

Hypersurfaces of two space forms and conformally flat hypersurfaces

S. Canevari¹ · R. Tojeiro²

Received: 10 November 2016 / Accepted: 24 April 2017 / Published online: 8 May 2017 © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2017

Abstract We address the problem of determining the hypersurfaces $f: M^n \to \mathbb{Q}_s^{n+1}(c)$ with dimension $n \ge 3$ of a pseudo-Riemannian space form of dimension n + 1, constant curvature c and index $s \in \{0, 1\}$ for which there exists another isometric immersion $\tilde{f}: M^n \to \mathbb{Q}_s^{n+1}(\tilde{c})$ with $\tilde{c} \ne c$. For $n \ge 4$, we provide a complete solution by extending results for $s = 0 = \tilde{s}$ by do Carmo and Dajczer (Proc Am Math Soc 86:115–119, 1982) and by Dajczer and Tojeiro (J Differ Geom 36:1–18, 1992). Our main results are for the most interesting case n = 3, and these are new even in the Riemannian case $s = 0 = \tilde{s}$. In particular, we characterize the solutions that have dimension n = 3 and three distinct principal curvatures. We show that these are closely related to conformally flat hypersurfaces of $\mathbb{Q}_s^4(c)$ with three distinct principal curvatures, and we obtain a similar characterization of the latter that improves a theorem by Hertrich-Jeromin (Beitr Algebra Geom 35:315–331, 1994).

Keywords Hypersurfaces of two space forms · Conformally flat hypersurfaces · Holonomic hypersurfaces

Mathematics Subject Classification 53B25

We denote by $\mathbb{Q}_s^N(c)$ a pseudo-Riemannian space form of dimension N, constant sectional curvature c and index $s \in \{0, 1\}$, that is, $\mathbb{Q}_s^N(c)$ is either a Riemannian or Lorentzian space form of constant curvature c, corresponding to s = 0 or s = 1, respectively. By a hypersurface

Partially supported by CNPq Grant 307338/2013-4 and FAPESP Grant 2011/21362-2.

R. Tojeiro tojeiro@dm.ufscar.br
 S. Canevari scanevari@gmail.com

¹ Universidade Federal de Sergipe, Av. Vereador Olimpio Grande s/n., Itabaiana, Brazil

² Universidade Federal de São Carlos, Via Washington Luiz km 235, São Carlos 13565-905, Brazil

 $f: M^n \to \mathbb{Q}_s^{n+1}(c)$ we always mean an isometric immersion of a *Riemannian* manifold M^n of dimension *n* into $\mathbb{Q}_s^{n+1}(c)$, thus *f* is a *space-like* hypersurface if s = 1.

One of the main purposes of this paper is to address the following

Problem *: For which hypersurfaces $f: M^n \to \mathbb{Q}_{s}^{n+1}(c)$ of dimension $n \ge 3$ does there exist another isometric immersion $\tilde{f}: M^n \to \mathbb{Q}_{s}^{n+1}(\tilde{c})$ with $\tilde{c} \ne c$?

This problem was studied for $s = 0 = \tilde{s}$ and $n \ge 4$ by do Carmo and Dajczer in [3], and by Dajczer and the second author in [5]. Some partial results in the most interesting case n = 3were also obtained in [5]. Including Lorentzian ambient space forms in our study of Problem * was motivated by our investigation in [1] of submanifolds of codimension two and constant curvature $c \in (0, 1)$ of $\mathbb{S}^5 \times \mathbb{R}$, which turned out to be related to hypersurfaces $f : M^3 \to \mathbb{S}^4$ for which M^3 also admits an isometric immersion into the Lorentz space $\mathbb{R}_1^4 = \mathbb{Q}_1^4(0)$.

We first state our results for the case $n \ge 4$. The next one extends a theorem due to do Carmo and Dajczer [3] in the case $s = 0 = \tilde{s}$. Here and in the sequel, for $s \in \{0, 1\}$ we denote $\epsilon_s = -2s + 1$.

Proposition 1 Let $f: M^n \to \mathbb{Q}_s^{n+1}(c)$ be a hypersurface of dimension $n \ge 4$. If there exists another isometric immersion $\tilde{f}: M^n \to \mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})$ with $\tilde{c} \ne c$, then $c < \tilde{c}$ if s = 0 and $\tilde{s} = 1$ (respectively, $c > \tilde{c}$ if s = 1 and $\tilde{s} = 0$) and f has a principal curvature λ of multiplicity at least n - 1 everywhere satisfying $\rho := \epsilon_{\tilde{s}}(c - \tilde{c} + \epsilon_s \lambda^2) \ge 0$. Moreover, at any $x \in M^n$ the following holds:

- (i) if $\lambda = 0$ or f is umbilical with $\rho > 0$, then \tilde{f} is umbilical;
- (ii) if f is umbilical and $\rho = 0$, then 0 is a principal curvature of \tilde{f} with multiplicity at least n 1;
- (iii) if $\lambda \neq 0$ with multiplicity n 1, then \tilde{f} has a principal curvature $\tilde{\lambda}$, with $\tilde{\lambda}^2 = \rho$, which has the same eigenspace as λ .

Thus, Problem * has no solutions if $n \ge 4$ and either $c > \tilde{c}$, s = 0 and $\tilde{s} = 1$ or $c < \tilde{c}$, s = 1 and $\tilde{s} = 0$, while, in the remaining cases, having a principal curvature λ of multiplicity at least n - 1 satisfying $\epsilon_{\tilde{s}}(c - \tilde{c} + \epsilon_s \lambda^2) \ge 0$ is a necessary condition for a solution. In those cases, having a principal curvature of *constant* multiplicity n or n - 1 satisfying the preceding condition is also sufficient for simply connected hypersurfaces.

Proposition 2 Let $f: M^n \to \mathbb{Q}_s^{n+1}(c)$, $n \ge 4$ be an isometric immersion of a simply connected Riemannian manifold. Given $\tilde{c} \ne c$ and $\tilde{s} \in \{0, 1\}$, assume that $c < \tilde{c}$ if s = 0 and $\tilde{s} = 1$, and that $c > \tilde{c}$ if s = 1 and $\tilde{s} = 0$. If f has a principal curvature λ of (constant) multiplicity either n - 1 or n satisfying $\rho := \epsilon_{\tilde{s}}(c - \tilde{c} + \epsilon_s \lambda^2) \ge 0$, then M^n admits an isometric immersion into $\mathbb{Q}_s^{n+1}(\tilde{c})$, which is unique up to congruence if $\rho > 0$.

The next result, proved by Dajczer and the second author in [5] when $s = 0 = \tilde{s}$, shows how any solution $f: M^n \to \mathbb{Q}_s^{n+1}(c), n \ge 4$, of Problem * arises.

Proposition 3 Let $f: M^n \to \mathbb{Q}_s^{n+1}(c)$ and $\tilde{f}: M^n \to \mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})$, $n \ge 4$, be isometric immersions with, say, $c > \tilde{c}$. If s = 0, assume that $\tilde{s} = 0$. Then, for $s = \tilde{s}$ (respectively, s = 1 and $\tilde{s} = 0$), there exist, locally on an open dense subset of M^n , isometric embeddings

$$H: \mathbb{Q}_s^{n+1}(\tilde{c}) \to \mathbb{Q}_s^{n+2}(\tilde{c}) \text{ and } i: \mathbb{Q}_s^{n+1}(c) \to \mathbb{Q}_s^{n+2}(\tilde{c})$$

(respectively, $H: \mathbb{Q}_s^{n+1}(c) \to \mathbb{Q}_s^{n+2}(c)$ and $i: \mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c}) \to \mathbb{Q}_s^{n+2}(c)$), with *i* umbilical, and an isometry

$$\Psi \colon \overline{M}^n := H(\mathbb{Q}^{n+1}_s(\widetilde{c})) \cap i(\mathbb{Q}^{n+1}_s(c)) \to M^n$$

(respectively, $\Psi : \overline{M}^n := H(\mathbb{Q}^{n+1}_{s}(c)) \cap i(\mathbb{Q}^{n+1}_{\tilde{s}}(\tilde{c})) \to M^n)$ such that

$$f \circ \Psi = i^{-1}|_{\overline{M}^n}$$
 and $\tilde{f} \circ \Psi = H^{-1}|_{\overline{M}^n}$.

(respectively, $f \circ \Psi = H^{-1}|_{\tilde{M}^n}$ and $\tilde{f} \circ \Psi = i^{-1}|_{\tilde{M}^n}$).

Proposition 3 explains the existence of a principal curvature λ of multiplicity at least n-1 for a solution $f: M^n \to \mathbb{Q}_s^{n+1}(c), n \ge 4$, of Problem *: the (images by f of the) leaves of the distribution on M^n given by the eigenspaces of λ are the intersections with $i(\mathbb{Q}_s^{n+1}(\tilde{c}))$ of the (images by H of the) relative nullity leaves of H, which have dimension at least n.

Next we consider Problem * for hypersurfaces of dimension n = 3. The following result provides the solutions in two ("dual") special cases.

Theorem 4 Let $f: M^3 \to \mathbb{Q}^4_s(c)$ be a hypersurface for which there exists an isometric immersion $\tilde{f}: M^3 \to \mathbb{Q}^4_{\tilde{s}}(\tilde{c})$ with $\tilde{c} \neq c$.

- (a) Assume that f has a principal curvature of multiplicity two. If either c > c̃, s = 0 and s̃ = 1, or if c < c̃, s = 1 and s̃ = 0, then f is a rotation hypersurface whose profile curve is a c̃-helix in a totally geodesic surface Q_s²(c) of Q_s⁴(c) and f̃ is a generalized cone over a surface with constant curvature in an umbilical hypersurface Q_s³(c̄) of Q_s⁴(c̃), c̄ ≥ c̃. Otherwise, either the same conclusion holds or f and f̃ are locally given on an open dense subset as described in Proposition 3.
- (b) If one of the principal curvatures of f is zero, then f is a generalized cone over a surface with constant curvature in an umbilical hypersurface Q³_s(c̄) of Q⁴_s(c), c̄ ≥ c, and f̃ is a rotation hypersurface whose profile curve is a c-helix in a totally geodesic surface Q²_z(c̃) of Q⁴_s(c̃).

