J_{ℓ}.

Let $\Omega=\left\{\left(J_{\ell}, k_{\ell}\right) ; \ell \in \mathbb{Z}_{+}\right\}$and note that Ω is an infinite set.
Assume that $B \neq 0$. Let Ω_{0} be an infinite subset of Ω and define

$$
f(x, t)=\sum_{(J, k) \in \Omega_{0}} \Delta_{J, k} e^{i(J \cdot x+k t)}
$$

It follows from (7) that $f \in G^{s}\left(\mathbb{T}^{n+1}\right)$. Note that $f_{-J,-k}=0$ for $(J, k) \in \Omega_{0}$, because according our assumption each $j_{m \ell}$ (the m-th coordinate of J_{ℓ}) must have the same sign. Let u be a solution to the equation $P u=f$. Simple calculations show us that we can write $u=w+v$, where

$$
\begin{equation*}
v(x, t)=\sum_{(J, k) \in \Omega_{0}} B e^{-i(J \cdot x+k t)}+\sum_{(J, k) \in \Omega_{0}}[i(k+\bar{C} \cdot J)-\bar{A}] e^{i(J \cdot x+k t)} \tag{8}
\end{equation*}
$$

and the Fourier series of w contains only frequencies $(J, k) \notin \Omega_{0} \cup\left(-\Omega_{0}\right)$. Hence, $v \in \mathscr{D}^{\prime}\left(\mathbb{T}^{n+1}\right) \backslash G^{s}\left(\mathbb{T}^{n+1}\right)$ and, consequently, $u \in \mathscr{D}^{\prime}\left(\mathbb{T}^{n+1}\right) \backslash G^{s}\left(\mathbb{T}^{n+1}\right)$. As before, $P G^{s}\left(\mathbb{T}^{n+1}\right)$ has infinite codimension in $G^{s}\left(\mathbb{T}^{n+1}\right)$.

Now, assume that $B=0$. Then, either

$$
\begin{equation*}
\left|i\left(k_{\ell}+C \cdot J_{\ell}\right)-A\right|<C_{\epsilon_{0}}^{\frac{1}{2}} e^{-\frac{\epsilon_{0}}{2}\left(\left\|J_{\ell}\right\|+\left|k_{\ell}\right|\right)^{1 / s}} \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|-i\left(k_{\ell}+C \cdot J_{\ell}\right)-A\right|<C_{\epsilon_{0}}^{\frac{1}{2}} e^{-\frac{\epsilon_{0}}{2}\left(\left\|J_{\ell}\right\|+\left|k_{\ell}\right|\right)^{1 / s}} \tag{10}
\end{equation*}
$$

for infinitely many values of $\ell \in \mathbb{Z}_{+}$. By passing to a subsequence, we may assume that either (9) or (10) holds for every $\ell \in \mathbb{Z}_{+}$. We will assume that (9) holds for every $\ell \in \mathbb{Z}_{+}$(the case (10) is analogous). Let Ω_{0} be an infinite subset of Ω and define $f \in G^{s}\left(\mathbb{T}^{n+1}\right)$ by

$$
f=\sum_{(J, k) \in \Omega_{0}}[i(k+C \cdot J)-A] e^{i(J \cdot x+k t)},
$$

Let u be a solution to the equation $P u=f$. As before, we can write $u=w+v$, where

$$
\begin{equation*}
v(x, t)=\sum_{(J, k) \in \Omega_{0}} e^{i(J \cdot x+k t)} \in \mathscr{D}^{\prime}\left(\mathbb{T}^{n+1}\right) \backslash G^{s}\left(\mathbb{T}^{n+1}\right) \tag{11}
\end{equation*}
$$

and the Fourier series of w contains only frequencies $(J, k) \notin \Omega_{0} \cup\left(-\Omega_{0}\right)$; hence, $u \in \mathscr{D}^{\prime}\left(\mathbb{T}^{n+1}\right) \backslash G^{s}\left(\mathbb{T}^{n+1}\right)$. Therefore, P is not s-solvable on \mathbb{T}^{n+1}.

In the C^{∞} context, we say that P (given by (2) and viewed as an operator acting in $C^{\infty}\left(\mathbb{T}^{2}\right)$) is solvable on \mathbb{T}^{n+1} if for every f in a subspace of $C^{\infty}\left(\mathbb{T}^{n+1}\right)$ of finite codimension there exists $u \in C^{\infty}\left(\mathbb{T}^{n+1}\right)$ such that $P u=f$ in \mathbb{T}^{n+1}. Also, we say that P is globally hypoelliptic if $u \in \mathscr{D}^{\prime}\left(\mathbb{T}^{n+1}\right)$ and $P u \in C^{\infty}\left(\mathbb{T}^{n+1}\right)$ imply that $u \in C^{\infty}\left(\mathbb{T}^{n+1}\right)$.

Similiar arguments used in the proof of Theorem 1 can be used to obtain the following C^{∞} version:

Theorem 2. Let P be given by (2). Then, P is solvable on \mathbb{T}^{n+1} if and only if there is a constant $\gamma>0$ such that

$$
\begin{equation*}
\left|\Delta_{J, k}\right| \geq \frac{1}{(\|J\|+|k|)^{\gamma}}, \quad \text { for all }(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z} \text { and }\|J\|+|k| \geq \gamma \tag{12}
\end{equation*}
$$

where $\Delta_{J, k}$ is given by (4).
Remark 1. Comparing Theorem 2 with Theorem 1 of [4], now $\operatorname{Im}(C) \neq 0$ is not enough to guarantee that $L=\frac{\partial u}{\partial t}+\sum_{j=1}^{n} C_{j} \frac{\partial u}{\partial x_{j}}$ is elliptic and, consequently, that $\Delta_{J, k}$ satisfies (12). For instance, taking $C=(i, 0, \cdots, 0)$ and $A=B=1$ we have $\operatorname{Im}(C) \neq 0$ and $\Delta_{J, 0}=0$ for all $J=\left(0, j_{2}, \cdots, j_{n}\right)$.

