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Abstract We address the problem of determining the hypersurfaces f: M" — Qg‘“ (c)
with dimension n > 3 of a pseudo-Riemannian space form of dimension n + 1, con-
stant curvature ¢ and index s € {0, 1} for which there exists another isometric immersion
f M — Q’E’H (¢) with ¢ # c. For n > 4, we provide a complete solution by extending
results for s = 0 = § by do Carmo and Dajczer (Proc Am Math Soc 86:115-119, 1982) and
by Dajczer and Tojeiro (J Differ Geom 36:1-18, 1992). Our main results are for the most
interesting case n = 3, and these are new even in the Riemannian case s = 0 = §. In par-
ticular, we characterize the solutions that have dimension n = 3 and three distinct principal
curvatures. We show that these are closely related to conformally flat hypersurfaces of Q;‘ (c)
with three distinct principal curvatures, and we obtain a similar characterization of the latter
that improves a theorem by Hertrich-Jeromin (Beitr Algebra Geom 35:315-331, 1994).
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We denote by Q?’ (c) a pseudo-Riemannian space form of dimension N, constant sectional

curvature ¢ and index s € {0, 1}, that is, Qﬁv (c) is either a Riemannian or Lorentzian space
form of constant curvature ¢, corresponding tos = O ors = 1, respectively. By a hypersurface
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2 S. Canevari, R. Tojeiro

f:M" — Q?*l (c) we always mean an isometric immersion of a Riemannian manifold M"
of dimension n into Qg‘“ (c), thus f is a space-like hypersurface if s = 1.

One of the main purposes of this paper is to address the following

Problem x*: For which hypersurfaces f: M" — Qg”'l (c) of dimension n > 3 does there
exist another isometric immersion f: M" — Qg‘“(&) with ¢ # ¢?

This problem was studied for s = 0 = § and n > 4 by do Carmo and Dajczer in [3], and by
Dajczer and the second author in [5]. Some partial results in the most interesting case n = 3
were also obtained in [5]. Including Lorentzian ambient space forms in our study of Problem
* was motivated by our investigation in [1] of submanifolds of codimension two and constant
curvature ¢ € (0, 1) of §* x R, which turned out to be related to hypersurfaces f: M> — S*
for which M3 also admits an isometric immersion into the Lorentz space ]R‘l1 = Q? 0).

‘We first state our results for the case n > 4. The next one extends a theorem due to do
Carmo and Dajczer [3] in the case s = 0 = §. Here and in the sequel, for s € {0, 1} we
denote €, = —2s + 1.

Proposition 1 Let f: M" — Qg’“ (¢) be a hypersurface of dimension n > 4. If there exists
another isometric immersion f: M" — Q';H(E) With¢ # ¢, thenc < cifs =0ands = 1
(respectively, ¢ > ¢ if s = 1 and § = 0) and f has a principal curvature ). of multiplicity at
least n — 1 everywhere satisfying p = €;(c — ¢ + €,A%) > 0. Moreover, at any x € M" the
following holds:
(1) if » =0or f is umbilical with p > 0, then f is umbilical;
(ii) if f is umbilical and p = 0, then O is a principal curvature off with multiplicity at
leastn — 1;
(iii) if & # O with multiplicity n — 1, then f has a principal curvature L, with A2 = p, which
has the same eigenspace as M.
Thus, Problem * has no solutions if n > 4 and either¢ > ¢,s =0and§s = 1 orc < ¢,
s = 1l and § = 0, while, in the remaining cases, having a principal curvature A of multiplicity
at least n — 1 satisfying €;(c — ¢ + €22 > 0isa necessary condition for a solution. In
those cases, having a principal curvature of constant multiplicity n or n — 1 satisfying the
preceding condition is also sufficient for simply connected hypersurfaces.

Proposition 2 Let f: M" — Q' (c), n > 4 be an isometric immersion of a simply
connected Riemannian manifold. Given ¢ # ¢ and s € {0, 1}, assume that ¢ < ¢ if s =0
ands = 1, and that ¢ > ¢ if s = 1 and 5 = 0. If f has a principal curvature A of (constant)
multiplicity either n — 1 or n satisfying p = €5(c — ¢ + €;A?) > 0, then M" admits an
isometric immersion into Q?'H (C), which is unique up to congruence if p > 0.

The next result, proved by Dajczer and the second author in [5] when s = 0 = 5, shows
how any solution f: M" — Q"*!(c), n > 4, of Problem x arises.
Proposition 3 Let f: M" — Q"*!(c) and fiMh - Qg‘“(é), n > 4, be isometric
immersions with, say, ¢ > ¢. If s = 0, assume that s = 0. Then, for s = § (respectively,
s = land s = 0), there exist, locally on an open dense subset of M", isometric embeddings

H: Q@) - Q2@ and i: QM (c) - Q'2(@)

. .. 1~ L L
(respectively, H : Q;"H (c) = Q;’+2(c) andi: Q;H' (c) — Q?+2(C)), with i umbilical, and
an isometry

W M= HQ(@) i@ () > M"
(respectively, W: M" := H(Q"*!(c)) N i(@?“(ﬁ)) — M") such that
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Hypersurfaces of two space forms and conformally flat... 3

fo\IJ:i71|Mn and fO\IJ:H71|Mn.
(respectively, f oW = H_1|1|?1" andfo U= i_1|M,,).

Proposition 3 explains the existence of a principal curvature A of multiplicity at leastn — 1
for a solution f: M" — Q'*!(c), n > 4, of Problem x : the (images by f of the) leaves of
the distribution on M" given by the eigenspaces of A are the intersections with i (Q?+l (©)
of the (images by H of the) relative nullity leaves of H, which have dimension at least 7.

Next we consider Problem * for hypersurfaces of dimension n = 3. The following result
provides the solutions in two (“dual”) special cases.

Theorem 4 Let f: M3 — Q?(c) be a hypersurface for which there exists an isometric
immersion f : M3 — Q?(E) with ¢ # c.

(a) Assume that [ has a principal curvature of multiplicity two. If either ¢ > ¢, s = 0 and
§=1,orifc < ¢, s =1lands = 0, then f is a rotation hypersurface whose profile curve
is a ¢c-helix in a totally geodesic surface Qsz(c) of Q? (c) and f is a generalized cone
over a surface with constant curvature in an umbilical hypersurface Q? (c) of Q?(E),
¢ > . Otherwise, either the same conclusion holds or f and f are locally given on an
open dense subset as described in Proposition 3.