By a generalized cone over a surface $g: M^2 \to \mathbb{Q}^3_s(\bar{c})$ in an umbilical hypersurface $\mathbb{Q}^3_s(\bar{c})$ of $\mathbb{Q}^4_s(c), \bar{c} \ge c$, we mean the hypersurface parametrized by (the restriction to the subset of regular points of) the map $G: M^2 \times \mathbb{R} \to \mathbb{Q}^4_s(c)$ given by

$$G(x,t) = \exp_{g(x)}(t\xi(g(x))),$$

where ξ is a unit normal vector field to the inclusion $i: \mathbb{Q}_s^3(\tilde{c}) \to \mathbb{Q}_s^4(c)$ and exp is the exponential map of $\mathbb{Q}_s^4(c)$. A *c*-helix in $\mathbb{Q}_s^2(\tilde{c}) \subset \mathbb{R}_{s+\epsilon_0}^3$ with respect to a unit vector $v \in \mathbb{R}_{s+\epsilon_0}^3$ is a unit-speed curve $\gamma: I \to \mathbb{Q}_s^2(\tilde{c}) \subset \mathbb{R}_{s+\epsilon_0}^3$ such that the height function $\gamma_v = \langle \gamma, v \rangle$ satisfies $\gamma_v'' + c\gamma_v = 0$. Here $\epsilon_0 = 0$ or 1, corresponding to $\tilde{c} > 0$ or $\tilde{c} < 0$, respectively.

In order to deal with the generic case of Problem * for hypersurfaces of dimension 3, we need to recall the notion of holonomic hypersurfaces. We call a hypersurface $f: M^n \to \mathbb{Q}_s^{n+1}(c)$ holonomic if M^n carries global orthogonal coordinates (u_1, \ldots, u_n) such that the coordinate vector fields $\partial_j = \frac{\partial}{\partial u_j}$ are everywhere eigenvectors of the shape operator A of f. Set $v_j = ||\partial_j||$, and define $V_j \in C^{\infty}(M)$, $1 \le j \le n$, by $A\partial_j = v_j^{-1}V_j\partial_j$. Thus, the first and second fundamental forms of f are

$$I = \sum_{i=1}^{n} v_i^2 du_i^2 \text{ and } II = \sum_{i=1}^{n} V_i v_i du_i^2.$$
(1)

Set $v = (v_1, \ldots, v_n)$ and $V = (V_1, \ldots, V_n)$. We call (v, V) the pair associated to f. The next result is well known.

Proposition 5 The triple (v, h, V), where $h_{ij} = \frac{1}{v_i} \frac{\partial v_j}{\partial u_i}$, satisfies the system of PDE's

$$\begin{cases} (i)\frac{\partial v_i}{\partial u_j} = h_{ji}v_j, \quad (ii)\frac{\partial h_{ik}}{\partial u_j} = h_{ij}h_{jk}, \\ (iii)\frac{\partial h_{ij}}{\partial u_i} + \frac{\partial h_{ji}}{\partial u_j} + h_{ki}h_{kj} + \epsilon_s V_i V_j + cv_i v_j = 0, \\ (iv)\frac{\partial V_i}{\partial u_j} = h_{ji}V_j, \quad 1 \le i \ne j \ne k \ne i \le n. \end{cases}$$
(2)

Conversely, if (v, h, V) is a solution of (2) on a simply connected open subset $U \subset \mathbb{R}^n$, with $v_i \neq 0$ everywhere for all $1 \leq i \leq n$, then there exists a holonomic hypersurface $f: U \to \mathbb{Q}_s^{n+1}(c)$ whose first and second fundamental forms are given by (1).

The following characterization of hypersurfaces $f: M^3 \to \mathbb{Q}^4_s(c)$ with three distinct principal curvatures that are solutions of Problem * is one of the main results of the paper.

Theorem 6 Let $f: M^3 \to \mathbb{Q}^4_s(c)$ be a simply connected holonomic hypersurface whose associated pair (v, V) satisfies

$$\sum_{i=1}^{3} \delta_i v_i^2 = \hat{\epsilon}, \quad \sum_{i=1}^{3} \delta_i v_i V_i = 0 \quad and \quad \sum_{i=1}^{3} \delta_i V_i^2 = C := \tilde{\epsilon}(c - \tilde{c}), \tag{3}$$

where $\hat{\epsilon}, \tilde{\epsilon} \in \{-1, 1\}, \tilde{c} \neq c, \tilde{\epsilon}\tilde{\epsilon} = \epsilon_s, (\delta_1, \delta_2, \delta_3) = (1, -1, 1)$ either if $\hat{\epsilon} = 1$ or if $\hat{\epsilon} = -1$ and C > 0, and $(\delta_1, \delta_2, \delta_3) = (-1, -1, -1)$ if $\hat{\epsilon} = -1$ and C < 0. Then M^3 admits an isometric immersion into $\mathbb{Q}^4_{\tilde{\epsilon}}(\tilde{c})$, with $\epsilon_{\tilde{s}} = \tilde{\epsilon}$, which is unique up to congruence.

Conversely, if $f: M^3 \to \mathbb{Q}^4_s(c)$ is a hypersurface with three distinct principal curvatures for which there exists an isometric immersion $\tilde{f}: M^3 \to \mathbb{Q}^4_{\tilde{s}}(\tilde{c})$ with $\tilde{c} \neq c$, then f is locally a holonomic hypersurface whose associated pair (v, V) satisfies (3), with $\tilde{\epsilon} = \epsilon_{\tilde{s}}$.

As we shall make precise in the sequel, the class of hypersurfaces that are solutions of Problem * is closely related to that of conformally flat hypersurfaces of $\mathbb{Q}_s^{n+1}(c)$, that is, isometric immersions $f: M^n \to \mathbb{Q}_s^{n+1}(c)$ of conformally flat manifolds. Recall that a Riemannian manifold M^n is *conformally flat* if each point of M^n has an open neighborhood that is conformally diffeomorphic to an open subset of Euclidean space \mathbb{R}^n . First, for $n \ge 4$ we have the following extension of a result due to E. Cartan when s = 0.

Proposition 7 Let $f: M^n \to \mathbb{Q}_s^{n+1}(c)$ be a hypersurface of dimension $n \ge 4$. Then M^n is conformally flat if and only if f has a principal curvature of multiplicity at least n - 1.

It was already known by E. Cartan that the "only if" assertion in the preceding result is no longer true for n = 3 and s = 0. The study of conformally flat hypersurfaces by Cartan was taken up by Hertrich-Jeromin [6], who showed that a conformally flat hypersurface $f: M^3 \to \mathbb{Q}^4(c)$ with three distinct principal curvatures admits locally principal coordinates (u_1, u_2, u_3) such that the induced metric $ds^2 = \sum_{i=1}^3 v_i^2 du_i^2$ satisfies, say, $v_2^2 = v_1^2 + v_3^2$. The next result states that conformally flat hypersurfaces $f: M^3 \to \mathbb{Q}_s^4(c)$ with three distinct principal curvatures are characterized by the existence of such principal coordinates under some additional conditions.

Theorem 8 Let $f: M^3 \to \mathbb{Q}^4_s(c)$ be a holonomic hypersurface whose associated pair (v, V) satisfies

$$\sum_{i=1}^{3} \delta_i v_i^2 = 0, \quad \sum_{i=1}^{3} \delta_i v_i V_i = 0 \quad and \quad \sum_{i=1}^{3} \delta_i V_i^2 = 1, \tag{4}$$

Springer

where $(\delta_1, \delta_2, \delta_3) = (1, -1, 1)$. Then M^3 is conformally flat, and f has three distinct principal curvatures.

Conversely, any conformally flat hypersurface $f: M^3 \to \mathbb{Q}^4_s(c)$ with three distinct principal curvatures is locally a holonomic hypersurface whose associated pair (v, V) satisfies (4).

It follows from Theorems 6 and 8 that, in order to produce hypersurfaces of $\mathbb{Q}_s^4(c)$ that are either conformally flat or admit an isometric immersion into $\mathbb{Q}_s^4(\tilde{c})$ with $\tilde{c} \neq c$, one must start with solutions (v, h, V) on an open simply connected subset $U \subset \mathbb{R}^3$ of the same system of PDE's, namely, the one obtained by adding to system (2) (for n = 3) the equations

$$\delta_i \frac{\partial v_i}{\partial u_i} + \delta_j h_{ij} v_j + \delta_k h_{ik} v_k = 0$$
⁽⁵⁾

and

$$\delta_i \frac{\partial V_i}{\partial u_i} + \delta_j h_{ij} V_j + \delta_k h_{ik} V_k = 0, \quad 1 \le i \ne j \ne k \ne i \le 3, \tag{6}$$

with $(\delta_1, \delta_2, \delta_3) = (1, -1, 1)$. Such system has the first integrals

$$\sum_{i=1}^{3} \delta_i v_i^2 = K_1, \quad \sum_{i=1}^{3} \delta_i v_i V_i = K_2 \text{ and } \sum_{i=1}^{3} \delta_i V_i^2 = K_3.$$

If initial conditions at some point are chosen so that $K_1 = 1$ (respectively, $K_1 = 0$), $K_2 = 0$ and $K_3 = \epsilon (c - \tilde{c})$ (respectively, $K_3 = 1$), then the corresponding solutions give rise to hypersurfaces of $\mathbb{Q}^4_s(c)$, $\epsilon_s = \epsilon$, with three distinct principal curvatures that can be isometrically immersed into $\mathbb{Q}^4_s(\tilde{c})$ (respectively, are conformally flat).

It was already shown in [5] for $s = 0 = \tilde{s}$ that, unlike the case of dimension $n \ge 4$, among hypersurfaces $f: M^n \to \mathbb{Q}_s^{n+1}(c)$ of dimension n = 3 with three distinct principal curvatures the classes of solutions of Problem * and conformally flat hypersurfaces are distinct. Moreover, it was observed that their intersection contains the generalized cones over surfaces with constant curvature in an umbilical hypersurface $\mathbb{Q}_s^3(\bar{c})$ of $\mathbb{Q}_s^4(c), \bar{c} \ge c$. The following result states that such intersection contains no other elements.

Proposition 9 Let $f: M^3 \to \mathbb{Q}_s^4(c)$ be a conformally flat hypersurface with three distinct principal curvatures. If M^3 admits an isometric immersion into $\mathbb{Q}_{\tilde{s}}^4(\tilde{c}), \tilde{c} \neq c$, then f is a generalized cone over a surface with constant curvature in an umbilical hypersurface $\mathbb{Q}_s^3(\tilde{c})$ of $\mathbb{Q}_s^4(c), \tilde{c} \geq c$.

Our last result shows that hypersurfaces $f: M^3 \to \mathbb{Q}^4_s(c)$ that can be isometrically immersed into $\mathbb{R}^4_{\tilde{s}}$ arise in families of parallel hypersurfaces.

Proposition 10 Let $f: M^3 \to \mathbb{Q}^4_s(c)$ be a holonomic hypersurface whose associated pair (v, V) satisfies (3) with $\tilde{c} = 0$. Then any parallel hypersurface $f_t: M^3 \to \mathbb{Q}^4_s(c)$ to f has also the same property.

In a forthcoming paper [2] we develop a Ribaucour transformation for the class of hypersurfaces of $\mathbb{Q}_{s}^{4}(c)$ with three distinct principal curvatures that can be isometrically immersed into $\mathbb{Q}_{\tilde{s}}^{4}(\tilde{c})$ with $c \neq \tilde{c}$, as well as for the class of conformally flat hypersurfaces with three distinct principal curvatures. It gives a process to generate a family of new elements of such classes, starting from a given one and a solution of a linear system of PDE. In particular, explicit new examples of hypersurfaces in both classes are constructed.