The next result shows that if $|B|>|A|$ then the non \mathbb{C}-linearity of P is strong enough to guarantee the solvability.

Corollary 1. Let P be given by (2). If $|B|>|A|$ then P is solvable and s solvable on \mathbb{T}^{n+1}.

Proof. We have

$$
\left|\Delta_{J, k}\right| \geq\left|\operatorname{Re}\left(\Delta_{J, k}\right)\right|=\left|-|k+C \cdot J|^{2}+|A|^{2}-|B|^{2}\right| \geq|B|^{2}-|A|^{2}>0
$$

for all $(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}$.
Corollary 2. Let $s \geq 1$ and let $P: G^{s}\left(\mathbb{T}^{2}\right) \rightarrow G^{s}\left(\mathbb{T}^{2}\right)$ be given by

$$
P u=\frac{\partial u}{\partial t}+C \frac{\partial u}{\partial x}-A u-B \bar{u}
$$

where $A, B, C \in \mathbb{C}$. If $\operatorname{Im} C \neq 0$ then P is s-solvable on \mathbb{T}^{2}.
Proof. The vector field $L=\partial / \partial t+C \partial / \partial x$ is elliptic, since $\operatorname{Im} C \neq 0$. Hence, as showed in [4], $\left|\Delta_{j, k}\right|$ satisfies (12) and, therefore, (6).

Corollary 3. Let P be given by (2). If P is solvable on \mathbb{T}^{n+1} then P is s-solvable on \mathbb{T}^{n+1}.

In general the reciprocal of Corollary 3 is not true, as we can see in the example 1 below.

Conditions (6 and 12) are linked to the notion of (exponential) Liouville numbers.

Let α be an irrational number. We say that α is a Liouville number if for every $N \in \mathbb{Z}_{+}$there is $K>0$ such that the inequality

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right|<K q^{-N} \tag{13}
\end{equation*}
$$

has infinitely many solutions $p / q \in \mathbb{Q}$, with $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_{+}$. Also, we say that α is an exponential Liouville number of order $s \geq 1$ if there exists $\epsilon>0$ such that the inequality

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right|<e^{-\epsilon q^{1 / s}} \tag{14}
\end{equation*}
$$

has infinitely many solutions $p / q \in \mathbb{Q}$, with $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_{+}$.
Recall that an irrational number α has an unique continued fraction expansion

$$
\alpha=\left[a_{0}: a_{1}, a_{2}, a_{3}, \cdots\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}
$$

where $a_{0} \in \mathbb{Z}$ and $a_{n} \in \mathbb{Z}_{+}$for $n \geq 1$.
Example 1. Let $s \geq 1$ and let $P: G^{s}\left(\mathbb{T}^{2}\right) \rightarrow G^{s}\left(\mathbb{T}^{2}\right)$ be given by

$$
P u=\frac{\partial u}{\partial t}+\alpha \frac{\partial u}{\partial x}-i u-\bar{u},
$$

where $\alpha=\left[1: 10,10^{2!}, \cdots, 10^{n!}, \cdots\right]$.
The irrational α is a Liouville number (see [15]), but it is not an exponential Liouville number of order s, for any $s \geq 1$ (see [1] and [13]).

We claim that P is not solvable on \mathbb{T}^{2} (viewed as an operator acting in $C^{\infty}\left(\mathbb{T}^{2}\right)$), but P is s-solvable. Indeed, we have that

$$
\left|\Delta_{j, k}\right|=|k-\alpha j|^{2} .
$$

Since α is a Liouville number, for every $\gamma>0$ there is a sequence $\left(p_{\ell}, q_{\ell}\right) \in$ \mathbb{Z}^{2}, with $q_{\ell} \rightarrow \infty$, such that $\left|q_{\ell} \alpha-p_{\ell}\right|<q_{\ell}^{-\gamma}$, for all $\ell \geq 1$; equivalently, for every $\gamma>0$ there is a sequence $\left(p_{\ell}, q_{\ell}\right) \in \mathbb{Z}^{2}$, with $q_{\ell} \rightarrow \infty$, such that $\left|q_{\ell} \alpha-p_{\ell}\right|<\left(\left|p_{\ell}\right|+q_{\ell}\right)^{-\gamma}$, for all $\ell \geq 1$. Hence, (12) is not satisfied and, consequently, P is not solvable on \mathbb{T}^{2}. On the other hand, since α is not an exponential Liouville number of order s, for every $\epsilon>0$ there is $C_{\epsilon}>0$ such that $|j \alpha-k| \geq C_{\epsilon} e^{-\epsilon(|k|+|j|)^{1 / s}}$, for all $(j, k) \in(\mathbb{Z} \times \mathbb{Z}) \backslash\{(0,0)\}$. Hence, (6) is satisfied and, consequently, P is s-solvable on \mathbb{T}^{2}.

The arguments used in the proof of Theorem 1 can be used to prove the following.

Theorem 3. Let P be given by (2). Then, P is s-globally hypoelliptic if and only if (6) is satisfied. Also, P is globally hypoelliptic if and only if (12) is satisfied.

It follows from Theorems 1, 2, and 3 that
Corollary 4. Let P be given by (2). Then, P is s-solvable on \mathbb{T}^{n+1} if and only if P is s-globally hypoelliptic. Also, P is solvable on \mathbb{T}^{n+1} if and only if P is globally hypoelliptic.

