Hypersurfaces of two space forms and conformally flat hypersurfaces

S. Canevari ${ }^{1}$ - R. Tojeiro ${ }^{2}$

Received: 10 November 2016 / Accepted: 24 April 2017 / Published online: 8 May 2017
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2017

Abstract

We address the problem of determining the hypersurfaces $f: M^{n} \rightarrow \mathbb{Q}_{s}^{n+1}(c)$ with dimension $n \geq 3$ of a pseudo-Riemannian space form of dimension $n+1$, constant curvature c and index $s \in\{0,1\}$ for which there exists another isometric immersion $\tilde{f}: M^{n} \rightarrow \mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})$ with $\tilde{c} \neq c$. For $n \geq 4$, we provide a complete solution by extending results for $s=0=\tilde{s}$ by do Carmo and Dajczer (Proc Am Math Soc 86:115-119, 1982) and by Dajczer and Tojeiro (J Differ Geom 36:1-18, 1992). Our main results are for the most interesting case $n=3$, and these are new even in the Riemannian case $s=0=\tilde{s}$. In particular, we characterize the solutions that have dimension $n=3$ and three distinct principal curvatures. We show that these are closely related to conformally flat hypersurfaces of $\mathbb{Q}_{s}^{4}(c)$ with three distinct principal curvatures, and we obtain a similar characterization of the latter that improves a theorem by Hertrich-Jeromin (Beitr Algebra Geom 35:315-331, 1994).

Keywords Hypersurfaces of two space forms • Conformally flat hypersurfaces • Holonomic hypersurfaces

Mathematics Subject Classification 53B25

We denote by $\mathbb{Q}_{s}^{N}(c)$ a pseudo-Riemannian space form of dimension N, constant sectional curvature c and index $s \in\{0,1\}$, that is, $\mathbb{Q}_{s}^{N}(c)$ is either a Riemannian or Lorentzian space form of constant curvature c, corresponding to $s=0$ or $s=1$, respectively. By a hypersurface

[^0]$f: M^{n} \rightarrow \mathbb{Q}_{s}^{n+1}(c)$ we always mean an isometric immersion of a Riemannian manifold M^{n} of dimension n into $\mathbb{Q}_{s}^{n+1}(c)$, thus f is a space-like hypersurface if $s=1$.

One of the main purposes of this paper is to address the following
Problem $*$: For which hypersurfaces $f: M^{n} \rightarrow \mathbb{Q}_{s}^{n+1}(c)$ of dimension $n \geq 3$ does there exist another isometric immersion $\tilde{f}: M^{n} \rightarrow \mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})$ with $\tilde{c} \neq c$?

This problem was studied for $s=0=\tilde{s}$ and $n \geq 4$ by do Carmo and Dajczer in [3], and by Dajczer and the second author in [5]. Some partial results in the most interesting case $n=3$ were also obtained in [5]. Including Lorentzian ambient space forms in our study of Problem * was motivated by our investigation in [1] of submanifolds of codimension two and constant curvature $c \in(0,1)$ of $\mathbb{S}^{5} \times \mathbb{R}$, which turned out to be related to hypersurfaces $f: M^{3} \rightarrow \mathbb{S}^{4}$ for which M^{3} also admits an isometric immersion into the Lorentz space $\mathbb{R}_{1}^{4}=\mathbb{Q}_{1}^{4}(0)$.

We first state our results for the case $n \geq 4$. The next one extends a theorem due to do Carmo and Dajczer [3] in the case $s=0=\tilde{s}$. Here and in the sequel, for $s \in\{0,1\}$ we denote $\epsilon_{s}=-2 s+1$.

Proposition 1 Let $f: M^{n} \rightarrow \mathbb{Q}_{s}^{n+1}(c)$ be a hypersurface of dimension $n \geq 4$. If there exists another isometric immersion $\tilde{f}: M^{n} \rightarrow \mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})$ with $\tilde{c} \neq c$, then $c<\tilde{c}$ if $s=0$ and $\tilde{s}=1$ (respectively, $c>\tilde{c}$ if $s=1$ and $\tilde{s}=0$) and f has a principal curvature λ of multiplicity at least $n-1$ everywhere satisfying $\rho:=\epsilon_{\tilde{s}}\left(c-\tilde{c}+\epsilon_{s} \lambda^{2}\right) \geq 0$. Moreover, at any $x \in M^{n}$ the following holds:
(i) if $\lambda=0$ or f is umbilical with $\rho>0$, then \tilde{f} is umbilical;
(ii) if f is umbilical and $\rho=0$, then 0 is a principal curvature of \tilde{f} with multiplicity at least $n-1$;
(iii) if $\lambda \neq 0$ with multiplicity $n-1$, then \tilde{f} has a principal curvature $\tilde{\lambda}$, with $\tilde{\lambda}^{2}=\rho$, which has the same eigenspace as λ.