1 The proofs

1.1 Proof of Proposition 1

Let $i: \mathbb{Q}_s^{n+1}(c) \to \mathbb{Q}_{s+\epsilon_0}^{n+2}(\tilde{c})$ be an umbilical inclusion, where $\epsilon_0 = 0$ or 1, corresponding to $c > \tilde{c}$ or $c < \tilde{c}$, respectively, and set $\hat{f} = i \circ f$. Then, the second fundamental forms α and $\hat{\alpha}$ of f and \hat{f} , respectively, are related by

$$\hat{\alpha} = i_* \alpha + \sqrt{|c - \tilde{c}|} \langle \ , \ \ \xi, \tag{7}$$

where ξ is one of the unit vector fields that are normal to *i*.

For a fixed point $x \in M^n$, define $W^3(x) := N_{\hat{f}}M(x) \oplus N_{\tilde{f}}M(x)$, and endow $W^3(x)$ with the inner product

$$\langle\!\langle (\xi + \tilde{\xi}, \eta + \tilde{\eta}) \rangle\!\rangle_{W^3(x)} := \langle \xi, \eta \rangle_{N_{\tilde{f}}M(x)} - \langle \tilde{\xi}, \tilde{\eta} \rangle_{N_{\tilde{f}}M(x)},$$

which has index $(s + \epsilon_0) + (1 - \tilde{s})$.

Now define a bilinear form $\beta_x : T_x M \times T_x M \to W^3(x)$ by

$$\beta_x = \hat{\alpha}(x) \oplus \tilde{\alpha}(x),$$

where $\hat{\alpha}(x)$ and $\tilde{\alpha}(x)$ are the second fundamental forms of \hat{f} and \tilde{f} , respectively, at x. Notice that $\mathcal{N}(\beta_x) \subset \mathcal{N}(\hat{\alpha}(x)) = \{0\}$ by (7). On the other hand, it follows from the Gauss equations of \hat{f} and \tilde{f} that β_x is flat with respect to $\langle \langle , \rangle \rangle$, that is,

$$\langle\!\langle \beta_x(X,Y), \beta_x(Z,W) \rangle\!\rangle = \langle\!\langle \beta_x(X,W), \beta_x(Z,Y) \rangle\!\rangle$$

for all X, Y, Z, $W \in T_x M$. Thus, if $\langle \langle , \rangle \rangle$ is positive definite, which is the case when s = 0, $\tilde{s} = 1$ and $\epsilon_0 = 0$, that is, $c > \tilde{c}$, we obtain a contradiction with Corollary 1 of [7], according to which one has the inequality

$$\dim \mathcal{N}(\beta_x) \ge n - \dim W(x) = n - 3 > 0.$$
(8)

The same contradiction is reached by applying the preceding inequality to $-\langle \langle , \rangle \rangle$ when s = 1, $\tilde{s} = 0$ and $c < \tilde{c}$, in which case $\langle \langle , \rangle \rangle$ is negative definite. Therefore, such cases cannot occur, which proves the first assertion.

In all other cases, the index of $\langle \langle , \rangle \rangle$ is either 1 or 2. Thus, by applying Corollary 2 in [7] to $\langle \langle , \rangle \rangle$ in the first case and to $-\langle \langle , \rangle \rangle$ in the latter, we obtain that $S(\beta_x)$ must be degenerate, for otherwise the inequality (8) would still hold, and then we would reach a contradiction as before.

Since $S(\beta_x)$ is degenerate, there exist $\zeta \in N_{\hat{f}}M(x)$ and $\tilde{N} \in N_{\tilde{f}}M(x)$ such that $(0, 0) \neq (\zeta, \tilde{N}) \in S(\beta_x) \cap S(\beta_x)^{\perp}$. In particular, from $0 = \langle \langle \zeta + \tilde{N}, \zeta + \tilde{N} \rangle \rangle$ it follows that $\langle \tilde{N}, \tilde{N} \rangle = \langle \zeta, \zeta \rangle$. Thus, either $\tilde{N} = 0$ and $\zeta \in S(\hat{\alpha}(x)) \cap S(\hat{\alpha}(x))^{\perp}$, or we can assume that $\langle \tilde{N}, \tilde{N} \rangle = \epsilon_{\tilde{s}} = \langle \zeta, \zeta \rangle$.

The former case occurs precisely when f is umbilical at x with a principal curvature λ with respect to one of the unit normal vectors N to f, satisfying

$$\epsilon_s \lambda^2 + c - \tilde{c} = 0,$$

in which case $N_{\hat{f}}M(x)$ is a Lorentzian two-plane and $\zeta = \lambda i_* N + \sqrt{|c - \tilde{c}|}\xi$ is a light-like vector that spans $S(\hat{\alpha}(x))$. In this case, all sectional curvatures of M^n at x are equal to \tilde{c} by the Gauss equation of f, and hence \tilde{f} has 0 as a principal curvature at x with multiplicity at least n - 1 by the Gauss equation of \tilde{f} .

Now assume that $\langle \tilde{N}, \tilde{N} \rangle = \epsilon_{\tilde{s}} = \langle \zeta, \zeta \rangle$. Then, from

$$0 = \langle\!\langle \beta, \zeta + N \rangle\!\rangle = \langle \hat{\alpha}, \zeta \rangle - \langle \tilde{\alpha}, N \rangle,$$

we obtain that $A_{\zeta}^{\hat{f}} = A_{\tilde{N}}^{\tilde{f}}$. Let $\zeta^{\perp} \in N_{\hat{f}}M(x)$ be such that $\{\zeta, \zeta^{\perp}\}$ is an orthonormal basis of $N_{\hat{f}}M(x)$. The Gauss equations for \hat{f} and \tilde{f} imply that

$$\langle A_{\zeta^{\perp}}^{\hat{f}}X,Y\rangle\langle A_{\zeta^{\perp}}^{\hat{f}}Z,W\rangle = \langle A_{\zeta^{\perp}}^{\hat{f}}X,W\rangle\langle A_{\zeta^{\perp}}^{\hat{f}}Z,Y\rangle$$

for all $X, Y, Z, W \in T_x M$, which is equivalent to dim $\mathcal{N}(A_{\xi^{\perp}}^{\hat{f}}) \geq n-1$. Since $A_{\xi}^{\hat{f}} = \delta \sqrt{|c-\tilde{c}|}I$ by (7), with $\delta = (c-\tilde{c})/|c-\tilde{c}|$, it follows that the restriction to $\mathcal{N}(A_{\xi^{\perp}}^{\hat{f}})$ of all shape operators $A_{\eta}^{\hat{f}}, \eta \in N_{\hat{f}}M(x)$, is a multiple of the identity tensor. In particular, this is the case for $A_{i_*N}^{\hat{f}} = A_N^f$, where N is one of the unit normal vector fields to f, hence f has a principal curvature λ at x with multiplicity at least n-1. Moreover, if $\lambda = 0$ then ζ^{\perp} must coincide with i_*N , and hence ζ with ξ , up to signs.

Moreover, if $\lambda = 0$ then ζ^{\perp} must coincide with i_*N , and hence ζ with ξ , up to signs. Therefore $A_{\tilde{N}}^{\tilde{f}} = A_{\xi}^{\hat{f}}$, up to sign, hence \tilde{f} is umbilical at x. If f is umbilical at x and $c + \epsilon_s \lambda^2 \neq \tilde{c}$, then $A_{\zeta^{\perp}} = 0$ and $A_{\tilde{N}}^{\tilde{f}} = A_{\zeta}^{\hat{f}}$ is a (nonzero) constant multiple of the identity tensor. Finally, if $\lambda \neq 0$ has multiplicity n - 1, then we must have $\zeta^{\perp} \neq i_*N$ and dim $\mathcal{N}(A_{\zeta^{\perp}}^{\hat{f}}) = n - 1$, hence $\mathcal{N}(A_{\zeta^{\perp}}^{\hat{f}})$ is an eigenspace of $A_{\zeta}^{\hat{f}} = A_{\tilde{N}}^{\tilde{f}}$.

1.2 Proof of Proposition 2

Suppose first that f is umbilical, with a (constant) principal curvature λ . If $\rho = 0$, then M^n has constant curvature \tilde{c} , hence it admits isometric immersions into $\mathbb{Q}^{n+1}_{\tilde{s}}(\tilde{c})$ having 0 as a principal curvature with multiplicity at least n - 1. If $\rho > 0$, there exists $\tilde{\lambda} \neq 0$ such that $c - \tilde{c} + \epsilon_s \lambda^2 = \epsilon_{\tilde{s}} \tilde{\lambda}^2$. Hence $c + \epsilon_s \lambda^2 = \tilde{c} + \epsilon_{\tilde{s}} \tilde{\lambda}^2$, thus $\tilde{A} = \tilde{\lambda}I$ satisfies the Gauss and Codazzi equations for an (umbilical) isometric immersion into $\mathbb{Q}^{n+1}_{\tilde{s}}(\tilde{c})$.

Assume now that λ has constant multiplicity n-1. If $\lambda = 0$, then M^n has constant curvature c and by the assumption there exists $\tilde{\lambda} \neq 0$ such that $c = \tilde{c} + \epsilon_{\tilde{s}} \tilde{\lambda}^2$. Thus, $\tilde{A} = \tilde{\lambda} I$ satisfies the Gauss and Codazzi equations for an (umbilical) isometric immersion into $\mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})$.

From now on assume that $\lambda \neq 0$. Let μ be the simple principal curvature and let E_{λ} and E_{μ} denote the corresponding eigenbundles. Then, one can check that the Codazzi equations for f are equivalent to the following facts:

- (i) λ is constant along E_{λ} ;
- (ii) E_{λ} is an umbilical distribution whose mean curvature vector field is $\eta = (\lambda \mu)^{-1} \nabla \lambda$;
- (iii) The mean curvature vector field (geodesic curvature vector field) of E_{μ} is $\zeta = (\mu \lambda)^{-1} (\nabla \mu)_{E_{\lambda}}$.

By the assumption, there exist $\tilde{\lambda}$, $\tilde{\mu} \in C^{\infty}(M)$ such that

$$c - \tilde{c} + \epsilon_s \lambda^2 = \epsilon_{\tilde{s}} \tilde{\lambda}^2$$
 and $c - \tilde{c} + \epsilon_s \lambda \mu = \epsilon_{\tilde{s}} \tilde{\lambda} \tilde{\mu}$.