Now, let us return to our problem in a special situation: the case where

$$
L=\frac{\partial u}{\partial t}+\sum_{j=1}^{n} C_{j} \frac{\partial u}{\partial x_{j}}
$$

is a real vector field; that is, $C_{j} \in \mathbb{R}$, for $j=1, \cdots, n$.
Natural Diophantine conditions (DC) ${ }_{s}$ and (DC) appear. For fixed $s \geq 1$, we say that $(\xi, \eta) \in \mathbb{R}^{n} \times \mathbb{R}$ satisfies $(\mathrm{DC})_{s}$ if for every $\epsilon>0$ there is $C_{\epsilon}>0$ such that
$(\mathrm{DC})_{s}$

$$
|k+\xi \cdot J-\eta| \geq C_{\epsilon} e^{-\epsilon(\|J\|+|k|)^{1 / s}},
$$

for all $(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}$, with $\|J\|+|k| \geq C_{\epsilon}$. Also, we say that $(\xi, \eta) \in \mathbb{R}^{n} \times \mathbb{R}$ satisfies (DC) if there is a constant $\gamma>0$ such that

$$
\begin{equation*}
|k+\xi \cdot J-\eta| \geq \frac{1}{(\|J\|+|k|)^{\gamma}} \tag{DC}
\end{equation*}
$$

for all $(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}$ and $\|J\|+|k| \geq \gamma$.
In the situation where $\operatorname{Im}(C)=0$, Theorems 1 and 3 can be rewritten as follows:

Theorem 4. Let $s \geq 1$ and let P be given by (2). Assume that $\operatorname{Im}(C)=0$. Then, P is s-solvable on \mathbb{T}^{n+1} if and only if one of the following conditions is satisfied:
(i) $|B|>|A|$;
(ii) $|B|<|A|$, and $\operatorname{Re}(A) \neq 0$;
(iii) the vector $\left(C, \sqrt{|A|^{2}-|B|^{2}}\right)$ is in \mathbb{R}^{n+1}, and satisfies $(D C)_{s}$.

Also, we have:
Theorem 5. Let $s \geq 1$ and let P be given by (2). Assume that $\operatorname{Im}(C)=0$. Then, P is not s-globally hypoelliptic if and only if the following condition is satisfied:
(iv) $|B| \leq|A|$, the vector $\left(C, \sqrt{|A|^{2}-|B|^{2}}\right)$ does not satisfy $(D C)_{s}$ and, moreover, one has $\operatorname{Re}(A)=0$ when $|B|<|A|$.

The proof of Theorems 4 and 5 can be obtained by applying the similar arguments that in the proof of Theorems 1 and 2 of [4] and it will be omitted here.

Also, we could state C^{∞} versions of the Theorems 4 and 5 replacing $(\mathrm{DC})_{s}$ by (DC).

3. A Class of Operators with Variable Coefficients

In this section we will consider a class of operators $P: G^{s}\left(\mathbb{T}^{n+1}\right) \rightarrow G^{s}\left(\mathbb{T}^{n+1}\right)$ with variable coefficients.

Let $s \geq 1$ and let

$$
\begin{equation*}
L=\frac{\partial}{\partial t}-\sum_{j=1}^{n}\left(p_{j}(t)+i \lambda_{j} q_{j}(t)\right) \frac{\partial}{\partial x_{j}}, \tag{15}
\end{equation*}
$$

be a complex vector field defined on $\mathbb{T}_{x}^{n} \times \mathbb{T}_{t}^{1}$, where $q, p_{j} \in G^{s}\left(\mathbb{T}_{t}^{1} ; \mathbb{R}\right), j=$ $1, \cdots, n, q_{j} \not \equiv 0$ for some j, and $\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbb{R}^{n}$.

We will assume that L satisfies the Nirenberg-Treves condition (\mathscr{P}); hence, L is locally solvable (see, for instance, [5] or [19]; also, [10]).

Our assumption implies that L has the form

$$
\begin{equation*}
L=\frac{\partial}{\partial t}-\sum_{j=1}^{n}\left(p_{j}(t)+i \lambda_{j} q(t)\right) \frac{\partial}{\partial x_{j}}, \quad q \not \equiv 0 \tag{16}
\end{equation*}
$$

where $q \in G^{s}\left(\mathbb{T}^{1}\right)$ does not change sign on \mathbb{T}^{1} (see [9]; also, [6])). There is no loss of generality in assuming that $q(t) \geq 0$ for all $t \in \mathbb{T}^{1}$.

Let

$$
p_{0 j}=\frac{1}{2 \pi} \int_{0}^{2 \pi} p_{j}(t) d t, \quad m_{j}(t)=\int_{0}^{t}\left(p_{j}(\tau)-p_{0 j}\right) d \tau,
$$

and

$$
m(t)=\left(m_{1}(t), \cdots, m_{n}(t)\right) .
$$

By using partial Fourier series in the variables $\left(x_{1}, \ldots, x_{n}\right)$ we define the operator $T: G^{s}\left(\mathbb{T}^{n+1}\right) \rightarrow G^{s}\left(\mathbb{T}^{n+1}\right)$ given by

$$
\begin{equation*}
T u(x, t)=\sum_{J \in \mathbb{Z}^{n}} \widehat{T u}(J, t) e^{i x \cdot J}, \tag{17}
\end{equation*}
$$

with

$$
\widehat{T u}(J, t)=\hat{u}(J, t) e^{i \int_{0}^{t} m(\tau) \cdot J d \tau}, \quad \text { for all } \quad J \in \mathbb{Z}^{n} .
$$

As showed in [8], T is well-defined and

$$
T L T^{-1}=\frac{\partial}{\partial t}-\sum_{j=1}^{n}\left(p_{0 j}+i \lambda_{j} q(t)\right) \frac{\partial}{\partial x_{j}},
$$

where T^{-1}, the inverse of T, is given by

$$
\widehat{T^{-1} v}(J, t)=\hat{v}(J, t) e^{-i \int_{0}^{t} m(\tau) \cdot J d \tau}, \quad \text { for all } \quad J \in \mathbb{Z}^{n}
$$

From now on we will assume that our operator L has the form

$$
\begin{equation*}
L=\frac{\partial}{\partial t}-\sum_{j=1}^{n}\left(p_{0 j}+i \lambda_{j} q(t)\right) \frac{\partial}{\partial x_{j}} . \tag{18}
\end{equation*}
$$