Thus, Problem $*$ has no solutions if $n \geq 4$ and either $c>\tilde{c}, s=0$ and $\tilde{s}=1$ or $c<\tilde{c}$, $s=1$ and $\tilde{s}=0$, while, in the remaining cases, having a principal curvature λ of multiplicity at least $n-1$ satisfying $\epsilon_{\tilde{s}}\left(c-\tilde{c}+\epsilon_{s} \lambda^{2}\right) \geq 0$ is a necessary condition for a solution. In those cases, having a principal curvature of constant multiplicity n or $n-1$ satisfying the preceding condition is also sufficient for simply connected hypersurfaces.
Proposition 2 Let $f: M^{n} \rightarrow \mathbb{Q}_{s}^{n+1}(c), n \geq 4$ be an isometric immersion of a simply connected Riemannian manifold. Given $\tilde{c} \neq c$ and $\tilde{s} \in\{0,1\}$, assume that $c<\tilde{c}$ if $s=0$ and $\tilde{s}=1$, and that $c>\tilde{c}$ if $s=1$ and $\tilde{s}=0$. If f has a principal curvature λ of (constant) multiplicity either $n-1$ or n satisfying $\rho:=\epsilon_{\tilde{s}}\left(c-\tilde{c}+\epsilon_{s} \lambda^{2}\right) \geq 0$, then M^{n} admits an isometric immersion into $\mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})$, which is unique up to congruence if $\rho>0$.

The next result, proved by Dajczer and the second author in [5] when $s=0=\tilde{s}$, shows how any solution $f: M^{n} \rightarrow \mathbb{Q}_{s}^{n+1}(c), n \geq 4$, of Problem $*$ arises.

Proposition 3 Let $f: M^{n} \rightarrow \mathbb{Q}_{s}^{n+1}(c)$ and $\tilde{f}: M^{n} \rightarrow \mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c}), n \geq 4$, be isometric immersions with, say, $c>\tilde{c}$. If $s=0$, assume that $\tilde{s}=0$. Then, for $s=\tilde{s}$ (respectively, $s=1$ and $\tilde{s}=0$), there exist, locally on an open dense subset of M^{n}, isometric embeddings

$$
H: \mathbb{Q}_{S}^{n+1}(\tilde{c}) \rightarrow \mathbb{Q}_{s}^{n+2}(\tilde{c}) \text { and } i: \mathbb{Q}_{s}^{n+1}(c) \rightarrow \mathbb{Q}_{s}^{n+2}(\tilde{c})
$$

(respectively, $H: \mathbb{Q}_{s}^{n+1}(c) \rightarrow \mathbb{Q}_{S}^{n+2}(c)$ and $i: \mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c}) \rightarrow \mathbb{Q}_{s}^{n+2}(c)$), with i umbilical, and an isometry

$$
\Psi: \bar{M}^{n}:=H\left(\mathbb{Q}_{s}^{n+1}(\tilde{c})\right) \cap i\left(\mathbb{Q}_{s}^{n+1}(c)\right) \rightarrow M^{n}
$$

(respectively, $\left.\Psi: \bar{M}^{n}:=H\left(\mathbb{Q}_{s}^{n+1}(c)\right) \cap i\left(\mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})\right) \rightarrow M^{n}\right)$ such that

$$
f \circ \Psi=\left.i^{-1}\right|_{\bar{M}^{n}} \text { and } \tilde{f} \circ \Psi=\left.H^{-1}\right|_{\bar{M}^{n}}
$$

(respectively, $f \circ \Psi=\left.H^{-1}\right|_{\bar{M}^{n}}$ and $\left.\tilde{f} \circ \Psi=\left.i^{-1}\right|_{\bar{M}^{n}}\right)$.
Proposition 3 explains the existence of a principal curvature λ of multiplicity at least $n-1$ for a solution $f: M^{n} \rightarrow \mathbb{Q}_{s}^{n+1}(c), n \geq 4$, of Problem $*$: the (images by f of the) leaves of the distribution on M^{n} given by the eigenspaces of λ are the intersections with $i\left(\mathbb{Q}_{s}^{n+1}(\tilde{c})\right)$ of the (images by H of the) relative nullity leaves of H, which have dimension at least n.

Next we consider Problem $*$ for hypersurfaces of dimension $n=3$. The following result provides the solutions in two ("dual") special cases.