(b) Ifone of the principal curvatures of f is zero, then f is a generalized cone over a surface
with constant curvature in an umbilical hypersurface @f (c) of @?(c), ¢ >c and f is
a rotation hypersurface whose profile curve is a c-helix in a totally geodesic surface

Q2(@) of Qi (@).

By a generalized cone over a surface g: M? — Q2 (¢) in an umbilical hypersurface Q2 (¢)
of Q? (¢), ¢ > ¢, we mean the hypersurface parametrized by (the restriction to the subset of
regular points of) the map G: M2 x R — Q‘S‘(c) given by

G(xv t) = expg(x)(t%:(g(x)))v

where & is a unit normal vector field to the inclusion i : @?(6) — Q;‘(c) and exp is the
exponential map of Q% (c). A c-helixin Q?(¢) C R} ¢, Withrespect to a unit vector v € R} +eo
is a unit-speed curve y: [ — Q%(E) - R? +¢, Such that the height function y, = (y, v)
satisfies y,’ + ¢y, = 0. Here €9 = 0 or 1, corresponding to ¢ > 0 or ¢ < 0, respectively.

In order to deal with the generic case of Problem x for hypersurfaces of dimension 3,
we need to recall the notion of holonomic hypersurfaces. We call a hypersurface f: M" —
Qg’*l (¢) holonomic if M" carries global orthogonal coordinates (u1, ..., u,) such that the
coordinate vector fields 9; = % are everywhere eigenvectors of the shape operator A of

J
f.Setv; =9;]|, and define V; € C*°(M),1 < j <n,by Ad; = v;leaj. Thus, the first
and second fundamental forms of f are

n n
I'=> vldu} and II =Y Vyvdu;. (1

i=1 i=1

Setv = (vy,...,vy) and V = (Vq, ..., V,). We call (v, V) the pair associated to f. The
next result is well known.
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4 S. Canevari, R. Tojeiro

Proposition 5 The triple (v, h, V), where hj; = viig—z{, satisfies the system of PDE’s
., 0y .. Ohik
(l)ﬁj =hjivj, (”)Tuj = hijhjk,
... Ohij  0hj;
(iii) + +hkihkj+63ViVj+CU,'Uj =0, 2)
ou; ou j
Vi

(V) =hjiV;, 1<i#j#k#i<n
ouj

Conversely, if (v, h, V) is a solution of (2) on a simply connected open subset U C R",
with v; # O everywhere for all 1 < i < n, then there exists a holonomic hypersurface
f:U— Q’j“ (c) whose first and second fundamental forms are given by (1).

The following characterization of hypersurfaces f: M? — Q%(c) with three distinct
principal curvatures that are solutions of Problem x is one of the main results of the paper.

Theorem 6 Let f: M? — @?(c) be a simply connected holonomic hypersurface whose
associated pair (v, V) satisfies

3 3 3
Yosvi =6 Y suVi=0 and Y 8§V} =C:=éc—0), 3)
i=1 i=1 i=1
where €, € € {—1,1}, C # ¢, €€ = ¢, (81,82, 683) = (1, —1, 1) eitherifé =1 orifé = —1
and C > 0, and (81, 82,83) = (—1,—1,—1) ifé = —1 and C < 0. Then M> admits an
isometric immersion into Q? (C), with €; = €, which is unique up to congruence.
Conversely, if f: M3 — Q?(c) is a hypersurface with three distinct principal curvatures
for which there exists an isometric immersion f : M> — Q?(Z) with ¢ # c, then f is locally
a holonomic hypersurface whose associated pair (v, V) satisfies (3), with € = €;.

As we shall make precise in the sequel, the class of hypersurfaces that are solutions
of Problem x is closely related to that of conformally flat hypersurfaces of Q! (c), that
is, isometric immersions f: M" — Q?H(c) of conformally flat manifolds. Recall that a
Riemannian manifold M" is conformally flat if each point of M" has an open neighborhood
that is conformally diffeomorphic to an open subset of Euclidean space R". First, for n > 4
we have the following extension of a result due to E. Cartan when s = 0.

Proposition 7 Let f: M" — va’“ (¢) be a hypersurface of dimension n > 4. Then M" is
conformally flat if and only if f has a principal curvature of multiplicity at least n — 1.

It was already known by E. Cartan that the “only if”” assertion in the preceding result is
no longer true for n = 3 and s = 0. The study of conformally flat hypersurfaces by Cartan
was taken up by Hertrich-Jeromin [6], who showed that a conformally flat hypersurface
f: M? — Q*(c) with three distinct principal curvatures admits locally principal coordinates
(uy, uy, usz) such that the induced metric ds? = Z?:l vizdui2 satisfies, say, v% = v%—l—v%. The
next result states that conformally flat hypersurfaces f: M3 — Q? (c) with three distinct
principal curvatures are characterized by the existence of such principal coordinates under
some additional conditions.

Theorem 8 Ler f: M? — Qﬁ'(c) be a holonomic hypersurface whose associated pair
(v, V) satisfies

3

3 3 :
D=0, > suVi=0 and Y &VP =1, 4)
i=1 i=1

i=1
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Hypersurfaces of two space forms and conformally flat... 5

where (81,82, 83) = (1, —1, 1). Then M3 is conformally flat, and f has three distinct prin-
cipal curvatures.

Conversely, any conformally flat hypersurface f: M> — Q?(c) with three distinct prin-
cipal curvatures is locally a holonomic hypersurface whose associated pair (v, V') satisfies

.

It follows from Theorems 6 and 8 that, in order to produce hypersurfaces of Q? (c) that are
either conformally flat or admit an isometric immersion into Q;‘ (¢) with ¢ # ¢, one must start
with solutions (v, &, V) on an open simply connected subset U C R3 of the same system of
PDE’s, namely, the one obtained by adding to system (2) (for n = 3) the equations

av;
aia—btf+5jhijv,-+skh,-kuk =0 ®)
1
and
aV; . . .
5i£+5jhijvj+5khikvk=0a I<i#j#Fk#i =<3, (6)
1

with (81, 62, 63) = (1, —1, 1). Such system has the first integrals

3 3 3
> sivi=Ki. Y 8uVi=Ky and Y §V?=Kj.
i=1 i=1 i=1

If initial conditions at some point are chosen so that K; = 1 (respectively, K; = 0), K» =0
and K3 = €(c—c) (respectively, K3 = 1), then the corresponding solutions give rise to hyper-
surfaces of Q;‘(c), €; = €, with three distinct principal curvatures that can be isometrically
immersed into Q? (¢) (respectively, are conformally flat).