Moreover, since $\lambda \neq \mu$ we must have $\tilde{\lambda} \neq 0$ everywhere, and hence $\tilde{\lambda}$ and $\tilde{\mu}$ are unique if $\tilde{\lambda}$ is chosen to be positive. From both equations we obtain

$$\epsilon_s \lambda^2 - \epsilon_{\tilde{s}} \tilde{\lambda}^2 = \epsilon_s \lambda \mu - \epsilon_{\tilde{s}} \tilde{\lambda} \tilde{\mu}, \quad \epsilon_s \lambda \nabla \lambda = \epsilon_{\tilde{s}} \tilde{\lambda} \nabla \tilde{\lambda}$$

and

$$\epsilon_{s}\left((\nabla\lambda)\mu+\lambda\nabla\mu\right)=\epsilon_{\tilde{s}}\left((\nabla\tilde{\lambda}\right)\tilde{\mu}+\tilde{\lambda}\nabla\tilde{\mu}\right).$$

It follows that

$$\frac{\nabla\tilde{\lambda}}{\tilde{\lambda} - \tilde{\mu}} = \frac{\nabla\lambda}{\lambda - \mu} \tag{9}$$

and similarly,

$$\frac{(\nabla\tilde{\mu})_{E_{\lambda}}}{\tilde{\mu}-\tilde{\lambda}} = \frac{(\nabla\mu)_{E_{\lambda}}}{\mu-\lambda}.$$
(10)

Let \tilde{A} be the endomorphism of TM with eigenvalues $\tilde{\lambda}$, $\tilde{\mu}$ and corresponding eigenbundles E_{λ} and E_{μ} , respectively. Since

$$c + \epsilon_s \lambda^2 = \tilde{c} + \epsilon_{\tilde{s}} \tilde{\lambda}^2$$
 and $c + \epsilon_s \lambda \mu = \tilde{c} + \epsilon_{\tilde{s}} \tilde{\lambda} \tilde{\mu}$,

the Gauss equations for an isometric immersion $\tilde{f}: M^n \to \mathbb{Q}^{n+1}_{\tilde{s}}(\tilde{c})$ are satisfied by \tilde{A} . It follows from (9) and (10) that \tilde{A} also satisfies the Codazzi equations.

1.3 Proof of Proposition 3

Since $c > \tilde{c}$, there exist umbilical inclusions $i: \mathbb{Q}_s^{n+1}(c) \to \mathbb{Q}_s^{n+2}(\tilde{c})$ and $i: \mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c}) \to \mathbb{Q}_s^{n+2}(c)$ for $(s, \tilde{s}) = (1, 0)$. If $s = \tilde{s}$ (respectively, $(s, \tilde{s}) = (1, 0)$), set $\hat{f} = i \circ f$ (respectively, $\hat{f} = i \circ \tilde{f}$). Then, one can use the existence of normal vector fields $\zeta \in \Gamma(N_{\hat{f}}M)$ and $\tilde{N} \in \Gamma(N_{\tilde{f}}M)$ satisfying $\langle \zeta, \zeta \rangle = \tilde{\epsilon} = \langle \tilde{N}, \tilde{N} \rangle$ and $A_{\zeta}^{\hat{f}} = A_{\tilde{N}}^{\tilde{f}}$ and argue as in the proof of Theorem 3 in [5]. One obtains that there exists an open dense subset $U \subset M^n$, each point of which has an open neighborhood $V \subset M^n$ such that $\hat{f}|_V$ (respectively, $f|_V$) is a composition $\hat{f}|_V = H \circ \tilde{f}|_V$ (respectively, $f|_V = H \circ \hat{f}|_V$) with an isometric embedding $H: W \subset \mathbb{Q}_s^{n+1}(\tilde{c}) \to \mathbb{Q}_s^{n+2}(\tilde{c})$ (respectively, $H: W \subset \mathbb{Q}_s^{n+1}(c) \to \mathbb{Q}_s^{n+2}(c)$), with $\tilde{f}(V) \subset W$ (respectively, $\hat{f}(V) \subset W$). Set $\bar{M}^n = H(W) \cap i(\mathbb{Q}_s^{n+1}(c))$ (respectively, $\bar{M}^n = H(W) \cap i(\mathbb{Q}_s^{n+1}(\tilde{c}))$). Then $i \circ f|_V = H \circ \tilde{f}|_V: V \to \bar{M}^n$ (respectively, $H \circ f|_V = i \circ \tilde{f}|_V: V \to \bar{M}^n$) is an isometry. Let $\Psi: \bar{M}^n \to V$ be the inverse of this isometry. Then $f \circ \Psi = i^{-1}|_{\bar{M}^n}$ and $\tilde{f} \circ \Psi = H^{-1}|_{\bar{M}^n}$ (respectively, $f \circ \Psi = H^{-1}|_{\bar{M}^n}$ and $\tilde{f} \circ \Psi = i^{-1}|_{\bar{M}^n}$), where i^{-1} and H^{-1} denote the inverses of the maps i and H, respectively, regarded as maps onto their images.

1.4 Proof of Theorem 4

Before going into the proof of Theorem 4, we establish a basic fact that will also be used in the proof of Theorem 6 in the next section.

Lemma 11 Let $f: M^3 \to \mathbb{Q}^4_s(c)$ and $\tilde{f}: M^3 \to \mathbb{Q}^4_{\tilde{s}}(\tilde{c})$ be isometric immersions with $c \neq \tilde{c}$. Then, at each point $x \in M^3$ there exists an orthonormal basis $\{e_1, e_2, e_3\}$ of $T_x M^3$ that simultaneously diagonalizes the second fundamental forms of f and \tilde{f} .

Proof Define $i: \mathbb{Q}_s^4(c) \to \mathbb{Q}_{s+\epsilon_0}^5(\tilde{c})$ and \hat{f} , as well as $W^3(x)$, $\langle\!\langle , \rangle\!\rangle_{W^3(x)}$ and β_x for each $x \in M^n$, as in the proof of Proposition 1. If $\mathcal{S}(\beta_x)$ is degenerate for all $x \in M^3$, we conclude

as in the case $n \ge 4$ that the assertions in Theorem 1 hold, hence the statement is clearly true in this case.

Suppose now that $S(\beta_x)$ is nondegenerate at $x \in M^3$. Then the inequality

 $\dim \mathcal{S}(\beta_x) \ge \dim T_x M - \dim \mathcal{N}(\beta_x)$

holds by Corollary 2 in [7]. Since $\mathcal{N}(\beta_x) = \{0\}$, the right-hand side is equal to dim $T_x M = 3 = \dim W^3(x)$, hence we must have equality in the above inequality. By Theorem 2 - b in [7], there exists an orthonormal basis $\{\xi_1, \xi_2, \xi_3\}$ of $W^3(x)$ and a basis $\{\theta^1, \theta^2, \theta^3\}$ of T_x^*M such that

$$\beta = \sum_{j=1}^{3} \theta^{j} \otimes \theta^{j} \xi_{j}.$$

In particular, if $i \neq j$ then $\beta(e_i, e_j) = 0$ for the dual basis $\{e_1, e_2, e_3\}$ of $\{\theta^1, \theta^2, \theta^3\}$. It follows that $\{e_1, e_2, e_3\}$ diagonalyzes both $\hat{\alpha}$ and $\tilde{\alpha}$, and therefore both α and $\tilde{\alpha}$, in view of (7). It also follows from (7) that

$$0 = \langle \hat{\alpha}(e_i, e_j), \xi \rangle = \sqrt{|c - \tilde{c}|} \langle e_i, e_j \rangle, \ i \neq j,$$

hence the basis $\{e_1, e_2, e_3\}$ is orthogonal.

Lemma 12 Under the assumptions of Lemma 11, let $\lambda_1, \lambda_2, \lambda_3$ and μ_1, μ_2, μ_3 be the principal curvatures of f and \tilde{f} correspondent to e_1, e_2 and e_3 , respectively.

(a) Assume that f has a principal curvature of multiplicity two, say, that $\lambda_1 = \lambda_2 := \lambda$. If either $c > \tilde{c}$, s = 0 and $\tilde{s} = 1$, or $c < \tilde{c}$, s = 1 and $\tilde{s} = 0$, then

$$c - \tilde{c} + \epsilon_s \lambda \lambda_3 = 0$$
, $\mu_3 = 0$ and $c - \tilde{c} + \epsilon_s \lambda^2 = \epsilon_{\tilde{s}} \mu_1 \mu_2$.

Otherwise, either the same conclusion holds or

$$\mu_1 = \mu_2 := \mu, \ c - \tilde{c} + \epsilon_s \lambda^2 = \epsilon_{\tilde{s}} \mu^2 \ and \ c - \tilde{c} + \epsilon_s \lambda \lambda_3 = \epsilon_{\tilde{s}} \mu \mu_3.$$

(b) Assume, say, that $\lambda_3 = 0$. Then $\mu_1 = \mu_2 := \mu$,

$$c - \tilde{c} + \epsilon_s \lambda_1 \lambda_2 = \epsilon_{\tilde{s}} \mu^2 \tag{11}$$

and

$$c - \tilde{c} = \epsilon_{\tilde{s}} \mu \mu_3. \tag{12}$$

Proof By the Gauss equations for f and \tilde{f} , we have

$$c + \epsilon_s \lambda_i \lambda_j = \tilde{c} + \epsilon_{\tilde{s}} \mu_i \mu_j, \quad 1 \le i \ne j \le 3.$$
(13)

(a) If $\lambda_1 = \lambda_2 := \lambda$, then the preceding equations are

$$c + \epsilon_s \lambda^2 = \tilde{c} + \epsilon_{\tilde{s}} \mu_1 \mu_2, \tag{14}$$

$$c + \epsilon_s \lambda \lambda_3 = \tilde{c} + \epsilon_{\tilde{s}} \mu_1 \mu_3 \tag{15}$$

and

$$c + \epsilon_s \lambda \lambda_3 = \tilde{c} + \epsilon_{\tilde{s}} \mu_2 \mu_3. \tag{16}$$

The two last equations yield

$$\mu_3(\mu_1 - \mu_2) = 0,$$

Deringer

10

hence either $\mu_3 = 0$ or $\mu_1 = \mu_2$. In view of (14), the second possibility cannot occur if either $c > \tilde{c}$, s = 0 and $\tilde{s} = 1$, or $c < \tilde{c}$, s = 1 and $\tilde{s} = 0$. Thus, in these cases we must have $\mu_3 = 0$, and then $c - \tilde{c} + \epsilon_s \lambda^2 = \epsilon_{\tilde{s}} \mu_1 \mu_2$ and $c - \tilde{c} + \epsilon_s \lambda \lambda_3 = 0$ by (15) and (16).

Otherwise, either the same conclusion holds or $\mu_1 = \mu_2 := \mu$, and then $c - \tilde{c} + \epsilon_s \lambda^2 = \epsilon_{\tilde{s}} \mu^2$ and $c - \tilde{c} + \epsilon_s \lambda \lambda_3 = \epsilon_{\tilde{s}} \mu \mu_3$ by (15) and (16).