Theorem 4 Let $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ be a hypersurface for which there exists an isometric immersion $\tilde{f}: M^{3} \rightarrow \mathbb{Q}_{\tilde{s}}^{4}(\tilde{c})$ with $\tilde{c} \neq c$.
(a) Assume that f has a principal curvature of multiplicity two. If either $c>\tilde{c}, s=0$ and $\tilde{s}=1$, or if $c<\tilde{c}, s=1$ and $\tilde{s}=0$, then f is a rotation hypersurface whose profile curve is a \tilde{c}-helix in a totally geodesic surface $\mathbb{Q}_{s}^{2}(c)$ of $\mathbb{Q}_{s}^{4}(c)$ and \tilde{f} is a generalized cone over a surface with constant curvature in an umbilical hypersurface $\mathbb{Q}_{\tilde{s}}^{3}(\bar{c})$ of $\mathbb{Q}_{\tilde{s}}^{4}(\tilde{c})$, $\bar{c} \geq \tilde{c}$. Otherwise, either the same conclusion holds or f and \tilde{f} are locally given on an open dense subset as described in Proposition 3.
(b) If one of the principal curvatures of f is zero, then f is a generalized cone over a surface with constant curvature in an umbilical hypersurface $\mathbb{Q}_{s}^{3}(\bar{c})$ of $\mathbb{Q}_{s}^{4}(c), \bar{c} \geq c$, and \tilde{f} is a rotation hypersurface whose profile curve is a c-helix in a totally geodesic surface $\mathbb{Q}_{\tilde{S}}^{2}(\tilde{c})$ of $\mathbb{Q}_{\tilde{s}}^{4}(\tilde{c})$.

By a generalized cone over a surface $g: M^{2} \rightarrow \mathbb{Q}_{s}^{3}(\bar{c})$ in an umbilical hypersurface $\mathbb{Q}_{s}^{3}(\bar{c})$ of $\mathbb{Q}_{s}^{4}(c), \bar{c} \geq c$, we mean the hypersurface parametrized by (the restriction to the subset of regular points of) the map $G: M^{2} \times \mathbb{R} \rightarrow \mathbb{Q}_{s}^{4}(c)$ given by

$$
G(x, t)=\exp _{g(x)}(t \xi(g(x)))
$$

where ξ is a unit normal vector field to the inclusion $i: \mathbb{Q}_{s}^{3}(\bar{c}) \rightarrow \mathbb{Q}_{s}^{4}(c)$ and \exp is the exponential map of $\mathbb{Q}_{s}^{4}(c)$. A c-helix in $\mathbb{Q}_{s}^{2}(\tilde{c}) \subset \mathbb{R}_{s+\epsilon_{0}}^{3}$ with respect to a unit vector $v \in \mathbb{R}_{s+\epsilon_{0}}^{3}$ is a unit-speed curve $\gamma: I \rightarrow \mathbb{Q}_{s}^{2}(\tilde{c}) \subset \mathbb{R}_{s+\epsilon_{0}}^{3}$ such that the height function $\gamma_{v}=\langle\gamma, v\rangle$ satisfies $\gamma_{v}^{\prime \prime}+c \gamma_{v}=0$. Here $\epsilon_{0}=0$ or 1 , corresponding to $\tilde{c}>0$ or $\tilde{c}<0$, respectively.

In order to deal with the generic case of Problem $*$ for hypersurfaces of dimension 3, we need to recall the notion of holonomic hypersurfaces. We call a hypersurface $f: M^{n} \rightarrow$ $\mathbb{Q}_{s}^{n+1}(c)$ holonomic if M^{n} carries global orthogonal coordinates $\left(u_{1}, \ldots, u_{n}\right)$ such that the coordinate vector fields $\partial_{j}=\frac{\partial}{\partial u_{j}}$ are everywhere eigenvectors of the shape operator A of f. Set $v_{j}=\left\|\partial_{j}\right\|$, and define $V_{j} \in C^{\infty}(M), 1 \leq j \leq n$, by $A \partial_{j}=v_{j}^{-1} V_{j} \partial_{j}$. Thus, the first and second fundamental forms of f are

$$
\begin{equation*}
I=\sum_{i=1}^{n} v_{i}^{2} d u_{i}^{2} \quad \text { and } \quad I I=\sum_{i=1}^{n} V_{i} v_{i} d u_{i}^{2} \tag{1}
\end{equation*}
$$

Set $v=\left(v_{1}, \ldots, v_{n}\right)$ and $V=\left(V_{1}, \ldots, V_{n}\right)$. We call (v, V) the pair associated to f. The next result is well known.