It was already shown in [5] for s = 0 = § that, unlike the case of dimension n > 4,
among hypersurfaces f: M" — Q;"H (c) of dimension n = 3 with three distinct principal
curvatures the classes of solutions of Problem * and conformally flat hypersurfaces are
distinct. Moreover, it was observed that their intersection contains the generalized cones over
surfaces with constant curvature in an umbilical hypersurface Q? (¢) of Q? (¢), ¢ = c. The
following result states that such intersection contains no other elements.

Proposition 9 Ler f: M3 — Q? (c) be a conformally flat hypersurface with three distinct
principal curvatures. If M> admits an isometric immersion into Q?(E), C #c then fisa
generalized cone over a surface with constant curvature in an umbilical hypersurface (@3 (©)

of(@?(c), c>c.

Our last result shows that hypersurfaces f: M®> — Q%(c) that can be isometrically
immersed into ]R‘S.1 arise in families of parallel hypersurfaces.

Proposition 10 Ler f: M3 — Q? (¢) be a holonomic hypersurface whose associated pair
(v, V) satisfies (3) with & = 0. Then any parallel hypersurface f;: M> — Q?(c) to f has
also the same property.

In a forthcoming paper [2] we develop a Ribaucour transformation for the class of hyper-
surfaces of Q? (c) with three distinct principal curvatures that can be isometrically immersed
into Qg (¢) with ¢ # ¢, as well as for the class of conformally flat hypersurfaces with three
distinct principal curvatures. It gives a process to generate a family of new elements of such
classes, starting from a given one and a solution of a linear system of PDE. In particular,
explicit new examples of hypersurfaces in both classes are constructed.
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6 S. Canevari, R. Tojeiro

1 The proofs
1.1 Proof of Proposition 1

Leti: Q" (c) — QHeO

¢ > corc < ¢, respectively, and set f =i o f. Then, the second fundamental forms « and
a of f and f, respectively, are related by

a =i+ /e —cl(, )E, D

where £ is one of the unit vector fields that are normal to i.
For a fixed point x € M", define W3(x) := N};M(x) ® NfM(x), and endow W3 (x) with
the inner product ‘

(¢) be an umbilical inclusion, where €g = 0 or 1, corresponding to

(& + &0+ Dhwa = E M pmeo — € DNy

which has index (s + €g) + (1 — §).
Now define a bilinear form 8, : TyM x TxyM — w3 (x) by

Br = a(x) ® alx),

where & (x) and @ (x) are the second fundamental forms of f and f respectively, at x. Notice
that N (ﬂx) C N(a(x)) = {0} by (7). On the other hand, it follows from the Gauss equations
of f and f that By is flat with respect to {( , )), that s,

(Bx (X, Y), Bx(Z, W) = (Bx (X, W), Bx(Z.Y))

forall X, Y, Z, W € Ty M. Thus, if {( , )) is positive definite, which is the case when s = 0,
§ = land €g = 0, that is, ¢ > ¢, we obtain a contradiction with Corollary 1 of [7], according
to which one has the inequality

dmN(By) >n—dimWkx)=n—-3> 0. 8)

The same contradiction is reached by applying the preceding inequality to —{( , )) when
= 1,5 = 0and ¢ < ¢, in which case {(, )) is negative definite. Therefore, such cases
cannot occur, which proves the first assertion.

In all other cases, the index of ({ , )) is either 1 or 2. Thus, by applying Corollary 2 in [7]
to (( , )) in the first case and to —(( , )) in the latter, we obtain that S(8, ) must be degenerate,
for otherwise the inequality (8) would still hold, and then we would reach a contradiction as
before.

Since S(By) is degenerate, there exist{ € N AM(x) and N € N ~M(x) such that (0, 0) #

(¢, N) € S(By) ﬁS(,BX)l In particular, from 0 = (¢ + N,C+ N)) it follows that (N N)
({ ). Thus, either N=0 and ¢ € S(@(x)) N S(&(x))*, or we can assume that (N N)
= (£, ).

The former case occurs precisely when f is umbilical at x with a principal curvature A
with respect to one of the unit normal vectors N to f, satisfying

esA2+c—5:0,

in which case NfM(x) is a Lorentzian two-plane and ¢ = Ai,. N + /|c — ¢|§ is a light-like
vector that spans S(&(x)). In this case, all sectional curvatures of M™ at x are equal to ¢ by
the Gauss equation of f, and hence f has 0 as a principal curvature at x with multiplicity at
least n — 1 by the Gauss equation of f .
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Hypersurfaces of two space forms and conformally flat... 7

Now assume that (]\7, 1\7) = ¢€; = (¢, ¢). Then, from
= (B.¢ +N) = (&, ¢) — (@ N),

we obtain that Af Af Let ¢t e N »M (x) be such that {¢, {1} is an orthonormal basis
of N fM (x). The Gauss equations for f and f imply that

(Al x, ynal z.wy = (Al x, W><Aglz, Y)

for all X,Y,Z, W € T, M, which is equivalent to dlm./\/(A 1) > n — 1. Since Ag =
8+/|c —¢|I by (7), with § = (¢ — ¢)/|c — ¢/, it follows that the restriction to /\/(A?L) of all
shape operators A{, nenN AM (x), is a multiple of the identity tensor. In particular, this is

the case for Af N = = AL , where N is one of the unit normal vector fields to f, hence f has
a principal curvature A at x with multiplicity at least n — 1.
Moreover, if A = 0 then ¢ + must coincide with i, N, and hence ¢ with &, up to signs.

Therefore Alf\7 = Ag, up to sign, hence fis umbilical at x. If f is umbilical at x and c+e,A2 #
¢,then A, = Oand Azf\”/ = A? is a (nonzero) constant multiple of the identity tensor. Finally,
if A # 0 has multiplicity n — 1, then we must have ¢+ # i, N and dimN(A{fL) =n-—1,

hence /\/(A{l) is an eigenspace of A{ = Alf\7. O
1.2 Proof of Proposition 2

Suppose first that f is umbilical, with a (constant) principal curvature A. If p = 0, then M"
has constant curvature ¢, hence it admits isometric immersions into Q”H (¢) having 0 as a
principal curvature with multiplicity at least n — 1. If p > 0, there exists A # 0 such that
¢ — &+ eh? = ;2. Hence ¢ + €2 = &+ €512, thus A = Al satisfies the Gauss and
Codazzi equations for an (umbilical) isometric immersion into Qg“ (©).