3.1. Complex Case

Assume that $\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbb{R}^{n} \backslash\{0\}$.
Let

$$
P: G^{s}\left(\mathbb{T}^{n+1}\right) \rightarrow G^{s}\left(\mathbb{T}^{n+1}\right)
$$

be the operator defined by

$$
\begin{equation*}
P u=L u-(r(t)+i \delta q(t)) u-\alpha q(t) \bar{u}, \tag{19}
\end{equation*}
$$

where L is given by (18), $r \in G^{s}\left(\mathbb{T}^{1} ; \mathbb{R}\right), \delta \in \mathbb{R}$ and $\alpha \in \mathbb{C} \backslash\{0\}$.
Let

$$
p_{0}=\left(p_{01}, \cdots, p_{0 n}\right) \quad \text { and } \quad \lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right),
$$

where $p_{0 j}$ and λ_{j} are given in (18). Define
$\mathscr{Q}(t)=\int_{0}^{t} q(\sigma) d \sigma, \mathscr{R}(t)=\int_{0}^{t} r(\sigma) d \sigma, \quad q_{0}=\int_{0}^{2 \pi} q(\sigma) d \sigma$, and $r_{0}=\int_{0}^{2 \pi} r(\sigma) d \sigma$.
We have $q_{0}>0$, since $0 \leq q \not \equiv 0$.
Let

$$
A_{0}=r_{0}+i \delta q_{0}, \quad B_{0}=\alpha q_{0}, \quad \text { and } \quad C_{0}=2 \pi p_{0}+i q_{0} \lambda .
$$

Note that $C_{0}=\left(2 \pi p_{01}+i \lambda_{1} q_{0}, \cdots, 2 \pi p_{0 n}+i \lambda_{n} q_{0}\right) \in \mathbb{C}^{n}$. Also, for each $J \in \mathbb{Z}^{n}$ let

$$
\rho_{J}=\sqrt{(\lambda \cdot J-i \delta)^{2}+|\alpha|^{2}},
$$

where we choose ρ_{J} to have $\operatorname{Re}\left(\rho_{J}\right) \geq 0$.
Now, we are ready to present the main result of this section.
Theorem 6. Let P be given by (19). Assume that the coefficients of P satisfy:
(I) $|\alpha| \neq|\delta|$;
(II) there is no $(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}$ satisfying

$$
\left\{\begin{aligned}
\operatorname{Re}\left(A_{0}\left(2 k \pi+J \cdot \overline{C_{0}}\right)\right) & =0 \\
\left|2 k \pi+J \cdot C_{0}\right|^{2} & =\left|A_{0}\right|^{2}-\left|B_{0}\right|^{2} ; \text { and }
\end{aligned}\right.
$$

(III) for every $\epsilon>0$ there is $C_{\epsilon}>0$ such that
$\min \left\{\left|e^{-\rho_{J} q_{0}}-e^{r_{0}+2 \pi i J \cdot p_{0}}\right|,\left|1-e^{r_{0}-\rho_{J} q_{0}+2 \pi i J \cdot p_{0}}\right|\right\} \geq C_{\epsilon} e^{-\epsilon\|J\|^{1 / s}}$
for all $(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}$, with $\|J\| \geq C_{\epsilon}$.
Then, for every $f \in G^{s}\left(\mathbb{T}^{n+1}\right)$, there is $u \in G^{s}\left(\mathbb{T}^{n+1}\right)$ solution to the equation $P u=f$ in \mathbb{T}^{n+1}.

Proof. The proof of this Theorem, which amounts to an adaptation of the proof of Theorem 7 of [4], will be sketched here.

Given $f \in G^{s}\left(\mathbb{T}^{n+1}\right)$ it will be found $u \in G^{s}\left(\mathbb{T}^{n+1}\right)$ solution to $P u=f$ in \mathbb{T}^{n+1}. By using partial Fourier series in the variables $\left(x_{1}, \cdots, x_{n}\right)$ we have

$$
\begin{aligned}
& u(x, t)=\sum_{J \in \mathbb{Z}^{n}} u_{J}(t) e^{i J \cdot x} \quad \text { and } \\
& f(x, t)=\sum_{J \in \mathbb{Z}^{n}} f_{J}(t) e^{i J \cdot x}
\end{aligned}
$$

Hence, for each $J \in \mathbb{Z}^{n}$ the equation $P u=f$ leads to

$$
\left\{\begin{align*}
u_{J}^{\prime}-\left[i\left(p_{0}+i \lambda q(t)\right) \cdot J+r(t)+i \delta q(t)\right] u_{J}-\alpha q(t) \overline{u_{-J}} & =f_{J} \tag{20}\\
{\overline{u_{-J}}}^{\prime}-\left[i\left(p_{0}-i \lambda q(t)\right) \cdot J+r(t)-i \delta q(t)\right] \overline{u_{-J}}-\bar{\alpha} q(t) u_{J} & =\overline{f_{-J}}
\end{align*}\right.
$$

For each $J \in \mathbb{Z}^{n}$, let

$$
w_{J}=\left(\frac{u_{J}}{u_{-J}}\right) \quad \text { and } \quad \mathbb{F}_{J}=\left(\frac{f_{J}}{f_{-J}}\right) .
$$

We can rewrite (20) as

$$
\begin{equation*}
w_{J}^{\prime}=M_{J} w_{J}+\mathbb{F}_{J} \tag{21}
\end{equation*}
$$

where

$$
M_{J}=\left(\begin{array}{cc}
i\left(p_{0}+i \lambda q(t)\right) \cdot J+r(t)+i \delta q(t) & \alpha q(t) \\
\bar{\alpha} q(t) & i\left(p_{0}-i \lambda q(t)\right) \cdot J+r(t)-i \delta q(t)
\end{array}\right) .
$$