Proposition 5 The triple (v, h, V), where $h_{i j}=\frac{1}{v_{i}} \frac{\partial v_{j}}{\partial u_{i}}$, satisfies the system of PDE's

$$
\left\{\begin{array}{l}
\text { (i) } \frac{\partial v_{i}}{\partial u_{j}}=h_{j i} v_{j}, \quad(i i) \frac{\partial h_{i k}}{\partial u_{j}}=h_{i j} h_{j k}, \tag{2}\\
\text { (iii) } \frac{\partial h_{i j}}{\partial u_{i}}+\frac{\partial h_{j i}}{\partial u_{j}}+h_{k i} h_{k j}+\epsilon_{s} V_{i} V_{j}+c v_{i} v_{j}=0, \\
\text { (iv) } \frac{\partial V_{i}}{\partial u_{j}}=h_{j i} V_{j}, \quad 1 \leq i \neq j \neq k \neq i \leq n .
\end{array}\right.
$$

Conversely, if (v, h, V) is a solution of (2) on a simply connected open subset $U \subset \mathbb{R}^{n}$, with $v_{i} \neq 0$ everywhere for all $1 \leq i \leq n$, then there exists a holonomic hypersurface $f: U \rightarrow \mathbb{Q}_{s}^{n+1}(c)$ whose first and second fundamental forms are given by (1).

The following characterization of hypersurfaces $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ with three distinct principal curvatures that are solutions of Problem $*$ is one of the main results of the paper.

Theorem 6 Let $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ be a simply connected holonomic hypersurface whose associated pair (v, V) satisfies

$$
\begin{equation*}
\sum_{i=1}^{3} \delta_{i} v_{i}^{2}=\hat{\epsilon}, \quad \sum_{i=1}^{3} \delta_{i} v_{i} V_{i}=0 \quad \text { and } \quad \sum_{i=1}^{3} \delta_{i} V_{i}^{2}=C:=\tilde{\epsilon}(c-\tilde{c}), \tag{3}
\end{equation*}
$$

where $\hat{\epsilon}, \tilde{\epsilon} \in\{-1,1\}, \tilde{c} \neq c, \hat{\epsilon} \tilde{\epsilon}=\epsilon_{s},\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(1,-1,1)$ either if $\hat{\epsilon}=1$ or if $\hat{\epsilon}=-1$ and $C>0$, and $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(-1,-1,-1)$ if $\hat{\epsilon}=-1$ and $C<0$. Then M^{3} admits an isometric immersion into $\mathbb{Q}_{\tilde{s}}^{4}(\tilde{c})$, with $\epsilon_{\tilde{s}}=\tilde{\epsilon}$, which is unique up to congruence.

Conversely, if $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ is a hypersurface with three distinct principal curvatures for which there exists an isometric immersion $\tilde{f}: M^{3} \rightarrow \mathbb{Q}_{\tilde{s}}^{4}(\tilde{c})$ with $\tilde{c} \neq c$, then f is locally a holonomic hypersurface whose associated pair (v, V) satisfies (3), with $\tilde{\epsilon}=\epsilon_{\tilde{s}}$.

As we shall make precise in the sequel, the class of hypersurfaces that are solutions of Problem $*$ is closely related to that of conformally flat hypersurfaces of $\mathbb{Q}_{s}^{n+1}(c)$, that is, isometric immersions $f: M^{n} \rightarrow \mathbb{Q}_{s}^{n+1}(c)$ of conformally flat manifolds. Recall that a Riemannian manifold M^{n} is conformally flat if each point of M^{n} has an open neighborhood that is conformally diffeomorphic to an open subset of Euclidean space \mathbb{R}^{n}. First, for $n \geq 4$ we have the following extension of a result due to E. Cartan when $s=0$.
Proposition 7 Let $f: M^{n} \rightarrow \mathbb{Q}_{s}^{n+1}(c)$ be a hypersurface of dimension $n \geq 4$. Then M^{n} is conformally flat if and only if f has a principal curvature of multiplicity at least $n-1$.

It was already known by E. Cartan that the "only if" assertion in the preceding result is no longer true for $n=3$ and $s=0$. The study of conformally flat hypersurfaces by Cartan was taken up by Hertrich-Jeromin [6], who showed that a conformally flat hypersurface $f: M^{3} \rightarrow \mathbb{Q}^{4}(c)$ with three distinct principal curvatures admits locally principal coordinates (u_{1}, u_{2}, u_{3}) such that the induced metric $d s^{2}=\sum_{i=1}^{3} v_{i}^{2} d u_{i}^{2}$ satisfies, say, $v_{2}^{2}=v_{1}^{2}+v_{3}^{2}$. The next result states that conformally flat hypersurfaces $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ with three distinct principal curvatures are characterized by the existence of such principal coordinates under some additional conditions.
Theorem 8 Let $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ be a holonomic hypersurface whose associated pair (v, V) satisfies

$$
\begin{equation*}
\sum_{i=1}^{3} \delta_{i} v_{i}^{2}=0, \quad \sum_{i=1}^{3} \delta_{i} v_{i} V_{i}=0 \quad \text { and } \quad \sum_{i=1}^{3} \delta_{i} V_{i}^{2}=1 \tag{4}
\end{equation*}
$$

where $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(1,-1,1)$. Then M^{3} is conformally flat, and f has three distinct principal curvatures.