(b) If $\lambda_3 = 0$, then Eq. (13) become

$$c - \tilde{c} + \epsilon_s \lambda_1 \lambda_2 = \epsilon_{\tilde{s}} \mu_1 \mu_2, \tag{17}$$

$$c - \tilde{c} = \epsilon_{\tilde{s}} \mu_1 \mu_3 \tag{18}$$

and

$$c - \tilde{c} = \epsilon_{\tilde{s}} \mu_2 \mu_3 \tag{19}$$

Since $\mu_3 \neq 0$ by (18) or (19), these equations imply that $\mu_1 = \mu_2 := \mu$, and we obtain (12). Equation (11) then follows from (17).

Proof of Theorem 4 Assume that f has a principal curvature of multiplicity two, say, $\lambda_1 = \lambda_2 := \lambda$. Suppose first that either $c > \tilde{c}$, s = 0 and $\tilde{s} = 1$, or $c < \tilde{c}$, s = 1 and $\tilde{s} = 0$. Then, it follows from Lemma 12 that

$$c - \tilde{c} + \epsilon_s \lambda \lambda_3 = 0$$
, $\mu_3 = 0$ and $c - \tilde{c} + \epsilon_s \lambda^2 = \epsilon_{\tilde{s}} \mu_1 \mu_2$. (20)

In particular, we must have $\lambda \neq 0$ by the first of the preceding equations, whereas the last one implies that $\mu_1\mu_2 \neq 0$. Then, it is well known that E_{λ} is a spherical distribution, that is, it is umbilical and its mean curvature normal $\eta = \nu e_3$ satisfies $e_1(\nu) = 0 = e_2(\nu)$. In particular, a leaf σ of E_{λ} has constant sectional curvature $\nu^2 + \epsilon_s \lambda^2 + c = \nu^2 + \epsilon_s \mu_1 \mu_2 + \tilde{c}$. Denoting by ∇ and $\tilde{\nabla}$ the connections on M^3 and $\tilde{f}^*T\mathbb{Q}_s^4(\tilde{c})$, respectively, we have

$$\tilde{\nabla}_{e_i}\tilde{f}_*e_3=\tilde{f}_*\nabla_{e_i}e_3=-\nu\tilde{f}_*e_i,\quad 1\leq i\leq 2,$$

hence $\tilde{f}(\sigma)$ is contained in an umbilical hypersurface $\mathbb{Q}^3_{\tilde{s}}(\tilde{c})$ of $\mathbb{Q}^4_{\tilde{s}}(\tilde{c})$ with constant curvature $\tilde{c} = \tilde{c} + \nu^2$ and $\tilde{f}_* e_3$ as a unit normal vector field.

Moreover, $E_{\lambda}^{\perp} = E_{\mu_3}$ is the relative nullity distribution of \tilde{f} . Thus, it is totally geodesic, and in fact its integral curves are mapped by \tilde{f} into geodesics of $\mathbb{Q}_{\tilde{s}}^4(\tilde{c})$. It follows that $\tilde{f}(M^3)$ is contained in a generalized cone over $\tilde{f}(\sigma)$.

On the other hand, it is not hard to extend the proof of Theorem 4.2 in [4] to the case of Lorentzian ambient space forms, and conclude that f is a rotation hypersurface in $\mathbb{Q}_s^4(c)$. This means that there exist subspaces $P^2 \subset P^3 = P_{s+\epsilon_0}^3$ in $\mathbb{R}_{s+\epsilon_0}^5 \supset \mathbb{Q}_s^4(c)$ with $P^3 \cap \mathbb{Q}_s^4(c) \neq \emptyset$, where $\epsilon_0 = 0$ or $\epsilon_0 = 1$, corresponding to c > 0 or c < 0, respectively, and a regular curve γ in $\mathbb{Q}_s^2(c) = P^3 \cap \mathbb{Q}_s^4(c)$ that does not meet P^2 , such that $f(M^2)$ is the union of the orbits of points of γ under the action of the subgroup of orthogonal transformations of $\mathbb{R}_{s+\epsilon_0}^5$ that fix pointwise P^2 . If P^2 is nondegenerate, then f can be parameterized by

$$f(s, u) = (\gamma_1(s)\phi_1(u), \gamma_1(s)\phi_2(u), \gamma_1(s)\phi_3(u), \gamma_4(s), \gamma_5(s)),$$

with respect to an orthonormal basis $\{e_1, \ldots, e_5\}$ of $\mathbb{R}^5_{s+\epsilon_0}$ satisfying the conditions in either (*i*) or (*ii*) below, according to whether the induced metric on P^2 has index $s + \epsilon_0$ or $s + \epsilon_0 - 1$, respectively:

(i) $\langle e_i, e_i \rangle = 1$ for $1 \le i \le 3$, $\langle e_{3+j}, e_{3+j} \rangle = \epsilon_j$ for $1 \le j \le 2$, and (ϵ_1, ϵ_2) equal to either (1, 1), (1, -1) or (-1, -1), corresponding to $s + \epsilon_0 = 0$, 1 or 2, respectively.

(ii) $\langle e_1, e_1 \rangle = -1$, $\langle e_i, e_i \rangle = 1$ for $2 \le i \le 4$ and $\langle e_5, e_5 \rangle = \overline{\epsilon}$, where $\overline{\epsilon} = 1$ or $\overline{\epsilon} = -1$, corresponding to $s + \epsilon_0 = 1$ or 2, respectively.

In both cases, we have $P^2 = \text{span}\{e_4, e_5\}$, $P^3 = \text{span}\{e_1, e_4, e_5\}$, $u = (u_1, u_2)$, $\gamma(s) = (\gamma_1(s), \gamma_4(s), \gamma_5(s))$ a unit–speed curve in $\mathbb{Q}_s^2(c) \subset P^3$ and $\phi(u) = (\phi_1(u), \phi_2(u), \phi_3(u))$ an orthogonal parameterization of the unit sphere $\mathbb{S}^2 \subset (P^2)^{\perp}$ in case (*i*) and of the hyperbolic plane $\mathbb{H}^2 \subset (P^2)^{\perp}$ in case (*ii*). Accordingly, the hypersurface is said to be of spherical or hyperbolic type.

If P^2 is degenerate, then f is a rotation hypersurface of parabolic type parameterized by

$$f(s, u) = \left(\gamma_1(s), \gamma_1(s)u_1, \gamma_1(s)u_2, \gamma_4(s) - \frac{1}{2}\gamma_1(s)(u_1^2 + u_2^2), \gamma_5(s)\right),$$

with respect to a pseudo-orthonormal basis $\{e_1, \ldots, e_5\}$ of $\mathbb{R}^5_{s+\epsilon_0}$ such that $\langle e_1, e_1 \rangle = 0 = \langle e_4, e_4 \rangle$, $\langle e_1, e_4 \rangle = 1$, $\langle e_2, e_2 \rangle = 1 = \langle e_3, e_3 \rangle$ and $\langle e_5, e_5 \rangle = -2(s + \epsilon_0) + 3$, where $\gamma(s) = (\gamma_1(s), \gamma_4(s), \gamma_5(s))$ is a unit-speed curve in $\mathbb{Q}^2_s(c) \subset P^3 = \operatorname{span}\{e_1, e_4, e_5\}$.

In each case, one can compute the principal curvatures of f as in [4] and check that the first equation in (20) is satisfied if and only if $\gamma_1'' + \tilde{c}\gamma_1 = 0$, that is, γ is a \tilde{c} -helix in $\mathbb{Q}^2_s(c) \subset \mathbb{R}^3_{s+\epsilon_0}$.

Under the remaining possibilities for c, \tilde{c} , s and \tilde{s} , either the same conclusions hold or the bilinear form β_x in the proof of Proposition 1 is everywhere degenerate, in which case there exist normal vector fields $\zeta \in \Gamma(N_{\hat{f}}M)$ and $\tilde{N} \in \Gamma(N_{\tilde{f}}M)$ satisfying $\langle \zeta, \zeta \rangle = \epsilon_{\tilde{s}} = \langle \tilde{N}, \tilde{N} \rangle$ and $A_{\zeta}^{\hat{f}} = A_{\tilde{N}}^{\tilde{f}}$, and we obtain as before that f and \tilde{f} are locally given on an open dense subset as described in Proposition 3.

Finally, if one of the principal curvatures of f is zero, then the preceding argument applies with the roles of f and \tilde{f} interchanged.

1.5 Proof of Theorem 6

Let (v, V) be the pair associated to f. Define

$$\tilde{V}_j = (-1)^{j+1} \delta_j (v_i V_k - v_k V_i), \quad 1 \le i \ne j \ne k \le 3, \quad i < k.$$
(21)

Then $\tilde{V} = (\tilde{V}_1, \tilde{V}_2, \tilde{V}_3)$ is the unique vector in \mathbb{R}^3 , up to sign, such that $(v, |C|^{-1/2}V, |C|^{-1/2}V)$ is an orthonormal basis of \mathbb{R}^3 with respect to the inner product

$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = \sum_{i=1}^3 \delta_i x_i y_i.$$
 (22)

Therefore, the matrix $D = (v, |C|^{-1/2}V, |C|^{-1/2}\tilde{V})$ satisfies $D\delta D^t = \delta$, where $\delta = \text{diag}(\hat{\epsilon}, C/|C|, -\hat{\epsilon}C/|C|)$. It follows that

$$\hat{\epsilon} v_i v_j + C/|C|^2 V_i V_j - \hat{\epsilon} C/|C|^2 \tilde{V}_i \tilde{V}_j = 0, \ 1 \le i \ne j \le 3.$$

Multiplying by $\epsilon_s C$ and using that $\hat{\epsilon} \epsilon_s = \tilde{\epsilon}$ and $\hat{\epsilon} \epsilon_s C = \hat{\epsilon} \epsilon_s \tilde{\epsilon} (c - \tilde{c}) = c - \tilde{c}$ we obtain

$$(c - \tilde{c})v_iv_j + \epsilon V_iV_j - \tilde{\epsilon}V_iV_j = 0,$$

or equivalently,

$$cv_iv_j + \epsilon V_iV_j = \tilde{c}v_iv_j + \tilde{\epsilon}V_iV_j.$$

Substituting the preceding equation into (v) yields

$$\frac{\partial h_{ij}}{\partial u_i} + \frac{\partial h_{ji}}{\partial u_j} + h_{ki}h_{kj} + \tilde{\epsilon}\,\tilde{V}_i\,\tilde{V}_j + \tilde{c}\,v_i\,v_j = 0.$$

On the other hand, differentiating (21) and using equations (i)-(iv) yields

$$\frac{\partial \tilde{V}_j}{\partial u_i} = h_{ij} \tilde{V}_i, \ 1 \le i \ne j \le 3.$$

It follows from Proposition 5 that there exists a hypersurface $\tilde{f}: M^3 \to \mathbb{Q}^4_{\tilde{s}}(\tilde{c})$, with $\epsilon_{\tilde{s}} = \tilde{\epsilon}$, whose first and second fundamental forms are

$$I = \sum_{i=1}^{3} v_i^2 du_i^2 \text{ and } II = \sum_{i=1}^{3} \tilde{V}_i v_i du_i^2,$$

thus M^3 admits an isometric immersion into $\mathbb{Q}^4_{\tilde{s}}(\tilde{c})$.