In order for the function w_{J} to be a 2π-periodic solution of (21), the function

$$
\begin{equation*}
y_{J}=e^{-i J \cdot p_{0} t-\mathscr{R}(t)} w_{J} \tag{22}
\end{equation*}
$$

has to satisfy

$$
\begin{equation*}
y_{J}^{\prime}=q(t) N_{J} y_{J}+e^{-i J \cdot p_{0} t-\mathscr{R}(t)} \mathbb{F}_{J}, \tag{23}
\end{equation*}
$$

and, also,

$$
y_{J}(0)=e^{2 \pi i J \cdot p_{0}+r_{0}} y_{J}(2 \pi),
$$

where

$$
N_{J}=\left(\begin{array}{cc}
-\lambda \cdot J+i \delta & \alpha \\
\bar{\alpha} & \lambda \cdot J-i \delta
\end{array}\right) .
$$

The eigenvalues ρ_{J} and σ_{J} of N_{J} are given by

$$
\rho_{J}=\sqrt{\left.(\lambda \cdot J-i \delta)^{2}+|\alpha|^{2}\right)} \quad \text { and } \quad \sigma_{J}=-\rho_{J} ;
$$

recall that $\operatorname{Re}\left(\rho_{J}\right) \geq 0$. It follows from (I) that $\rho_{J} \neq 0$ and, consequently, N_{J} is invertible. It is easy to see that the eigenvectors of N_{J} corresponding to $\pm \rho_{J}$ are

$$
V_{J}^{ \pm}=\binom{\alpha}{(\lambda \cdot J-i \delta) \pm \rho_{J}} .
$$

For each $J \in \mathbb{Z}^{n}$, let $T_{J}=\left(V_{J}^{+} V_{J}^{-}\right)$. Then

$$
T_{J}^{-1} N_{J} T_{J}=\rho_{J}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and (23) becomes

$$
y_{J}^{\prime}=q(t) \rho_{J} T_{J}\left(\begin{array}{cc}
1 & 0 \tag{24}\\
0 & -1
\end{array}\right) T_{J}^{-1} y_{J}+e^{-i J \cdot p_{0} t-\mathscr{R}(t)} T_{J} T_{J}^{-1} \mathbb{F}_{J}
$$

For each $J \in \mathbb{Z}^{n}$, let $z_{J}=T_{J}^{-1} y_{J}$. The differential equation (24) leads us to

$$
z_{J}^{\prime}=\rho_{J} q(t)\left(\begin{array}{cc}
1 & 0 \tag{25}\\
0 & -1
\end{array}\right) z_{J}+e^{-i J \cdot p_{0} t-\mathscr{R}(t)} T_{J}^{-1} \mathbb{F}_{J}
$$

restricted to $z_{J}(0)=e^{2 \pi i J \cdot p_{0}+r_{0}} z_{J}(2 \pi)$.
For $J \in \mathbb{Z}^{n}$, let

$$
\mathbf{Z}_{J}(t)=\left(\begin{array}{cc}
e^{\rho_{J} \tilde{\mathscr{Q}}(t)} & 0 \\
0 & e^{-\rho_{J} \mathscr{Q}(t)}
\end{array}\right)
$$

where $\tilde{\mathscr{Q}}(t)=-\int_{t}^{2 \pi} q(\sigma) d \sigma$.
We will seek for solutions of (25) in the form $z_{J}(t)=\mathrm{Z}_{J}(t) C_{J}(t)$. Let

$$
G_{J}(t)=\binom{G_{1 J}(t)}{G_{2 J}(t)}=T_{J}^{-1} \mathbb{F}_{J}(t)
$$

The equation (25) leads us to

$$
\mathbf{Z}_{J}(t) C_{J}^{\prime}(t)=e^{-i J \cdot p_{0} t-\mathscr{R}(t)} G_{J}(t)
$$

Hence,

$$
C_{J}(t)=\binom{-\int_{t}^{2 \pi} e^{-\rho_{J} \tilde{\mathscr{Q}}(\sigma)} e^{-i J \cdot p_{0} \sigma-\mathscr{R}(\sigma)} G_{1 J}(\sigma) d \sigma}{\int_{0}^{t} e^{\rho_{J} \mathscr{Q}(\sigma)} e^{-i J \cdot p_{0} \sigma-\mathscr{R}(\sigma)} G_{2 J}(\sigma) d \sigma}+\mathbb{K}_{J},
$$

for some $\mathbb{K}_{J} \in \mathbb{R}^{2}$; consequently,

$$
z_{J}(t)=\binom{-\int_{t}^{2 \pi} e^{\rho_{J}(\tilde{\mathscr{Q}}(t)-\tilde{\mathscr{Q}}(\sigma))} e^{-i J \cdot p_{0} \sigma-\mathscr{R}(\sigma)} G_{1 J}(\sigma) d \sigma}{\int_{0}^{t} e^{\rho_{J}(\mathscr{Q}(\sigma)-\mathscr{Q}(t))} e^{-i J \cdot p_{0} \sigma-\mathscr{R}(\sigma)} G_{2 J}(\sigma) d \sigma}+\mathbf{Z}_{J}(t) \mathbb{K}_{J} .
$$

Since z_{J} has to satisfy $z_{J}(0)=e^{i J \cdot p_{0} 2 \pi+r_{0}} z_{J}(2 \pi)$, we should have

$$
\begin{aligned}
& \mathrm{Z}_{J}(0) \mathbb{K}_{J}+\binom{-\int_{0}^{2 \pi} e^{\rho_{J}(\tilde{\mathscr{L}}(0)-\tilde{\mathscr{Q}}(\sigma))} e^{-i J \cdot p_{0} \sigma-\mathscr{R}(\sigma)} G_{1 J}(\sigma) d \sigma}{0} \\
& \quad=e^{i J \cdot p_{0} 2 \pi+r_{0}}\left(\int_{0}^{2 \pi} e^{\rho_{J}(\mathscr{Q}(\sigma)-\mathscr{Q}(2 \pi))} e^{-i J \cdot p_{0} \sigma-\mathscr{R}(\sigma)} G_{2 J}(\sigma) d \sigma\right) \\
& \quad+e^{2 \pi i J \cdot p_{0}+r_{0}} \mathbf{Z}_{J}(2 \pi) \mathbb{K}_{J}
\end{aligned}
$$