Conversely, any conformally flat hypersurface $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ with three distinct principal curvatures is locally a holonomic hypersurface whose associated pair (v, V) satisfies (4).

It follows from Theorems 6 and 8 that, in order to produce hypersurfaces of $\mathbb{Q}_{s}^{4}(c)$ that are either conformally flat or admit an isometric immersion into $\mathbb{Q}_{s}^{4}(\tilde{c})$ with $\tilde{c} \neq c$, one must start with solutions (v, h, V) on an open simply connected subset $U \subset \mathbb{R}^{3}$ of the same system of PDE's, namely, the one obtained by adding to system (2) (for $n=3$) the equations

$$
\begin{equation*}
\delta_{i} \frac{\partial v_{i}}{\partial u_{i}}+\delta_{j} h_{i j} v_{j}+\delta_{k} h_{i k} v_{k}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{i} \frac{\partial V_{i}}{\partial u_{i}}+\delta_{j} h_{i j} V_{j}+\delta_{k} h_{i k} V_{k}=0, \quad 1 \leq i \neq j \neq k \neq i \leq 3 \tag{6}
\end{equation*}
$$

with $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(1,-1,1)$. Such system has the first integrals

$$
\sum_{i=1}^{3} \delta_{i} v_{i}^{2}=K_{1}, \quad \sum_{i=1}^{3} \delta_{i} v_{i} V_{i}=K_{2} \quad \text { and } \quad \sum_{i=1}^{3} \delta_{i} V_{i}^{2}=K_{3} .
$$

If initial conditions at some point are chosen so that $K_{1}=1$ (respectively, $K_{1}=0$), $K_{2}=0$ and $K_{3}=\epsilon(c-\tilde{c})$ (respectively, $K_{3}=1$), then the corresponding solutions give rise to hypersurfaces of $\mathbb{Q}_{s}^{4}(c), \epsilon_{s}=\epsilon$, with three distinct principal curvatures that can be isometrically immersed into $\mathbb{Q}_{s}^{4}(\tilde{c})$ (respectively, are conformally flat).

It was already shown in [5] for $s=0=\tilde{s}$ that, unlike the case of dimension $n \geq 4$, among hypersurfaces $f: M^{n} \rightarrow \mathbb{Q}_{s}^{n+1}(c)$ of dimension $n=3$ with three distinct principal curvatures the classes of solutions of Problem $*$ and conformally flat hypersurfaces are distinct. Moreover, it was observed that their intersection contains the generalized cones over surfaces with constant curvature in an umbilical hypersurface $\mathbb{Q}_{s}^{3}(\bar{c})$ of $\mathbb{Q}_{s}^{4}(c), \bar{c} \geq c$. The following result states that such intersection contains no other elements.

Proposition 9 Let $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ be a conformally flat hypersurface with three distinct principal curvatures. If M^{3} admits an isometric immersion into $\mathbb{Q}_{\tilde{s}}^{4}(\tilde{c}), \tilde{c} \neq c$, then f is a generalized cone over a surface with constant curvature in an umbilical hypersurface $\mathbb{Q}_{s}^{3}(\bar{c})$ of $\mathbb{Q}_{s}^{4}(c), \bar{c} \geq c$.

Our last result shows that hypersurfaces $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ that can be isometrically immersed into $\mathbb{R}_{\tilde{s}}^{4}$ arise in families of parallel hypersurfaces.

Proposition 10 Let $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ be a holonomic hypersurface whose associated pair (v, V) satisfies (3) with $\tilde{c}=0$. Then any parallel hypersurface $f_{t}: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ to f has also the same property.

In a forthcoming paper [2] we develop a Ribaucour transformation for the class of hypersurfaces of $\mathbb{Q}_{s}^{4}(c)$ with three distinct principal curvatures that can be isometrically immersed into $\mathbb{Q}_{\tilde{s}}^{4}(\tilde{c})$ with $c \neq \tilde{c}$, as well as for the class of conformally flat hypersurfaces with three distinct principal curvatures. It gives a process to generate a family of new elements of such classes, starting from a given one and a solution of a linear system of PDE. In particular, explicit new examples of hypersurfaces in both classes are constructed.