Assume now that A has constant multiplicity n—1.If A = 0, then M" has constant curvature
¢ and by the assumption there exists A # 0 such that ¢ = & + €;A2. Thus, A = AI satisfies
the Gauss and Codazzi equations for an (umbilical) isometric immersion into Q?H (©).

From now on assume that A 7 0. Let i be the simple principal curvature and let E; and
E,, denote the corresponding eigenbundles. Then, one can check that the Codazzi equations
for f are equivalent to the following facts:

(i) A is constant along Ej;
(ii) Ej is an umbilical distribution whose mean curvature vector fieldis n = (A — ) ™' Va;
(iii) The mean curvature vector field (geodesic curvature vector field) of E, is ¢ = (1 —
W VY WE, .-

By the assumption, there exist X, L € C*(M) such that
c—C4e?= 655»2 and ¢ — ¢+ €A = AL,

Moreover, since A # w we must have A £ 0 everywhere, and hence J and [ are unique if X
is chosen to be positive. From both equations we obtain

eh2 — 655\2 = € ML — AL, €AVA = €AV
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8 S. Canevari, R. Tojeiro

and
e (VA + AV) = e ((vi) i+ iVi).

It follows that

Vi Vi ©
P
and similarly,
(Vive, _ (Y, (10

n—»x w—=xr

Let A be the endomorphism of 7'M with eigenvalues A, [t and corresponding eigenbundles
E; and E,,, respectively. Since

c+ eskz =Cc+ 655\2 and c+eiu=c+ eg):,a,

the Gauss equations for an isometric immersion f Mt — Qg’“ (¢) are satisfied by A1t
follows from (9) and (10) that A also satisfies the Codazzi equations. ]

1.3 Proof of Proposition 3

Since ¢ > ¢, there exist umbilical inclusions i : Q’S"H(c) — Q;“"Z(E) and i: Q?H(E) —
Qg’+2(c) for (s, §) = (1, 0).If s = § (respectively, (s, §) = (1, 0)),setf = io f (respectively,
f =io f ). Then, one can use the existence of normal vector fields ¢ € I'(N fM ) and N e

F(N];M) satisfying (¢, ) = & = (N, N) and A{ = AIJ\:] and argue as in the proof of Theorem
3in [5]. One obtains that there exists an open dense subset U C M", each point of which has
an open neighborhood V. C M" such that f |y (respectively, f|y) is a composition f lyv =
Ho f |v (respectively, fly = H o f |v) with an isometric embedding H: W C Q?“(E) —
QI*2(&) (respectively, H: W C Q" (c) — Q'+2(c)), with f(V) C W (respectively,
F(V) C W). Set M" = H(W) N i(Q!*(c)) (respectively, M" = H(W) Ni(Q:(&)).
Thenio fly = Ho fly: V — M" (tespectively, H o fly = io fly: V — M") is
an isometry. Let W: M" — V be the inverse of this isometry. Then f o W = i ™| 7 and
foWw = H™!| ;. (respectively, foW = H™!| . and foWw =i~!| ), wherei~! and H~!
denote the inverses of the maps i and H, respectively, regarded as maps onto their images.

O

1.4 Proof of Theorem 4

Before going into the proof of Theorem 4, we establish a basic fact that will also be used in
the proof of Theorem 6 in the next section.

Lemma 11 Let f: M? — (@?(c) and f: M3 - Q?(E) be isometric immersions with
¢ # ¢. Then, at each point x € M3 there exists an orthonormal basis {elleg, ez} of Ty M3
that simultaneously diagonalizes the second fundamental forms of f and f.

Proof Define i : Q;‘(c) — @3, (¢) and f, as well as W3 (x), (. Dw3(y) and By for each

s+€o
x € M", as in the proof of Proposition 1. If S(By) is degenerate for all x € M3, we conclude

@ Springer



Hypersurfaces of two space forms and conformally flat... 9

as in the case n > 4 that the assertions in Theorem 1 hold, hence the statement is clearly true
in this case.
Suppose now that S(f,) is nondegenerate at x € M?. Then the inequality

dim S(By) > dim T, M — dim N (By)

holds by Corollary 2 in [7]. Since N'(B8;) = {0}, the right-hand side is equal to dim 7, M =
3 = dim W3(x), hence we must have equality in the above inequality. By Theorem 2 — b in
[7], there exists an orthonormal basis {£], &, &3} of W3(x) and a basis {8!, 62, 83} of M
such that

3
B=> 0/ @0/t
j=1

In particular, if i # j then B(e;, e;) = O for the dual basis {ey, ez, e3} of 01,62, 6%). 1t
follows that {e], e>, e3} diagonalyzes both & and &, and therefore both « and &, in view of
(7). It also follows from (7) that

0= (@i, e)), &) =lc—2llei,ej), i #J,
hence the basis {e], 2, e3} is orthogonal. o

Lemma 12 Under the assumptions of Lemma 11, let Ay, A2, A3 and |11, 12, u3 be the prin-
cipal curvatures of f and f correspondent to ey, ey and e3, respectively.