Conversely, let $f: M^3 \to \mathbb{Q}_s^4(c)$ be a hypersurface for which there exists an isometric immersion $\tilde{f}: M^3 \to \mathbb{Q}_{\tilde{s}}^4(\tilde{c})$. By Lemma 11, there exists an orthonormal frame $\{e_1, e_2, e_3\}$ of M^3 of principal directions of both f and \tilde{f} . Let $\lambda_1, \lambda_2, \lambda_3$ and μ_1, μ_2, μ_3 be the principal curvatures of f and \tilde{f} correspondent to e_1, e_2 and e_3 , respectively. Assume that $\lambda_1 < \lambda_2 < \lambda_3$, and that the unit normal vector field to f has been chosen so that $\lambda_1 < 0$. The Gauss equations for f and \tilde{f} yield

$$c + \epsilon_s \lambda_i \lambda_j = \tilde{c} + \epsilon_{\tilde{s}} \mu_i \mu_j, \ 1 \le i \ne j \le 3.$$

Thus,

$$\mu_i \mu_j = C + \hat{\epsilon} \lambda_i \lambda_j, \quad C = \epsilon_{\tilde{s}} (c - \tilde{c}), \quad 1 \le i \ne j \le 3.$$
(23)

It follows that

$$\mu_j^2 = \frac{(C + \hat{\epsilon}\lambda_j\lambda_i)(C + \hat{\epsilon}\lambda_j\lambda_k)}{C + \hat{\epsilon}\lambda_i\lambda_k}, \quad 1 \le j \ne i \ne k \ne j \le 3.$$
(24)

The Codazzi equations for f and \tilde{f} are, respectively,

$$e_i(\lambda_j) = (\lambda_i - \lambda_j) \langle \nabla_{e_j} e_i, e_j \rangle, \quad i \neq j,$$
(25)

$$(\lambda_j - \lambda_k) \langle \nabla_{e_i} e_j, e_k \rangle = (\lambda_i - \lambda_k) \langle \nabla_{e_j} e_i, e_k \rangle, \quad i \neq j \neq k.$$
(26)

and

$$e_i(\mu_i) = (\mu_i - \mu_i) \langle \nabla_{e_i} e_i, e_j \rangle, \ i \neq j,$$

$$(27)$$

$$(\mu_j - \mu_k) \langle \nabla_{e_i} e_j, e_k \rangle = (\mu_i - \mu_k) \langle \nabla_{e_i} e_i, e_k \rangle, \quad i \neq j \neq k.$$
(28)

Multiplying (28) by μ_i and using (24) and (26) we obtain

$$\hat{\epsilon}C\frac{(\lambda_i - \lambda_j)(\lambda_j - \lambda_k)}{C + \hat{\epsilon}\lambda_i\lambda_k} \langle \nabla_{e_i}e_j, e_k \rangle = 0, \ i \neq j \neq k.$$

Since the principal curvatures λ_1 , λ_2 and λ_3 are distinct, it follows that

$$\langle \nabla_{e_i} e_j, e_k \rangle = 0, \quad 1 \le i \ne j \ne k \ne i \le 3.$$
⁽²⁹⁾

Computing $2\mu_j e_i(\mu_j)$, first by differentiating (24) and then by multiplying (27) by $2\mu_j$, and using (23), (24) and (25) we obtain

$$(C + \hat{\epsilon}\lambda_j\lambda_k)(\lambda_k - \lambda_j)e_i(\lambda_i) + (C + \hat{\epsilon}\lambda_i\lambda_k)(\lambda_k - \lambda_i)e_i(\lambda_j) + (C + \hat{\epsilon}\lambda_i\lambda_j)(\lambda_i - \lambda_j)e_i(\lambda_k) = 0.$$
(30)

Now let $\{\omega_1, \omega_2, \omega_3\}$ be the dual frame of $\{e_1, e_2, e_3\}$ and define the one-forms $\gamma_j, 1 \le j \le 3$, by

$$\gamma_j = \sqrt{\delta_j \frac{(\lambda_j - \lambda_i)(\lambda_j - \lambda_k)}{C + \hat{\epsilon}\lambda_i\lambda_k}} \omega_j, \quad 1 \le j \ne i \ne k \ne j \le 3,$$

where $\delta_j = y_j / |y_j|$ for $y_j = \frac{(\lambda_j - \lambda_i)(\lambda_j - \lambda_k)}{C + \hat{\epsilon} \lambda_i \lambda_k}$.

By (24), either all the three numbers $C + \hat{\epsilon}\lambda_j\lambda_i$, $C + \hat{\epsilon}\lambda_j\lambda_k$ and $C + \hat{\epsilon}\lambda_i\lambda_k$ are positive or two of them are negative and the remaining one is positive. Hence there are four possible cases:

- (I) $C + \hat{\epsilon}\lambda_i\lambda_j > 0, 1 \le i \ne j \le 3.$ (II) $C + \hat{\epsilon}\lambda_1\lambda_2 < 0, C + \hat{\epsilon}\lambda_1\lambda_3 < 0 \text{ and } C + \hat{\epsilon}\lambda_2\lambda_3 > 0.$ (III) $C + \hat{\epsilon}\lambda_1\lambda_2 > 0, C + \hat{\epsilon}\lambda_1\lambda_3 < 0 \text{ and } C + \hat{\epsilon}\lambda_2\lambda_3 < 0.$
- (IV) $C + \hat{\epsilon}\lambda_1\lambda_2 < 0, C + \hat{\epsilon}\lambda_1\lambda_3 > 0 \text{ and } C + \hat{\epsilon}\lambda_2\lambda_3 < 0.$

Notice that $(\delta_1, \delta_2, \delta_3)$ equals (1, -1, 1) in case (I), (1, 1, -1) in case (II), (-1, 1, 1) in case (III) and (-1, -1, -1) in case (IV). It is easily checked that one must have $\hat{\epsilon} = -1$ and C < 0 in case (IV), whereas in the remaining cases either $\hat{\epsilon} = 1$ or $\hat{\epsilon} = -1$ and C > 0. Therefore, $(\delta_1, \delta_2, \delta_3) = (-1, -1, -1)$ if $\hat{\epsilon} = -1$ and C < 0, and in the remaining cases we may assume that $(\delta_1, \delta_2, \delta_3) = (1, -1, 1)$ after possibly reordering the coordinates.

We claim that (29) and (30) are precisely the conditions for the one-forms γ_j , $1 \le j \le 3$, to be closed. To prove this, set $x_j = \sqrt{\delta_j y_j}$, $1 \le j \le 3$, so that $\gamma_j = x_j \omega_j$. It follows from (29) that

$$d\gamma_i(e_i, e_k) = e_i\gamma_i(e_k) - e_k\gamma_i(e_i) - \gamma_i([e_i, e_k]) = 0.$$

On the other hand, using (25) we obtain

$$d\gamma_j(e_i, e_j) = e_i\gamma_j(e_j) - e_j\gamma_j(e_i) - \gamma_j([e_i, e_j])$$

= $e_i(x_j) + x_j \langle \nabla_{e_j} e_i, e_j \rangle$
= $e_i(x_j) + x_j \frac{e_i(\lambda_j)}{\lambda_i - \lambda_j},$

hence γ_i is closed if and only if

$$e_i(x_j) = \frac{x_j}{\lambda_j - \lambda_i} e_i(\lambda_j), \quad 1 \le i \ne j \le 3,$$

or equivalently,

$$e_{i}(y_{j})(C + \hat{\epsilon}\lambda_{i}\lambda_{k}) = 2\delta_{j}x_{j}e_{i}(x_{j})(C + \hat{\epsilon}\lambda_{i}\lambda_{k})$$

$$= 2\delta_{j}\frac{x_{j}^{2}}{\lambda_{j} - \lambda_{i}}e_{i}(\lambda_{j})(C + \hat{\epsilon}\lambda_{i}\lambda_{k})$$

$$= 2(\lambda_{j} - \lambda_{k})e_{i}(\lambda_{j}).$$

The preceding equation is in turn equivalent to

$$2(\lambda_{j} - \lambda_{k})(C + \hat{\epsilon}\lambda_{i}\lambda_{k})e_{i}(\lambda_{j}) = (e_{i}(\lambda_{j}) - e_{i}(\lambda_{i})(\lambda_{j} - \lambda_{k})(C + \hat{\epsilon}\lambda_{i}\lambda_{k}) + (\lambda_{j} - \lambda_{i})(e_{i}(\lambda_{j}) - e_{i}(\lambda_{k}))(C + \hat{\epsilon}\lambda_{i}\lambda_{k}) - (\lambda_{j} - \lambda_{i})(\lambda_{j} - \lambda_{k})(\hat{\epsilon}(e_{i}(\lambda_{i})\lambda_{k} + \lambda_{i}e_{i}(\lambda_{k}))),$$

which is the same as (30).

Therefore, each point $x \in M^3$ has an open neighborhood V where one can find functions $u_j \in C^{\infty}(V), 1 \leq j \leq 3$, such that $du_j = \gamma_j$, and we can choose V so small that $\Phi = (u_1, u_2, u_3)$ is a diffeomorphism of V onto an open subset $U \subset \mathbb{R}^3$, that is, (u_1, u_2, u_3) are local coordinates on V. From $\delta_{ij} = du_j(\partial u_i) = x_j \omega_j(\partial u_i)$ it follows that $\partial u_i = v_i e_i$, with $v_i = x_i^{-1}$. Now notice that

$$\sum_{j=1}^{3} \delta_j v_j^2 = \sum_{i,k\neq j=1}^{3} \frac{C + \hat{\epsilon}\lambda_i\lambda_k}{(\lambda_j - \lambda_i)(\lambda_j - \lambda_k)} = \hat{\epsilon},$$
$$\sum_{j=1}^{3} \delta_j v_j V_j = \sum_{j=1}^{3} \delta_j\lambda_j v_j^2 = \sum_{i,k\neq j=1}^{3} \lambda_j \frac{C + \hat{\epsilon}\lambda_i\lambda_k}{(\lambda_j - \lambda_i)(\lambda_j - \lambda_k)} = 0$$

and

$$\sum_{j=1}^{3} \delta_j V_j^2 = \sum_{j=1}^{3} \delta_j \lambda_j^2 v_j^2 = \sum_{i,k\neq j=1}^{3} \lambda_j^2 \frac{C + \hat{\epsilon} \lambda_i \lambda_k}{(\lambda_j - \lambda_i)(\lambda_j - \lambda_k)} = C.$$

It follows that the pair (v, V) satisfies (3).