Hence, we have

$$
\left.\begin{array}{c}
\left(\mathrm{Z}_{J}(0)-e^{2 \pi i J \cdot p_{0}+r_{0}} \mathrm{Z}_{J}(2 \pi)\right) \mathbb{K}_{J} \\
=\left(\int_{0}^{2 \pi} e^{\rho_{J}(\tilde{\mathscr{Q}}(0)-\tilde{\mathscr{Q}}(\sigma))} e^{-i J \cdot p_{0} \sigma-\mathscr{R}(\sigma)} G_{1 J}(\sigma) d \sigma\right. \tag{26}\\
\int_{0}^{2 \pi} e^{\rho_{J}(\mathscr{Q}(\sigma)-\mathscr{Q}(2 \pi))} e^{-i J \cdot p_{0}(\sigma-2 \pi)-\left(\mathscr{R}(\sigma)-r_{0}\right)} G_{2 J}(\sigma) d \sigma
\end{array}\right) .
$$

Simple calculations show that condition (II) implies that the matrix

$$
\mathbf{Z}_{J}(0)-e^{2 \pi i J \cdot p_{0}+r_{0}} \mathbf{Z}_{J}(2 \pi)=\left(\begin{array}{cc}
e^{-\rho_{J} q_{0}}-e^{r_{0}+2 \pi i J \cdot p_{0}} & 0 \\
0 & 1-e^{-\rho_{J} q_{0}+r_{0}+2 \pi i J \cdot p_{0}}
\end{array}\right)
$$

is invertible. Then,

$$
\mathbb{K}_{J}=\binom{\int_{0}^{2 \pi} \frac{e^{\rho_{J}(\tilde{\mathscr{Q}}(0)-\tilde{\mathscr{Q}}(\sigma))} e^{-i J \cdot p_{0} \sigma-\mathscr{R}(\sigma)}}{e^{-\rho_{J} q_{0}}-e^{2 \pi i J \cdot p_{0}+r_{0}}} G_{1 J}(\sigma) d \sigma}{\int_{0}^{2 \pi} \frac{e^{\rho_{J}(\mathscr{Q}(\sigma)-\mathscr{Q}(2 \pi))} e^{-i J \cdot p_{0}(\sigma-2 \pi)-\left(\mathscr{R}(\sigma)-r_{0}\right)}}{1-e^{2 \pi i J \cdot p_{0}+r_{0}-\rho_{J} q_{0}}} G_{2 J}(\sigma) d \sigma}
$$

and, therefore,

$$
\begin{gathered}
z_{J}(t)=\binom{-\int_{t}^{2 \pi} e^{\rho_{J}(\tilde{\mathscr{Q}}(t)-\tilde{\mathscr{Q}}(\sigma))} e^{-i J \cdot p_{0} \sigma-\mathscr{R}(\sigma)} G_{1 J}(\sigma) d \sigma}{\int_{0}^{t} e^{\rho_{J}(\mathscr{Q}(\sigma)-\mathscr{Q}(t))} e^{-i J \cdot p_{0} \sigma-\mathscr{R}(\sigma)} G_{2 J}(\sigma) d \sigma} \\
+\binom{e^{\rho_{J} \tilde{\mathscr{Q}}(t)} \int_{0}^{2 \pi} \frac{e^{\rho_{J}(\tilde{\mathscr{Q}}(0)-\tilde{\mathscr{Q}}(\sigma))} e^{-i J \cdot p_{0} \sigma-\mathscr{R}(\sigma)}}{e^{-\rho_{J} q_{0}-e^{2 \pi i J \cdot p_{0}+r_{0}}} G_{1 J}(\sigma) d \sigma}}{e^{-\rho_{J} \mathscr{Q}(t)} \int_{0}^{2 \pi} \frac{e^{\rho_{J}(\mathscr{Q}(\sigma)-\mathscr{Q}(2 \pi))} e^{-i J p_{0} \sigma-\mathscr{R}(\sigma)}}{1-e^{2 \pi i J \cdot p_{0}+r_{0}-\rho_{J} q_{0}}} G_{2 J}(\sigma) d \sigma} .
\end{gathered}
$$

Finally, since $w_{J}=e^{i J \cdot p_{0} t+\mathscr{R}(t)} y_{J}$ and $y_{J}=T_{J} z_{J}$ we have

$$
u_{J}(t)=\alpha e^{i J \cdot p_{0} t+\mathscr{R}(t)}\left(z_{1 J}(t)+z_{2 J}(t)\right),
$$

where $z_{1 J}$ and $z_{2 J}$ are the components of z_{J}.
It follows at once from (III) that $z_{1 J}$ and $z_{2 J}$ decay rapidly. Analogous estimates can be obtained for the derivatives $z_{1 J}^{(m)}$ and $z_{2 J}^{(m)}, m \in \mathbb{N}$. Hence, $\left(u_{J}\right)$ is of rapid decay as $\|J\| \rightarrow \infty$.

Therefore, the sequence $\left(u_{J}\right)$ defines a G^{s} function $u(x, t)=\sum_{J \in \mathbb{Z}^{n}} u_{J}(t) e^{i J \cdot x}$ solution to $P u=f$ in \mathbb{T}^{n+1}.