(a) Assume that f has a principal curvature of multiplicity two, say, that .1 = Ay 1= A. If
eitherc > ¢,s =0ands =1,0orc < ¢, s =1and s =0, then

c—Cc+ei3 =0, uz3=0 and c —E—l—eskz = € U1 L2.
Otherwise, either the same conclusion holds or
Ul =M=, ¢c—C+ A2 = eguz and ¢ — ¢+ €5AA3 = €543
(b) Assume, say, that .3 = 0. Then p1 = up == W,
€ —E+€hh = 11> (11)
and
€ —C = €UNU3. (12)

Proof By the Gauss equations for f and f , we have

ct+eridj =cH+euipny, 1<i#j<3. (13)
(a) If A1 = Xy := A, then the preceding equations are
c+eh? =G+ e, (14)
C+ €Ay = C+ U3 (15)
and
¢+ €Az = C + €542 /43. (16)

The two last equations yield

m3(ur — u2) =0,
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10 S. Canevari, R. Tojeiro

hence either u3 = 0 or w1 = wo. In view of (14), the second possibility cannot occur if
eitherc > ¢,s =0and§s = 1,orc < ¢, s = 1 and § = 0. Thus, in these cases we must have
w3 =0,andthen ¢ — ¢ + A2 = s pp and ¢ — & + €,A03 = 0 by (15) and (16).
Otherwise, either the same conclusion holds or jt] = p» = p, and then ¢ — & + A2 =
e;pu? and ¢ — & + €Az = €5uu3 by (15) and (16).
(b) If A3 = 0, then Eq. (13) become

¢ —CH€erihy = €501 142, (17)
C—C=¢€MU1L3 (18)

and
¢ —C=¢€Ma3 (19)

Since u3 # 0 by (18) or (19), these equations imply that ;11 = o := u, and we obtain (12).
Equation (11) then follows from (17). ]

Proof of Theorem 4 Assume that f has a principal curvature of multiplicity two, say, A =
Az = A. Suppose first that either ¢ > ¢, s =0and§ = 1,orc < ¢, s = 1 and § = 0. Then,
it follows from Lemma 12 that

c—C4err3=0, pu3=0 and c — ¢+ €A% = €501 2. (20)

In particular, we must have A 7# 0 by the first of the preceding equations, whereas the last
one implies that ;o # 0. Then, it is well known that Ej is a spherical distribution, that
is, it is umbilical and its mean curvature normal n = ves satisfies e;(v) = 0 = e3(v). In
particular, a leaf o of E; has constant sectional curvature Vitert+ce=12+ €12 +C.
Denoting by V and V the connections on M? and f *TQ? (¢), respectively, we have

Ve, fres = fiVees = —vfeei, 1<i <2,

hence f (o) is contained in an umbilical hypersurface Qg (¢) of Q? (¢) with constant curvature
¢=¢+v?and f*e3 as a unit normal vector field.

Moreover, E ,{- = E, is the relative nullity distribution of f . Thus, it is totally geodesic,
and in fact its integral curves are mapped by f into geodesics of Q? (&). It follows that f (M?3)

is contained in a generalized cone over f (0).

On the other hand, it is not hard to extend the proof of Theorem 4.2 in [4] to the case of
Lorentzian ambient space forms, and conclude that f is a rotation hypersurface in Qﬁ (). This
means that there exist subspaces Plc p3= PS+€0 in R§+EO D Q?(c) with P3 ﬂ@? (c) #49,
where €9 = 0 or €p = 1, corresponding to ¢ > 0 or ¢ < 0, respectively, and a regular curve
y in Q% ()= P3n @;‘ (¢) that does not meet P2, such that fmm 2) is the union of the orbits
of points of y under the action of the subgroup of orthogonal transformations of R} te, that
fix pointwise P2. If P2 is nondegenerate, then f can be parameterized by

fGsu) = (1()o1(w), y1(s)d2(u), yi1($)d3(u), va(s), ys5(s)),

with respect to an orthonormal basis {eq, ..., e5} of ]Rf +eo
(i) or (ii) below, according to whether the induced metric on PZhasindex s+egors+ep—1,

respectively:

satisfying the conditions in either

(i) (ej,ej) =1forl <i <3,{e31j,e31j) =¢jforl < j <2,and (€], 3) equal to either
(1, 1), (1, —=1) or (—1, —1), corresponding to s + €y = 0, 1 or 2, respectively.
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Hypersurfaces of two space forms and conformally flat... 11

(i) (e1,e1) = —1, (ej,e;) = 1 for2 <i < 4 and (es,es) = €, where € = 1l or€ = —1,
corresponding to s 4+ €p = 1 or 2, respectively.

In both cases, we have P2 = span{eu, es}, P3 = spanfey, es, es}, u = (uy, uz), y(s) =

(71(5), v4(s), ¥5(s)) a unit-speed curve in Q?(c) C P? and ¢ (u) = (¢1(u), ¢p2(u), ¢3(u))

an orthogonal parameterization of the unit sphere S> C (P?) in case (i) and of the hyperbolic
plane H> C (P?)* in case (ii). Accordingly, the hypersurface is said to be of spherical or
hyperbolic type.

If P2 is degenerate, then f is a rotation hypersurface of parabolic type parameterized by
1
flsu) = (mm, N©u, i, 7a6s) = S g +u3), ys(s)) :

with respect to a pseudo-orthonormal basis {eq, ..., es} of R§+50 such that {e1,e;) =0 =

(eq, e4), (e1,e4) = 1, (e2,€2) = 1 = (e3,e3) and (es,e5) = —2(s + €9) + 3, where
y(s) = (y1(s), ya(s), y5(s)) is a unit—speed curve in Qf(c) cP= span{eq, e4, es}.

In each case, one can compute the principal curvatures of f as in [4] and check that
the first equation in (20) is satisfied if and only if y{" + ¢y1 = 0, that is, y is a ¢-helix in
Q) C R

Under the remaining possibilities for ¢, ¢, s and §, either the same conclusions hold or the
bilinear form B, in the proof of Proposition 1 is everywhere degenerate, in which case there
exist normal vector fields ¢ € F(NJ;M) and N € F(Nf~M) satisfying (£, ¢) = €5 = (N, N)

and Ag = Aji, and we obtain as before that f and f are locally given on an open dense
subset as described in Proposition 3.

Finally, if one of the principal curvatures of f is zero, then the preceding argument applies
with the roles of f and f interchanged. O

1.5 Proof of Theorem 6

Let (v, V) be the pair associated to f. Define

Vi= (DS miVie—uV), 1<i#j#k<3, i<k @
'I:hen V= (\71, 172, 173) is the unique vector in R3, up to sign, such that (v, |C|_1/2V, |C|_1/2
V) is an orthonormal basis of R? with respect to the inner product

3
(1, %2, X3), (V15 y2, ¥3)) = ) 8ixi i (22)
i=1

Therefore, the matrix D = (v, |C|_1/2V, |C|_1/2\7) satisfies DSD! = §, where § =
diag(¢, C/|C|, —€éC/|C]). It follows that

éviv; + C/ICIPV;V; —éC/ICI*PV;V; =0, 1 <i#j<3.
Multiplying by €,C and using that ée; = € and €e;C = €€;€(c — ¢) = ¢ — ¢ we obtain

(c — E)vivj -I-GVI'VJ' — E‘ZVJ =0,

or equivalently,

CL;jV; +6V,'Vj = Ev,-vj +g‘7z“~/j-
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12 S. Canevari, R. Tojeiro

Substituting the preceding equation into (v) yields
ohij n ohji
ou; ou

+hkihkj +g‘7,"7j +Ev,~vj =0.