1.6 Proof of Proposition 7

Before starting the proof of Proposition 7, recall that the *Weyl tensor* of a Riemannian manifold M^n is defined by

$$\langle C(X, Y)Z, W \rangle = \langle R(X, Y)Z, W \rangle - L(X, W) \langle Y, Z \rangle - L(Y, Z) \langle X, W \rangle + L(X, Z) \langle Y, W \rangle + L(Y, W) \langle X, Z \rangle$$

for all X, Y, Z, $W \in \mathfrak{X}(M)$, where L is the Schouten tensor of M^n , which is given in terms of the Ricci tensor and the scalar curvature s by

$$L(X, Y) = \frac{1}{n-2} \left(\operatorname{Ric} \left(X, Y \right) - \frac{1}{2} n s \langle X, Y \rangle \right).$$

It is well known that, if $n \ge 4$, then the vanishing of the Weyl tensor is a necessary and sufficient condition for M^n to be conformally flat.

Proof of Proposition 7 Let $f: M^n \to \mathbb{Q}_s^{n+1}(c)$ be a conformally flat hypersurface of dimension $n \ge 4$. For a fixed point $x \in M^n$, choose a unit normal vector $N \in N_x^f M$ and let $A = A_N: T_x M \to T_x M$ be the shape operator of f with respect to N. Let W^3 be a vector space endowed with the Lorentzian inner product $\langle \langle , \rangle \rangle$ given by

$$\langle\!\langle (a, b, c), (a', b', c') \rangle\!\rangle = \epsilon(-aa' + bb' + \epsilon cc').$$

Define a bilinear form $\beta : T_x M \times T_x M \to W^3$ by

$$\beta(X,Y) = (L(X,Y) + \frac{1}{2}(1-c)\langle X,Y\rangle, L(X,Y) - \frac{1}{2}(1+c)\langle X,Y\rangle, \langle AX,Y\rangle).$$

🖉 Springer

Note that $\beta(X, X) \neq 0$ for all $X \neq 0$. Moreover,

$$\begin{split} &\langle\!\langle \beta(X,Y),\beta(Z,W)\rangle\!\rangle - \langle\!\langle \beta(X,W),\beta(Z,Y)\rangle\!\rangle = -L(X,Y)\langle Z,W\rangle \\ &-L(Z,W)\langle X,Y\rangle + L(X,W)\langle Z,Y\rangle + L(Z,Y)\langle X,W\rangle + c\langle(X\wedge Z)W,Y\rangle \\ &+\epsilon\langle(AX\wedge AZ)W,Y\rangle = \langle C(X,Z)W,Y\rangle = 0. \end{split}$$

Thus, β is flat with respect to $\langle \langle , \rangle \rangle$. We claim that $S(\beta)$ must be degenerate. Otherwise, we would have

$$0 = \dim \ker \beta \ge n - \dim S(\beta) > 0,$$

a contradiction. Now let $\zeta \in S(\beta) \cap S(\beta)^{\perp}$ and choose a pseudo-orthonormal basis ζ, η, ξ of W^3 with $\langle\!\langle \zeta, \zeta \rangle\!\rangle = 0 = \langle\!\langle \eta, \eta \rangle\!\rangle$, $\langle\!\langle \zeta, \eta \rangle\!\rangle = 1 = \langle\!\langle \xi, \xi \rangle\!\rangle$ and $\langle\!\langle \xi, \zeta \rangle\!\rangle = 0 = \langle\!\langle \xi, \eta \rangle\!\rangle$. Then

$$\beta = \phi \zeta + \psi \xi,$$

where $\phi = \langle\!\langle \beta, \eta \rangle\!\rangle$ and $\psi = \langle\!\langle \beta, \xi \rangle\!\rangle$. Flatness of β implies that dim ker $\psi = n - 1$. We claim that ker ψ is an eigenspace of A. Given $Z \in \ker \psi$ we have

$$\beta(Z, X) = \phi(Z, X)\zeta \tag{31}$$

for all $X \in T_x M$. Let $\{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ be the canonical basis of W and write $\zeta = \sum_{j=1}^3 a_j e_j$. Then (31) gives

$$L(Z, X) + \frac{1}{2}(1-c)\langle Z, X \rangle = a_1 \phi(Z, X)$$

and

$$L(Z, X) - \frac{1}{2}(1+c)\langle Z, X \rangle = a_2\phi(Z, X).$$

Subtracting the second of the preceding equations from the first yields

$$\langle Z, X \rangle = (a_1 - a_2)\phi(Z, X),$$

which implies that $a_1 - a_2 \neq 0$ and

$$\phi(Z, X) = \frac{1}{a_1 - a_2} \langle Z, X \rangle.$$

Moreover, we also obtain from (31) that

$$\langle AZ, X \rangle = a_3 \phi(Z, X) = \frac{a_3}{a_1 - a_2} \langle Z, X \rangle,$$

which proves our claim.

1.7 Proof of Theorem 8

In order to prove Theorem 8, first recall that a necessary and sufficient condition for a threedimensional Riemannian manifold M^3 to be conformally flat is that its Schouten tensor L be a *Codazzi tensor*, that is,

$$(\nabla_X L)(Y, Z) = (\nabla_Y L)(X, Z)$$

for all $X, Y, Z \in \mathfrak{X}(M)$, where

$$(\nabla_X L)(Y, Z) = X(L(Y, Z)) - L(\nabla_X Y, Z) - L(Y, \nabla_X Z).$$

Deringer

Now let $f: M^3 \to \mathbb{Q}^4_s(c)$ be a holonomic hypersurface whose associated pair (v, V) satisfies (4). Then $v = (v_1, v_2, v_3)$ is a null vector with respect to the Lorentzian inner product \langle , \rangle given by (22), with $(\delta_1, \delta_2, \delta_3) = (1, -1, 1)$, and $V = (V_1, V_2, V_3)$ is a unit space-like vector orthogonal to v. Thus, we may write

$$V = \frac{\rho}{v_2}v + \frac{\lambda}{v_2}(-v_3, 0, v_1), \quad \lambda = \pm 1,$$

for some $\rho \in C^{\infty}(M)$, which is equivalent to

$$V_1 = \frac{1}{v_2}(V_2v_1 - \lambda v_3)$$
 and $V_3 = \frac{1}{v_2}(V_2v_3 + \lambda v_1).$ (32)

In particular,

$$V_i v_j - V_j v_i = -\lambda v_k, \quad 1 \le i < j \le 3, \quad k \notin \{i, j\}$$

hence the principal curvatures $\lambda_j = \frac{V_j}{v_i}$, $1 \le j \le 3$, are pairwise distinct.

The eigenvalues μ_1 , μ_2 and μ_3 of the Schouten tensor L are given by

$$2\mu_j = c + \epsilon(\lambda_i\lambda_j + \lambda_k\lambda_j - \lambda_i\lambda_k), \ 1 \le j \le 3,$$

where λ_i , $1 \le j \le 3$, are the principal curvatures of f. Define

$$\phi_j = v_j (\lambda_i \lambda_j + \lambda_k \lambda_j - \lambda_i \lambda_k), \quad 1 \le j \le 3.$$
(33)

That L is a Codazzi tensor is then equivalent to the equations

$$\frac{\partial \phi_j}{\partial u_i} = h_{ij}\phi_i, \quad 1 \le i \ne j \le 3.$$
(34)

Replacing $\lambda_j = \frac{V_j}{v_j}$ in (33) and using (32) we obtain

$$\phi_1 = \frac{1}{v_2^2} (-2\lambda V_2 v_3 + (V_2^2 - 1)v_1), \quad \phi_2 = \frac{1}{v_2} (V_2^2 + 1)$$

and

$$\phi_3 = \frac{1}{v_2^2} \left((V_2^2 - 1)v_3 + 2\lambda V_2 v_1 \right).$$

It is now a straightforward computation to verify (34) by using equations (i) and (iv) of system (2) together with Eqs. (5) and (6).

Conversely, assume that $f: M^3 \to \mathbb{Q}_s^4(c)$ is an isometric immersion with three distinct principal curvatures $\lambda_1 < \lambda_2 < \lambda_3$ of a conformally flat manifold. Let $\{e_1, e_2, e_3\}$ be a correspondent orthonormal frame of principal directions. Then $\{e_1, e_2, e_3\}$ also diagonalyzes the Schouten tensor L, and the correspondent eigenvalues are

$$2\mu_j = \epsilon \left(\lambda_i \lambda_j + \lambda_j \lambda_k - \lambda_i \lambda_k\right) + c, \quad 1 \le j \le 3.$$
(35)

The Codazzi equations for f and L are, respectively,

$$e_i(\lambda_j) = (\lambda_i - \lambda_j) \langle \nabla_{e_i} e_i, e_j \rangle, \quad i \neq j,$$
(36)

$$(\lambda_j - \lambda_k) \langle \nabla_{e_i} e_j, e_k \rangle = (\lambda_i - \lambda_k) \langle \nabla_{e_j} e_i, e_k \rangle, \qquad i \neq j \neq k.$$
(37)

and

$$e_i(\mu_j) = (\mu_i - \mu_j) \langle \nabla_{e_j} e_i, e_j \rangle, \quad i \neq j,$$
(38)

$$(\mu_j - \mu_k) \langle \nabla_{e_i} e_j, e_k \rangle = (\mu_i - \mu_k) \langle \nabla_{e_j} e_i, e_k \rangle, \quad i \neq j \neq k.$$
(39)

Substituting (35) into (39), and using (37), we obtain

$$(\lambda_i - \lambda_j)(\lambda_j - \lambda_k)\langle \nabla_{e_i} e_j, e_k \rangle = 0, \quad i \neq j \neq k.$$

Since λ_1 , λ_2 and λ_3 are pairwise distinct, it follows that

$$\langle \nabla_{e_i} e_j, e_k \rangle = 0, \quad i \neq j \neq k \neq i.$$
(40)

Differentiating (35) with respect to e_i , we obtain

$$2e_i(\mu_j) = \epsilon \left[(\lambda_i + \lambda_k)e_i(\lambda_j) + (\lambda_j - \lambda_k)e_i(\lambda_i) + (\lambda_j - \lambda_i)e_i(\lambda_k) \right].$$
(41)

On the other hand, it follows from (35), (36) and (38) that

$$e_i(\mu_j) = \epsilon \lambda_k e_i(\lambda_j). \tag{42}$$

Hence

$$(\lambda_j - \lambda_k)e_i(\lambda_i) + (\lambda_i - \lambda_k)e_i(\lambda_j) + (\lambda_j - \lambda_i)e_i(\lambda_k) = 0.$$
(43)

Now let $\{\omega_1, \omega_2, \omega_3\}$ be the dual frame of $\{e_1, e_2, e_3\}$ and define the one-forms γ_j , $1 \le j \le 3$, by

$$\gamma_j = x_j \omega_j, \quad x_j = \sqrt{\delta_j (\lambda_j - \lambda_i) (\lambda_j - \lambda_k)}, \quad 1 \le j \ne i \ne k \ne j \le 3,$$
 (44)

where $(\delta_1, \delta_2, \delta_3) = (1, -1, 1)$. As in the proof of Theorem 6, one can check that (40) and (43) are precisely the conditions for the one-forms γ_j , $1 \le j \le 3$, to be closed.