1 The proofs

1.1 Proof of Proposition 1

Let $i: \mathbb{Q}_{s}^{n+1}(c) \rightarrow \mathbb{Q}_{s+\epsilon_{0}}^{n+2}(\tilde{c})$ be an umbilical inclusion, where $\epsilon_{0}=0$ or 1 , corresponding to $c>\tilde{c}$ or $c<\tilde{c}$, respectively, and set $\hat{f}=i \circ f$. Then, the second fundamental forms α and $\hat{\alpha}$ of f and \hat{f}, respectively, are related by

$$
\begin{equation*}
\hat{\alpha}=i_{*} \alpha+\sqrt{|c-\tilde{c}|}\langle,\rangle \xi \tag{7}
\end{equation*}
$$

where ξ is one of the unit vector fields that are normal to i.
For a fixed point $x \in M^{n}$, define $W^{3}(x):=N_{\hat{f}} M(x) \oplus N_{\tilde{f}} M(x)$, and endow $W^{3}(x)$ with the inner product

$$
\langle(\xi+\tilde{\xi}, \eta+\tilde{\eta})\rangle\rangle_{W^{3}(x)}:=\langle\xi, \eta\rangle_{N_{\hat{f}} M(x)}-\langle\tilde{\xi}, \tilde{\eta}\rangle_{N_{\tilde{f}} M(x)},
$$

which has index $\left(s+\epsilon_{0}\right)+(1-\tilde{s})$.
Now define a bilinear form $\beta_{x}: T_{x} M \times T_{x} M \rightarrow W^{3}(x)$ by

$$
\beta_{x}=\hat{\alpha}(x) \oplus \tilde{\alpha}(x),
$$

where $\hat{\alpha}(x)$ and $\tilde{\alpha}(x)$ are the second fundamental forms of \hat{f} and \tilde{f}, respectively, at x. Notice that $\mathcal{N}\left(\beta_{x}\right) \subset \mathcal{N}(\hat{\alpha}(x))=\{0\}$ by (7). On the other hand, it follows from the Gauss equations of \hat{f} and \tilde{f} that β_{x} is flat with respect to $\left.\langle<\rangle,\right\rangle$, that is,

$$
\left\langle\left\langle\beta_{x}(X, Y), \beta_{x}(Z, W)\right\rangle\right\rangle=\left\langle\left\langle\beta_{x}(X, W), \beta_{x}(Z, Y)\right\rangle\right.
$$

for all $X, Y, Z, W \in T_{x} M$. Thus, if \langle,$\rangle is positive definite, which is the case when s=0$, $\tilde{s}=1$ and $\epsilon_{0}=0$, that is, $c>\tilde{c}$, we obtain a contradiction with Corollary 1 of [7], according to which one has the inequality

$$
\begin{equation*}
\operatorname{dim} \mathcal{N}\left(\beta_{x}\right) \geq n-\operatorname{dim} W(x)=n-3>0 . \tag{8}
\end{equation*}
$$

The same contradiction is reached by applying the preceding inequality to $-\langle\langle$,$\rangle when$ $s=1, \tilde{s}=0$ and $c<\tilde{c}$, in which case $\langle\langle\rangle$,$\rangle is negative definite. Therefore, such cases$ cannot occur, which proves the first assertion.

In all other cases, the index of $\langle\langle\rangle$,$\rangle is either 1$ or 2. Thus, by applying Corollary 2 in [7] to $\langle\langle\rangle$,$\rangle in the first case and to -\langle\langle\rangle$,$\rangle in the latter, we obtain that \mathcal{S}\left(\beta_{x}\right)$ must be degenerate, for otherwise the inequality (8) would still hold, and then we would reach a contradiction as before.

Since $\mathcal{S}\left(\beta_{x}\right)$ is degenerate, there exist $\zeta \in N_{\hat{f}} M(x)$ and $\tilde{N} \in N_{\tilde{f}} M(x)$ such that $(0,0) \neq$ $(\zeta, \tilde{N}) \in \mathcal{S}\left(\beta_{x}\right) \cap \mathcal{S}\left(\beta_{x}\right)^{\perp}$. In particular, from $0=\langle\langle\zeta+\tilde{N}, \zeta+\tilde{N}\rangle\rangle$ it follows that $\langle\tilde{N}, \tilde{N}\rangle=$ $\langle\zeta, \zeta\rangle$. Thus, either $\tilde{N}=0$ and $\zeta \in \mathcal{S}(\hat{\alpha}(x)) \cap \mathcal{S}(\hat{\alpha}(x))^{\perp}$, or we can assume that $\langle\tilde{N}, \tilde{N}\rangle=$ $\epsilon_{\tilde{s}}=\langle\zeta, \zeta\rangle$.