Similar arguments can be used to prove the following version, where the coefficients of P can be taken only in $C^{\infty}\left(\mathbb{T}^{n+1}\right)$ instead $G^{s}\left(\mathbb{T}^{n+1}\right)$:

Theorem 7. Let P be given by (19). Assume that the coefficients of P satisfy:
(I) $|\alpha| \neq|\delta|$;
(II) there is no $(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}$ satisfying

$$
\left\{\begin{aligned}
\operatorname{Re}\left(A_{0}\left(2 k \pi+J \cdot \overline{C_{0}}\right)\right) & =0 \\
\left|2 k \pi+J \cdot C_{0}\right|^{2} & =\left|A_{0}\right|^{2}-\left|B_{0}\right|^{2} ; \text { and }
\end{aligned}\right.
$$

(III) there is $\gamma>0$ such that

$$
\min \left\{\left|e^{-\rho_{J} q_{0}}-e^{r_{0}+2 \pi i J \cdot p_{0}}\right|,\left|1-e^{r_{0}-\rho_{J} q_{0}+2 \pi i J \cdot p_{0}}\right|\right\} \geq \frac{1}{|J|^{\gamma}}
$$

for all $(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}$, with $|J| \geq \gamma$.
Then, for every $f \in C^{\infty}\left(\mathbb{T}^{n+1}\right)$, there is $u \in C^{\infty}\left(\mathbb{T}^{n+1}\right)$ solution to the equation $P u=f$ in \mathbb{T}^{n+1}.

Comparing Theorem 7 with Theorem 7 of [4], note that conditions (I) and (II) do not imply (III) when we are working on \mathbb{T}^{n+1}, with $n \geq 2$. For instance:

Example 2. Consider $P: C^{\infty}\left(\mathbb{T}^{3}\right) \rightarrow C^{\infty}\left(\mathbb{T}^{3}\right)$ defined by

$$
P u=\frac{\partial u}{\partial t}-i \cos ^{2}(t) \sum_{j=1}^{2} \frac{\partial}{\partial x_{j}}-i \sqrt{2} \cos ^{2}(t) u-\cos ^{2}(t) \bar{u} .
$$

By using the notation of Theorem 7 we have: $\alpha=1, \delta=\sqrt{2}, A_{0}=$ $-i \sqrt{2} \pi, B_{0}=\pi, C_{0}=i(\pi, \pi), \lambda=(1,1), r_{0}=0, p_{0}=(0,0)$, and $q_{0}=\pi$.

Note that $|\alpha|=1<\sqrt{2}=|\delta|$; hence, (I) is satisfied.
Also, for $J=\left(j_{1}, j_{2}\right)$, we have:
$\operatorname{Re}\left(A_{0}\left(2 k \pi+J \cdot \overline{C_{0}}\right)\right)=\operatorname{Re}\left(-i \sqrt{2} \pi\left(2 k \pi-i\left(j_{1}, j_{2}\right) \cdot(\pi, \pi)\right)=-\sqrt{2} \pi^{2}\left(j_{1}+j_{2}\right) ;\right.$ hence,

$$
\operatorname{Re}\left(A_{0}\left(2 k \pi+J \cdot \overline{C_{0}}\right)\right)=0 \Rightarrow j_{2}=-j_{1} .
$$

On the other hand, for $J=(j,-j)$ we have

$$
\left|2 k \pi+J \cdot C_{0}\right|^{2}=|2 k \pi+i(j,-j) \cdot(\pi, \pi)|^{2}=(2 k)^{2} \pi^{2} \neq \pi^{2}=\left|A_{0}\right|^{2}-\left|B_{0}\right|^{2}
$$

for all $k \in \mathbb{Z}$. Hence, (II) is satisfied.
Finally, for $J=(j,-j)$ we have $\rho_{J}=i$; hence,

$$
1-e^{r_{0}-\rho_{J} q_{0}+2 \pi i J \cdot p_{0}}=1-e^{-i \pi}=0
$$

and, therefore, (III) is not satisfied.

3.2. Real Case

Assume $\lambda=0$ in (18). In this case L is a real vector field in the form

$$
\begin{equation*}
L=\frac{\partial}{\partial t}-\sum_{j=1}^{n} p_{0 j} \frac{\partial}{\partial x_{j}}, \tag{27}
\end{equation*}
$$

where $p_{0 j} \in \mathbb{R}$, for all $j=1, \cdots, n$.
We define the operator

$$
P: G^{s}\left(\mathbb{T}^{n+1}\right) \rightarrow G^{s}\left(\mathbb{T}^{n+1}\right)
$$

given by

$$
\begin{equation*}
P u=L u-(r(t)+i \delta q(t)) u-\alpha q(t) \bar{u}, \quad q \not \equiv 0, \tag{28}
\end{equation*}
$$

where L is given by (27), $q, r \in G^{s}\left(\mathbb{T}^{1} ; \mathbb{R}\right), q(t) \geq 0$ for all $t \in \mathbb{T}^{1}, \delta \in \mathbb{R}$ and $\alpha \in \mathbb{C} \backslash\{0\}$.

Theorem 8. Let P be given by (28). Using the same notation of theorem 7, assume that one of the following conditions is satisfied:
(i) $\left|B_{0}\right|>\left|A_{0}\right|$;
(ii) $\left|B_{0}\right|<\left|A_{0}\right|,|\alpha|>|\delta|$ and
(\star) $\nexists(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}$ solution for $\left\{\begin{aligned} \operatorname{Re}\left(A_{0}\left(k+J \cdot p_{0}\right)\right) & =0 \\ 4 \pi^{2}\left|k+J \cdot p_{0}\right|^{2} & =\left|A_{0}\right|^{2}-\left|B_{0}\right|^{2} ;\end{aligned}\right.$
(iii) $|\alpha|<|\delta|$ and $r_{0} \neq 0$;
(iv) $|\alpha|<|\delta|, r_{0}=0,(\star)$
holds and, also, the following Diophantine condition holds:
$(D C)_{s}^{\prime}$ for every $\epsilon>0$ there is $C_{\epsilon}>0$ such that

$$
\left|2 k \pi+2 \pi J \cdot p_{0}-q_{0} \sqrt{\delta^{2}-|\alpha|^{2}}\right| \geq C_{\epsilon} e^{-\epsilon\|J\|^{1 / s}}
$$

for all $(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}$, with $\|J\| \geq C_{\epsilon}$.
Then, given $f \in G^{s}\left(\mathbb{T}^{n+1}\right)$ there is a solution $u \in G^{s}\left(\mathbb{T}^{n+1}\right)$ of the equation $P u=f$ in \mathbb{T}^{n+1}.