On the other hand, differentiating (21) and using equations (i)—(iv) yields

3‘7]‘ ~
o =h;;Vi,

It follows from Proposition 5 that there exists a hypersurface f M3 > Qg (¢), withe; = €,

whose first and second fundamental forms are
3 3
I = X:vizdui2 and 11 = ZViv[du%,
i=1 i=1

thus M3 admits an isometric immersion into Q? (©).

Conversely, let f: M3 — Q?(c) be a hypersurface for which there exists an isometric
immersion f: M 3 Q?(é). By Lemma 11, there exists an orthonormal frame {ey, e, €3}

of M3 of principal directions of both f and f .Let Ay, Az, A3 and w1, a2, 3 be the principal
curvatures of f and f correspondentto eq, e and e3, respectively. AssumethatA; < Ay < Az,
and that the unit normal vector field to f has been chosen so that A1 < 0. The Gauss equations

for f and f yield
c+ehihj =Cc+euipj, 1 <i#j<3.
Thus,
iy =C+érr;, C=e(c—0), 1<i#j=3.
It follows that

/LZ _ C + @)Lj)u,’)(c + é\)\ikk)
J C + éxiri

l=j#FiFk#E]j <3

The Codazzi equations for f and f are, respectively,

ei(hj) = (ki —2j)(Veeisej), i # ],

()\'j —)\.k)<vei€j,€k> = ()‘l _)"k)(vejei’ek)v l # .] # k

and

ei(pj) = (i — wj)(Veseisej), i # j,

(j — 1) (Veej, ex) = (i — i) (Veseis ex), i # J # k.

Multiplying (28) by w; and using (24) and (26) we obtain

co (Ai — )»,/)A(?n,/ — Ak)
C+eriiy

(Veejer) =0, 0 #j #k.
Since the principal curvatures A1, Ay and A3 are distinct, it follows that

(Veej o) =0, 1<i#j#k#i<3.
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Hypersurfaces of two space forms and conformally flat... 13

Computing 2 je; (e j), first by differentiating (24) and then by multiplying (27) by 2 ;, and
using (23), (24) and (25) we obtain

(CHérjr) (hk — 2 jp)ei (k) + (C 4 érirg) (e — Aidei (A))

+(C + é)ti)\j)()ti —Aje; (Ar) = 0. (30)

Now let {w1, w2, w3} be the dual frame of {e}, e2, e3} and define the one-forms y;, 1 < j < 3,
by

A —A)(Aj — Ag) . :
Vi \// C+ehing w;j SJjFiIiFkE]Z

(Aj—Ai)(hj—Ak)

C+érirg -~

By (24), either all the three numbers C + €A ;A;, C + éA ;A and C + €X; A are positive
or two of them are negative and the remaining one is positive. Hence there are four possible
cases:

where 8; = y;/|y;| fory; =

D C+eérrj>0,1<i#j<3.

() C+érirr <0,C+érrz <0and C + éxprz > 0.
() C 4+ €érjrr > 0,C +€érjrz <0and C + €rrrz < 0.
(IV) C+€érry <0,C + érrz > 0and C + érprz < 0.

Notice that (81, &2, 63) equals (1, —1, 1) incase (1), (1,1, —1) incase (I1), (—1, 1, 1) in
case (I11) and (—1, —1, —1) in case (I V). It is easily checked that one must have € = —1
and C < 0in case (I V), whereas in the remaining cases eitheré = 1 oré = —1 and C > 0.
Therefore, (81, 82,83) = (—1,—1,—1)if ¢ = —1 and C < 0, and in the remaining cases
we may assume that (81, &2, 83) = (1, —1, 1) after possibly reordering the coordinates.

We claim that (29) and (30) are precisely the conditions for the one-forms y;, 1 < j <3,
to be closed. To prove this, set x; = ,/8;y;, 1 < j < 3, sothat y; = x;w;. It follows from
(29) that

dy;(ei,ex) =ejyjlex) —eryj(e;) —vi(lei, ex]) = 0.
On the other hand, using (25) we obtain
dyj(ei,ej) = eiyj(e;) —ejyj(ei) —yj(lei, e
=ei(x;) +xj(Ve,ei, e)
ei(Aj)
Ai — A ’

= e;(xj) + xj
hence y; is closed if and only if

Xj . .
ei(xj) = y _)w_ei()»j), l<i#j=<3

or equivalently,

ei(yj)(C + EAiAg) = 28jxje,-(xj)(C + €AiAg)
2
xj N
= 2()\1' —)\k)e,'()\.j).
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14 S. Canevari, R. Tojeiro

The preceding equation is in turn equivalent to

200 = MI(C + érirpei(hj) = (ei(Aj) — ei(hi)(hj — M) (C + €Xig)
+j; —A)(ei(Aj) — e (M) (C + éxirg)
= =2 — M) (€ei (Ai)he + diei (M),

which is the same as (30).

Therefore, each point x € M?> has an open neighborhood V where one can find functions
u; € C*®(V), 1 < j < 3, such that duj = yj, and we can choose V so small that
® = (uy, ua, u3) is a diffeomorphism of V onto an open subset U C R3, thatis, (ug, uz, u3)
are local coordinates on V. From §;; = duj(du;) = xjw;(du;) it follows that du; = v;e;,
with v; = x; ! Now notice that

3 3 A~
7 j—A)hj—he)

j=1 ik#j=1
3 3 3 N
C+erirg
2 i
Z(Sjvjvj=25j)‘jvj= Z Aj(k._k.)()L‘_)\):O
=1 =1 ikgj=1 T M T A
and
3 3 3 R
C+eriig
2 2.2 2 i
Zsjvj :Z(S/}”jvj: Z )‘j()\,_)v)(k,_)h)zc
= = ikAj—=1 A
It follows that the pair (v, V) satisfies (3). m]

1.6 Proof of Proposition 7
Before starting the proof of Proposition 7, recall that the Wey! tensor of a Riemannian manifold
M" is defined by

(CX,VZ,W)=(RX,Y)Z, W) —-L(X,W)(Y,Z)— LY, Z){X, W)
+L(X,Z){Y, W)+ LY, W)(X, Z)

forall X, Y, Z, W € X(M), where L is the Schouten tensor of M", which is given in terms
of the Ricci tensor and the scalar curvature s by
1 1
L(X,Y)=——|Ric(X,Y)— -ns(X,Y) ).
n—2 2
It is well known that, if n > 4, then the vanishing of the Weyl tensor is a necessary and

sufficient condition for M" to be conformally flat.