Therefore, each point $x \in M^3$ has an open neighborhood V where one can find functions $u_j \in C^{\infty}(V), 1 \leq j \leq 3$, such that $du_j = \gamma_j$, and we can choose V so small that $\Phi = (u_1, u_2, u_3)$ is a diffeomorphism of V onto an open subset $U \subset \mathbb{R}^3$, that is, (u_1, u_2, u_3) are local coordinates on V. From $\delta_{ij} = du_j(\partial_i) = x_j \omega_j(\partial_i)$ it follows that $\partial_j = v_j e_j$, $1 \leq j \leq 3$, with $v_j = x_j^{-1}$. Now notice that

$$\sum_{j=1}^{3} \delta_j v_j^2 = \sum_{i,k\neq j=1}^{3} \frac{1}{(\lambda_j - \lambda_i)(\lambda_j - \lambda_k)} = 0,$$
$$\sum_{j=1}^{3} \delta_j v_j V_j = \sum_{j=1}^{3} \delta_j \lambda_j v_j^2 = \sum_{i,k\neq j=1}^{3} \frac{\lambda_j}{(\lambda_j - \lambda_i)(\lambda_j - \lambda_k)} = 0$$

and

$$\sum_{j=1}^{3} \delta_j V_j^2 = \sum_{j=1}^{3} \delta_j \lambda_j^2 v_j^2 = \sum_{i,k \neq j=1}^{3} \frac{\lambda_j^2}{(\lambda_j - \lambda_i)(\lambda_j - \lambda_k)} = 1.$$

It follows that (v, V) satisfies (4).

1.8 Proof of Proposition 9

By Theorem 8, *f* is locally a holonomic hypersurface whose associated pair (v, V) is given in terms of the principal curvatures $\lambda_1 < \lambda_2 < \lambda_3$ of *f* by

$$v_j = \sqrt{\frac{\delta_j}{(\lambda_j - \lambda_i)(\lambda_j - \lambda_k)}}$$
 and $V_j = \lambda_j v_j, \quad 1 \le j \le 3,$ (45)

where $(\delta_1, \delta_2, \delta_3) = (1, -1, 1)$. Moreover, we have seen in the proofs of Theorems 6 and 8, respectively, that λ_1, λ_2 and λ_3 satisfy (30) and (43). It is easily checked that (43) is equivalent to

$$(\lambda_k - \lambda_i)e_i(\lambda_i\lambda_j) = (\lambda_j - \lambda_i)e_i(\lambda_i\lambda_k), \quad 1 \le i \ne j \ne k \ne i \le 3,$$

whereas multiplying (43) by C and adding (30) gives

$$\lambda_k(\lambda_k - \lambda_i)e_i(\lambda_i\lambda_j) = \lambda_j(\lambda_j - \lambda_i)e_i(\lambda_i\lambda_k), \quad 1 \le i \ne j \ne k \ne i \le 3.$$

Since λ_1 , λ_2 and λ_3 are pairwise distinct, the two preceding equations together imply that

$$e_i(\lambda_i\lambda_j) = 0, \ 1 \le i \ne j \le 3.$$

Assuming that $\lambda_j \neq 0$ for $1 \leq j \leq 3$, we can write

$$\lambda_i \lambda_j = \iota_k \phi_k^2, \quad \iota_k \in \{-1, 1\}, \quad 1 \le i \ne j \ne k \ne i \le 3, \tag{46}$$

for some positive smooth functions $\phi_k = \phi_k(u_k)$, $1 \le k \le 3$. It follows from (46) that

$$\lambda_j = \epsilon_j \frac{\phi_i \phi_k}{\phi_j},\tag{47}$$

where $\epsilon_j = \frac{\lambda_j}{|\lambda_j|}, 1 \le j \le 3$. Since $\lambda_1 < \lambda_2 < \lambda_3$ we have

$$\epsilon_k \phi_i^2 - \epsilon_i \phi_k^2 > 0, \quad 1 \le i < k \le 3.$$

Substituting (47) into (45), we obtain that

$$v_j = \frac{\phi_j}{\psi_i \psi_k}, \quad 1 \le j \le 3, \tag{48}$$

where $\psi_j = \sqrt{\epsilon_k \phi_i^2 - \epsilon_i \phi_k^2}$, and

$$V_j = \lambda_j v_j = \epsilon_j \frac{\phi_i \phi_k}{\psi_i \psi_k}, \quad i, k \neq j, \quad i < k.$$

We obtain from (48) that

$$h_{ij} = \frac{1}{v_j} \frac{\partial v_j}{\partial u_i} = \frac{\psi_i \psi_k}{\phi_j} \frac{\phi_j}{\psi_i \psi_k^2} \left(-\frac{\partial \psi_k}{\partial u_i} \right) = -\frac{1}{\psi_k} \frac{\partial \psi_k}{\partial u_i}.$$
(49)

On the other hand, equation (iv) of system (2) yields

$$h_{ij} = \frac{1}{V_j} \frac{\partial V_j}{\partial u_i} = \frac{\psi_i \psi_k}{\phi_i \phi_k} \frac{\phi_k}{\psi_i \psi_k^2} \left(\frac{d\phi_i}{du_i} \psi_k - \phi_i \frac{\partial \psi_k}{\partial u_i} \right) = \frac{1}{\phi_i} \frac{d\phi_i}{du_i} - \frac{1}{\psi_k} \frac{\partial \psi_k}{\partial u_i}.$$
 (50)

🖄 Springer

Comparing (49) and (50), we obtain that

$$\frac{d\phi_i}{du_i} = 0, \quad 1 \le i \le 3.$$

This implies that $\frac{\partial \psi_k}{\partial u_i} = 0$ for all $1 \le i \ne k \le 3$, and hence $h_{ij} = 0$ for all $1 \le i \ne j \le 3$. But then equation (*ii*) of system (2) gives

$$\epsilon_s \lambda_i \lambda_i + c = 0$$

for all $1 \le i \ne j \le 3$, which implies that $-\epsilon_s c > 0$ and $\lambda_1 = \lambda_2 = \lambda_3 = \sqrt{-\epsilon_s c}$, a contradiction. Thus, one of the principal curvatures must be zero, and the result follows from part *b*) of Theorem 4.

1.9 Proof of Proposition 10

Before proving Proposition 10, given a hypersurface $f: M^3 \to \mathbb{Q}_s^4(c)$ we compute the pair (v^t, V^t) associated to a parallel hypersurface $f_t: M^3 \to \mathbb{Q}_s^4(c) \subset \mathbb{R}_{s+\epsilon_0}^5$ to f, with $\epsilon_0 = 0$ or 1, corresponding to c > 0 or c < 0, respectively.

Set $\epsilon_c = c/|c|$ and $\check{\epsilon} = \epsilon_s \epsilon_c$. Let φ and ψ be defined by

$$(\varphi(t), \psi(t)) = \begin{cases} (\cos(\sqrt{|c|}t), \sin(\sqrt{|c|}t)), & \text{if } \epsilon = 1, \\ (\cosh(\sqrt{|c|}t), \sinh(\sqrt{|c|}t)), & \text{if } \epsilon = -1. \end{cases}$$

If N is one of the unit normal vector fields to f and $i: \mathbb{Q}_s^4(c) \to \mathbb{R}^5_{s+\epsilon_0}$ is the inclusion, then

$$i \circ f_t = \varphi(t)i \circ f + \frac{\psi(t)}{\sqrt{|c|}}i_*N.$$

We denote by M_t^3 the manifold M^3 endowed with the metric induced by f_t .

Lemma 13 Let $f: M^3 \to \mathbb{Q}^4_s(c)$ be a holonomic hypersurface. Then any parallel hypersurface $f_t: M^3_t \to \mathbb{Q}^4_s(c)$ to f is also holonomic and the pairs (v, V) and (v^t, V^t) associated to f and f_t , respectively, are related by

$$\begin{cases} v_i^t = \varphi(t)v_i - \frac{\psi(t)}{\sqrt{|c|}}V_i \\ V_i^t = \check{\epsilon}\sqrt{|c|}\psi(t)v_i + \varphi(t)V_i. \end{cases}$$
(51)

In particular, $h_{ij}^t = h_{ij}$.

Proof We have

$$f_{t*} = \varphi(t)f_{*} + \frac{\psi(t)}{\sqrt{|c|}}N_{*} = f_{*}\left(\varphi(t)I - \frac{\psi(t)}{\sqrt{|c|}}A\right),$$
(52)

thus a unit normal vector field to f_t is $N_t = -\check{\epsilon}\sqrt{|c|}\psi(t)f + \varphi(t)N$, and

$$N_{t*} = f_* \left(-\check{\epsilon} \sqrt{|c|} \psi(t) I - \varphi(t) A \right)$$

= $-f_{t*} \left(\varphi(t) I - \frac{\psi(t)}{\sqrt{|c|}} A \right)^{-1} \left(\check{\epsilon} \sqrt{|c|} \psi(t) I + \varphi(t) A \right).$

which implies that

$$A_t = \left(\varphi(t)I - \frac{\psi(t)}{\sqrt{|c|}}A\right)^{-1} \left(\check{\epsilon}\sqrt{|c|}\psi(t)I + \varphi(t)A\right).$$
(53)

It follows from (52) and (53) that \tilde{f} is also holonomic with associated pair given by (51). The assertion on h_{ii}^t follows from a straightforward computation.

Proof of Proposition 10: In view of (51), conditions (3) for (v^t, V^t) (with $\tilde{c} = 0$) follow immediately from those for (v, V).

References

- 1. Canevari, S., Tojeiro, R.: Isometric immersions of space forms into $\mathbb{S}^n \times \mathbb{R}$ (In preparation)
- Canevari, S., Tojeiro, R.: The Ribaucour transformation for hypersurfaces of two space forms and conformally flat hypersurfaces (Preprint)
- do Carmo, M., Dajczer, M.: Riemannian metrics induced by two immersions. Proc. Am. Math. Soc. 86, 115–119 (1982)
- do Carmo, M., Dajczer, M.: Rotation hypersurfaces in spaces of constant curvature. Trans. Am. Math. Soc. 277, 685–709 (1983)
- 5. Dajczer, M., Tojeiro, R.: On compositions of isometric immersions. J. Differ. Geom. 36, 1-18 (1992)
- Hertrich-Jeromin, U.: On conformally flat hypersurfaces and Guichard's nets. Beitr. Algebra Geom. 35, 315–331 (1994)
- 7. Moore, J.D.: Submanifolds of constant positive curvature I. Duke Math. J. 44, 449–484 (1977)