We stressed that the Diophantine condition $(D C)_{s}^{\prime}$ is slightly stronger than $(D C)_{s}$ given in Theorem 4.

The proof of Theorem 8 is obtained by proceeding as in the proof of Theorem 7 and by using the following:

Lemma 1. The diophantine condition $(D C)_{s}^{\prime}$ is equivalent to
$(D C)_{s}^{\prime \prime}$ for every $\epsilon>0$ there is $C_{\epsilon}>0$ such that

$$
\left|e^{i\left(2 \pi J \cdot p_{0}-q_{0} \sqrt{\delta^{2}-|\alpha|^{2}}\right)}-1\right| \geq C_{\epsilon} e^{-\epsilon\|J\|^{1 / s}}
$$

for all $(J, k) \in \mathbb{Z}^{n} \times \mathbb{Z}$, with $\|J\| \geq C_{\epsilon}$.
The proof of Lemma 1 is a simple adaptation of that of Lemma 13 in [4] and we will omit here.

As done for Theorem 6 , it is possible state a C^{∞} version of Theorem 8.

Acknowledgements

The authors are very grateful to the anonymous referee for interesting and valuable suggestions that improved the early version of this paper. The first author was supported in part by CNPq (grant 409306/2016-9), and the second author was supported in part by CNPq (grant 309496/2018-7) and FAPESP (grants 2018/15046-0 and 2018/14316-3).

References

[1] Arias Junior, A., Kirilov, A., de Medeira, C.: Global Gevrey hypoellipticity on the torus for a class of systems of complex vector fields. J. Math. Anal. Appl. 474(1), 712-732 (2019)
[2] Bergamasco, A.P., Cordaro, P., Petronilho, G.: Global solvability for a class of complex vector fields on the two-torus. Comm. Partial Diff. Eq. 29, 785-819 (2004)
[3] Bergamasco, A.P., da Silva, P.L.D.: Solvability in the large for a class of vector fields on the torus. J. Math. Pures Appl. 9(86), 427-447 (2006)
[4] Bergamasco, A.P., Dattori da Silva, P.L., Meziani, A.: Solvability of a first order differential operator on the two-torus. J. Math. Anal. Appl. 416(1), 166-180 (2014)
[5] Berhanu, S., Cordaro, P., Hounie, J.: An Introduction to Involutive Structures, New Math Mono 6. Cambridge University Press, Cambridge (2008)
[6] Bergamasco, A.P., Dattori da Silva, P.L., Gonzalez, R.B.: Existence and regularity of periodic solutions to certain first-order partial differential equations. J. Fourier Anal. Appl. 23(1), 65-90 (2017)
[7] Bergamasco, A.P., Dattori da Silva, P.L., Gonzalez, R.B.: Existence of global solutions for a class of vector fields on the three-dimensional torus. Bull. Sci. Math. 148, 53-76 (2018)
[8] Bergamasco, A., Dattori da Silva, P., Gonzalez, R.: Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus. J. Diff. Equations 264(5), 3500-3526 (2018)
[9] Bergamasco, A.P., Dattori da Silva, P.L., Gonzalez, R.B., Kirilov, A.: Global solvability and global hypoellipticity for a class of complex vector fields on the 3-torus. J. Pseudo-Diff. Op. Appl. 6, 341-360 (2015)
[10] Caetano, P.A.S., Cordaro, P.D.: Gevrey solvability and Gevrey regularity in differential complexes associated to locally integrable structures. Trans. Amer. Math. Soc. 363(1), 185-201 (2011)
[11] Dattori da Silva, P.L.: Nonexistence of global solutions for a class of complex vector fields on two-torus. J. Math. Anal. Appl. 351, 543-555 (2009)
[12] Gonzalez, R.B.: On certain non-hypoelliptic vector fields with finitecodimensional range on the three-torus. Ann. Mat. Pura Appl. 197(1), 61-77 (2018)
[13] Greenfield, S.J.: Hypoelliptic vector fields and continued fractions. Proc. Amer. Math. Soc. 31, 115-118 (1972)
[14] Greenfield, S., Wallach, N.: Global hypoellipticity and Liouville numbers. Proc. Amer. Math. Soc. 31, 112-114 (1972)
[15] Hardy, G.H., Wright, E.M. 2008 An introduction to the theory of numbers, in: D.R. Heath-Brown, JH Silverman (Eds) 6 eds, Oxford University Press: Oxford
[16] Herz, C.: Functions which are divergences. Amer. J. Math. 92, 641-656 (1970)
[17] Hörmander, L.: The analysis of linear partial differential operators. IV. Fourier integral operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 275. Springer-Verlag, Berlin (1985)
[18] Hounie, J.: Globally hypoelliptic and globally solvable first order evolutions equations. Trans. Amer. Math. Soc. 252, 233-248 (1979)
[19] Nirenberg, L., Treves, F.: Solvability of a first-order linear differential equation. Comm. Pure Appl. Math. 16, 331-351 (1963)
[20] Rodino, L.: Linear Partial Differential Operators in Gevrey Spaces. World Scientific Publishing Co. Pte. Ltd., Singapore (1993)

Marcelo F. de Almeida
Departamento de Matemática
Universidade Federal de Sergipe
São Cristóvão Sergipe49000-000
Brazil
e-mail: marcelo@mat.ufs.br

Paulo L. Dattori da Silva
Departamento de Matemática,
Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo
Caixa Postal 668
São Carlos São Paulo13560-970
Brazil
e-mail: dattori@icmc.usp.br
Received: December 7, 2020.
Accepted: April 13, 2021.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