The former case occurs precisely when f is umbilical at x with a principal curvature λ with respect to one of the unit normal vectors N to f, satisfying

$$
\epsilon_{s} \lambda^{2}+c-\tilde{c}=0
$$

in which case $N_{\hat{f}} M(x)$ is a Lorentzian two-plane and $\zeta=\lambda i_{*} N+\sqrt{|c-\tilde{c}|} \xi$ is a light-like vector that spans $\mathcal{S}(\hat{\alpha}(x))$. In this case, all sectional curvatures of M^{n} at x are equal to \tilde{c} by the Gauss equation of f, and hence \tilde{f} has 0 as a principal curvature at x with multiplicity at least $n-1$ by the Gauss equation of \tilde{f}.

Now assume that $\langle\tilde{N}, \tilde{N}\rangle=\epsilon_{\tilde{S}}=\langle\zeta, \zeta\rangle$. Then, from

$$
0=\langle\langle\beta, \zeta+\tilde{N}\rangle\rangle=\langle\hat{\alpha}, \zeta\rangle-\langle\tilde{\alpha}, \tilde{N}\rangle
$$

we obtain that $A_{\zeta}^{\hat{f}}=A_{\tilde{N}}^{\tilde{f}}$. Let $\zeta^{\perp} \in N_{\hat{f}} M(x)$ be such that $\left\{\zeta, \zeta^{\perp}\right\}$ is an orthonormal basis of $N_{\hat{f}} M(x)$. The Gauss equations for \hat{f} and \tilde{f} imply that

$$
\left\langle A_{\zeta^{\perp}}^{\hat{f}} X, Y\right\rangle\left\langle A_{\zeta^{\perp}}^{\hat{f}} Z, W\right\rangle=\left\langle A_{\zeta^{\perp}}^{\hat{f}} X, W\right\rangle\left\langle A_{\zeta^{\perp}}^{\hat{f}} Z, Y\right\rangle
$$

for all $X, Y, Z, W \in T_{x} M$, which is equivalent to $\operatorname{dim} \mathcal{N}\left(A_{\zeta^{\perp}}^{\hat{f}}\right) \geq n-1$. Since $A_{\xi}^{\hat{f}}=$ $\delta \sqrt{|c-\tilde{c}|} I$ by (7), with $\delta=(c-\tilde{c}) /|c-\tilde{c}|$, it follows that the restriction to $\mathcal{N}\left(A_{\zeta^{\perp}}^{\hat{f}}\right)$ of all shape operators $A_{\eta}^{\hat{f}}, \eta \in N_{\hat{f}} M(x)$, is a multiple of the identity tensor. In particular, this is the case for $A_{i_{*} N}^{\hat{f}}=A_{N}^{f}$, where N is one of the unit normal vector fields to f, hence f has a principal curvature λ at x with multiplicity at least $n-1$.

Moreover, if $\lambda=0$ then ζ^{\perp} must coincide with $i_{*} N$, and hence ζ with ξ, up to signs. Therefore $A_{\tilde{N}}^{\tilde{f}}=A_{\xi}^{\hat{f}}$, up to sign, hence \tilde{f} is umbilical at x. If f is umbilical at x and $c+\epsilon_{s} \lambda^{2} \neq$ \tilde{c}, then $A_{\zeta^{\perp}}=0$ and $A_{\tilde{N}}^{\tilde{f}}=A_{\zeta}^{\hat{f}}$ is a (nonzero) constant multiple of the identity tensor. Finally, if $\lambda \neq 0$ has multiplicity $n-1$, then we must have $\zeta^{\perp} \neq i_{*} N$ and $\operatorname{dim} \mathcal{N}\left(A_{\zeta^{\perp}}^{\hat{f}}\right)=n-1$, hence $\mathcal{N}\left(A_{\zeta^{\perp}}^{\hat{f}}\right)$ is an eigenspace of $A_{\zeta}^{\hat{f}}=A_{\tilde{N}}^{\tilde{f}}$.