Proof of Proposition 7 Let f: M" — Qg’“ (c) be a conformally flat hypersurface of dimen-

sion n > 4. For a fixed point x € M", choose a unit normal vector N € N)'Cf M and let
A= Ay: TM — T M be the shape operator of f with respect to N. Let W3 be a vector
space endowed with the Lorentzian inner product ((, )) given by

(@, b,c), @, b, c") =e(—aa" +bb' + ecc).
Define a bilinear form 8: T\M x TyM — w3 by

B(X,Y)=(L(X,Y)+ %(1 —o){X,Y),L(X,Y) — %(1 + o)X, Y), (AX,Y)).
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Hypersurfaces of two space forms and conformally flat... 15

Note that 8(X, X) # 0 for all X # 0. Moreover,

(BX,Y), B(Z, W) —(BX,W),B(Z,Y)) =—L(X,Y)(Z, W)
—L(Z,W)(X,Y) + L(X, WYZ,Y)+ L(Z, Y)(X, W) + (X A Z)W, Y)
+e((AX AAZ)W,Y) = (C(X, Z)W, Y) = 0.

Thus, B is flat with respect to {(, )). We claim that S(8) must be degenerate. Otherwise, we
would have

0 = dimker 8 > n — dim S(8) > 0,

a contradiction. Now let z € S(8) N S(B)+ and choose a pseudo-orthonormal basis ¢, n, &
of W3 with (¢, 2) = 0= (n, n), (¢, n) =1 = (& &) and (&, ) = 0 = (&, n). Then

B =¢t+Yé,

where ¢ = (8, ) and ¥ = (B, &)). Flatness of 8 implies that dim ker 1 = n — 1. We claim
that ker v is an eigenspace of A. Given Z € ker  we have

B(Z, X) =¢(Z, X)¢ 3D

forall X € Ty\M.Let {e; = (1,0,0),e; = (0,1,0),e3 = (0,0, 1)} be the canonical basis
of W and write { = Z;:l ajej. Then (31) gives

L(Z, X) + %(1 —oNZ, X) =a1¢(Z, X)
and
L(Z,X)— %(1 +o)(Z,X) =axp(Z, X).
Subtracting the second of the preceding equations from the first yields
(Z,X) = (a1 —a)9(Z, X),

which implies that a; — a> # 0 and

$(Z,X) = (Z, X).
—a
Moreover, we also obtain from (31) that
(AZ, X)) =a3¢(Z, X) = a (Z, X),
ay —ap
which proves our claim. O

1.7 Proof of Theorem 8

In order to prove Theorem 8, first recall that a necessary and sufficient condition for a three-
dimensional Riemannian manifold M3 to be conformally flat is that its Schouten tensor L
be a Codazzi tensor, that is,

(VxL)(Y, Z) = (VyL)(X, Z)
forall X,Y, Z € X(M), where
(VxL)Y(Y,Z)=X(L(Y,Z2)) — L(VxY,Z)— L(Y,VxZ).
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16 S. Canevari, R. Tojeiro

Now let f: M? — Q%(c) be a holonomic hypersurface whose associated pair (v, V)
satisfies (4). Then v = (vy, v2, v3) is a null vector with respect to the Lorentzian inner
product (, ) given by (22), with (81, 82,83) = (1, —1,1), and V = (Vy, V,, V3) is a unit
space-like vector orthogonal to v. Thus, we may write

P A
V=—v4+—(-0v30,v1), A==I,
v2 v2

for some p € C°°(M), which is equivalent to
1 1
Vi=—Wv; —Av3) and V3 = —(Vhvs + Avy). (32)
1) v2

In particular,
Vivi—=Vjvi = —Ay, 1=<i<j=<3, k¢li]j}

hence the principal curvatures A ; = ‘U/—j’ 1 < j < 3, are pairwise distinct.
The eigenvalues 11, 1y and 3 of the Schouten tensor L are given by
2uj =cH+eirj +Ahj — Aidg), 1 =<j <3,
where A;, 1 < j < 3, are the principal curvatures of f. Define
bj =vj(hidj +Ahj —Aide), 1<) <3 (33)
That L is a Codazzi tensor is then equivalent to the equations

a .
g 1=i A3 (34)

Replacing 4. ; = Z—j in (33) and using (32) we obtain
1 2 1 2
é1 = :%(—2?»\/2123 + (Vs = Dui), ¢ = ” (Vi +1)

and

1 2
¢3 = 2 (V5 = Duz +24Vav1) .
2

It is now a straightforward computation to verify (34) by using equations (i) and (iv) of
system (2) together with Egs. (5) and (6).

Conversely, assume that f: M3 — (@‘St (c) is an isometric immersion with three distinct
principal curvatures A1 < Ay < A3 of a conformally flat manifold. Let {ey, e2, e3} be a
correspondent orthonormal frame of principal directions. Then {e1, e, e3} also diagonalyzes
the Schouten tensor L, and the correspondent eigenvalues are

2uj =€ (Aikj+Ajhp — Aidg) +c, 1<j<3. (35)

The Codazzi equations for f and L are, respectively,
ei(hj) = (ki =) (Veseivej), 0 # ], (36)
(Aj = M) (Veej, ex) = (hi — M) (Vejeiyer), 1 # ] Fk. (37)
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Hypersurfaces of two space forms and conformally flat... 17

and

ei(pj) = (i = wj)(Veseirej), i #J, (38)
(j — wi)(Veejs ex) = (i — i) (Veseinex), i # j #k. (39)

Substituting (35) into (39), and using (37), we obtain
(hi =Aj))(Aj — M) (Veej e) =0, i #jFk.
Since A1, A, and A3 are pairwise distinct, it follows that
(Veejen) =0, i #j#Fk#i. (40)
Differentiating (35) with respect to e;, we obtain
2ei(pj) = € [(hi + A)ei (k) 4+ (hj — Aei (ki) 4+ (L — Ai)ei ()] - (41)
On the other hand, it follows from (35), (36) and (38) that
ei(pj) = errei(Aj). (42)

Hence
(Aj — Ak)ei (i) + (A — Apei(Aj) + (A — Ai)ei(Ag) = 0. (43)

Now let {w}, w2, w3} be the dual frame of {ey, e, 3} and define the one-forms y;, 1 <
Jj <3,by

Vi =Xjwj, Xj= \/5/'()»,;‘ =AM —Ak), 12 j#Fi#Fk#j<3, (44)

where (81, 82, 83) = (1, —1, 1). As in the proof of Theorem 6, one can check that (40) and
(43) are precisely the conditions for the one-forms y;, 1 < j < 3, to be closed.

Therefore, each point x € M?> has an open neighborhood V where one can find functions
uj € C*(V), 1 < j < 3, such that du; = y;, and we can choose V so small that
® = (u1, us, uz) is a diffeomorphism of V onto an open subset U C R3, that is, (i1, ua, uz)
are local coordinates on V. From 6;; = du;(d;) = xjw;(d;) it follows that 9; = vje;j,

1 <j<3, withv; = X; ! Now notice that

1
Sopi= Y
J Y
=1 ikLj=1 ()“J )w)()\/ }”k)
3 3 3 v
5jUjVj = Sj)»./'l)z: J =0
jZ:‘: jX:‘: J l.’k;:l()hj —Ai)(Aj — M)
and
3 3 3 12
§;VE=Y) 5a%t = J =1
; ' jX;: o i,k%'::l()“j Ay = M)
It follows that (v, V) satisfies (4). ]
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18 S. Canevari, R. Tojeiro

1.8 Proof of Proposition 9

By Theorem 8, f is locally a holonomic hypersurface whose associated pair (v, V) is given
in terms of the principal curvatures A1 < Ay < A3 of f by

8;
Vi = ’ and Vi =X1v;, 1<j <3, (45)
J \/(Aj—m(x,-—xk) S /

where (81, 82, 83) = (1, —1, 1). Moreover, we have seen in the proofs of Theorems 6 and 8§,
respectively, that 1, A» and A3 satisfy (30) and (43). It is easily checked that (43) is equivalent
to

(e —Ap)ei(Mirj) = (Aj —Apei(Midg), 1<i#j#k#i<3,
whereas multiplying (43) by C and adding (30) gives
Mg — Ap)ei(Midj) = Aj(hj — Apei(Midg), 1 <i#j#k#i<3.
Since A1, Ao and A3 are pairwise distinct, the two preceding equations together imply that
e(Airj) =0, 1 <i#j<3.
Assuming that A; # 0 for 1 < j < 3, we can write
)\,')\j=tk¢/3, wefl{-1,1}, 1<i#j#k#i<3 (46)

for some positive smooth functions ¢y = @i (ux), 1 < k < 3. It follows from (46) that

A =€ ¢i¢k7 (47)
j
where €; = I%I’ 1 < j <3.Since A1 < Ay < A3 we have
ad? — eid? .
kP —€ipr >0, 1<i<k=<3.
Substituting (47) into (45), we obtain that
=2 1<j<3, (48)
ik
where v/ = 1/ek(pl.2 - e,-qbf, and
Vj =Ajvj =€j%, i,k ;ﬁj, i <k.
i Yk
We obtain from (48) that
1 dv;  Yiv @ Yk L v
hij= ——4 == =~ =T ous “9)
vj du; b vy Ou; Vi du;
On the other hand, equation (iv) of system (2) yields
LoV  Yiyw ¢k (doi Yk Ldg: 1 9y
hij = =% = =2 S v — o =0 TR (50
Vidui  didr iy \dui ou; Gi dui Y Ju;
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Comparing (49) and (50), we obtain that
do;
du,’

This implies that 'j?# =0forall 1 <i#k <3,andhence h;; = 0forall | <i # j <3.
But then equation (i7) of system (2) gives

=0, 1<ic<3.

€Airj+c=0

forall 1 <i # j < 3, which implies that —esc > Oand A} = A = A3 = /—€c¢, a
contradiction. Thus, one of the principal curvatures must be zero, and the result follows from
part b) of Theorem 4. O

1.9 Proof of Proposition 10

Before proving Proposition 10, given a hypersurface f: M> — Q? (c) we compute the pair
(v', V') associated to a parallel hypersurface f;: M* — Qf(c) C R}, to f, witheg =0
or 1, corresponding to ¢ > 0 or ¢ < 0, respectively.

Set e, = c¢/|c| and € = €,¢,. Let ¢ and ¢ be defined by

(cos(+/|clt), sin(/[c]t)), if e =1,
(cosh(+/[c|t), sinh(y/[c|t)), if €= —1.

If N is one of the unit normal vector fields to f andi: Q¥(c) — R, . is the inclusion, then

s+€0
v,
Vel

We denote by M,3 the manifold M3 endowed with the metric induced by f;.

(@), ¥ (1)) :{

iofi=el)iof+ N.

Lemma 13 Let f: M3 — Q?(c) be a holonomic hypersurface. Then any parallel hypersur-
face f;: Mz3 — Q? (c) to f is also holonomic and the pairs (v, V) and (v', V') associated
to f and f;, respectively, are related by

r_ L _ YOy,
:vi = (v — L0V, h

Vi = &Jlely (Dvi + 1) V.
In particular, hzt‘j = hyj.
Proof We have

140) ( v (1) )
.= w+ =Ny = fa - —=A), 52
Jre =00 f. NG Je | @) NG (52)

thus a unit normal vector field to f; is Ny = —&/|c|¥ (@) f + ()N, and

New = fo (~&/Iely 01 - p()4)

-1
= —fix (fp(l)f - %A> (émw(t)l + (p(t)A).

which implies that

v 'y,
A,=<¢<r>1—ﬁA) (eV/icly )1 +e)4). (53)
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20 S. Canevari, R. Tojeiro

It follows from (52) and (53) that f is also holonomic with associated pair given by (51).
The assertion on h} ! follows from a straightforward computation.

Proof of Proposition 10: In view of (51), conditions (3) for (v', V') (with ¢ = 0) follow

immediately from those for (v, V). ]
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