1.2 Proof of Proposition 2

Suppose first that f is umbilical, with a (constant) principal curvature λ. If $\rho=0$, then M^{n} has constant curvature \tilde{c}, hence it admits isometric immersions into $\mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})$ having 0 as a principal curvature with multiplicity at least $n-1$. If $\rho>0$, there exists $\tilde{\lambda} \neq 0$ such that $c-\tilde{c}+\epsilon_{s} \lambda^{2}=\epsilon_{\tilde{s}} \tilde{\lambda}^{2}$. Hence $c+\epsilon_{s} \lambda^{2}=\tilde{c}+\epsilon_{\tilde{s}} \tilde{\lambda}^{2}$, thus $\tilde{A}=\tilde{\lambda} I$ satisfies the Gauss and Codazzi equations for an (umbilical) isometric immersion into $\mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})$.

Assume now that λ has constant multiplicity $n-1$. If $\lambda=0$, then M^{n} has constant curvature c and by the assumption there exists $\tilde{\lambda} \neq 0$ such that $c=\tilde{c}+\epsilon_{\tilde{s}} \tilde{\lambda}^{2}$. Thus, $\tilde{A}=\tilde{\lambda} I$ satisfies the Gauss and Codazzi equations for an (umbilical) isometric immersion into $\mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})$.

From now on assume that $\lambda \neq 0$. Let μ be the simple principal curvature and let E_{λ} and E_{μ} denote the corresponding eigenbundles. Then, one can check that the Codazzi equations for f are equivalent to the following facts:
(i) λ is constant along E_{λ};
(ii) E_{λ} is an umbilical distribution whose mean curvature vector field is $\eta=(\lambda-\mu)^{-1} \nabla \lambda$;
(iii) The mean curvature vector field (geodesic curvature vector field) of E_{μ} is $\zeta=(\mu-$ $\lambda)^{-1}(\nabla \mu)_{E_{\lambda}}$.
By the assumption, there exist $\tilde{\lambda}, \tilde{\mu} \in C^{\infty}(M)$ such that

$$
c-\tilde{c}+\epsilon_{s} \lambda^{2}=\epsilon_{\tilde{s}} \tilde{\lambda}^{2} \quad \text { and } c-\tilde{c}+\epsilon_{s} \lambda \mu=\epsilon_{\tilde{s}} \tilde{\lambda} \tilde{\mu}
$$

Moreover, since $\lambda \neq \mu$ we must have $\tilde{\lambda} \neq 0$ everywhere, and hence $\tilde{\lambda}$ and $\tilde{\mu}$ are unique if $\tilde{\lambda}$ is chosen to be positive. From both equations we obtain

$$
\epsilon_{s} \lambda^{2}-\epsilon_{\tilde{s}} \tilde{\lambda}^{2}=\epsilon_{s} \lambda \mu-\epsilon_{\tilde{s}} \tilde{\lambda} \tilde{\mu}, \quad \epsilon_{s} \lambda \nabla \lambda=\epsilon_{\tilde{s}} \tilde{\lambda} \nabla \tilde{\lambda}
$$

and

$$
\epsilon_{s}((\nabla \lambda) \mu+\lambda \nabla \mu)=\epsilon_{\tilde{s}}((\nabla \tilde{\lambda}) \tilde{\mu}+\tilde{\lambda} \nabla \tilde{\mu}) .
$$

It follows that

$$
\begin{equation*}
\frac{\nabla \tilde{\lambda}}{\tilde{\lambda}-\tilde{\mu}}=\frac{\nabla \lambda}{\lambda-\mu} \tag{9}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
\frac{(\nabla \tilde{\mu})_{E_{\lambda}}}{\tilde{\mu}-\tilde{\lambda}}=\frac{(\nabla \mu)_{E_{\lambda}}}{\mu-\lambda} . \tag{10}
\end{equation*}
$$

Let \tilde{A} be the endomorphism of $T M$ with eigenvalues $\tilde{\lambda}, \tilde{\mu}$ and corresponding eigenbundles E_{λ} and E_{μ}, respectively. Since

$$
c+\epsilon_{s} \lambda^{2}=\tilde{c}+\epsilon_{\tilde{s}} \tilde{\lambda}^{2} \quad \text { and } c+\epsilon_{s} \lambda \mu=\tilde{c}+\epsilon_{\tilde{s}} \tilde{\lambda} \tilde{\mu}
$$

the Gauss equations for an isometric immersion $\tilde{f}: M^{n} \rightarrow \mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})$ are satisfied by \tilde{A}. It follows from (9) and (10) that \tilde{A} also satisfies the Codazzi equations.

1.3 Proof of Proposition 3

Since $c>\tilde{c}$, there exist umbilical inclusions $i: \mathbb{Q}_{s}^{n+1}(c) \rightarrow \mathbb{Q}_{s}^{n+2}(\tilde{c})$ and $i: \mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c}) \rightarrow$ $\mathbb{Q}_{s}^{n+2}(c)$ for $(s, \tilde{s})=(1,0)$. If $s=\tilde{s}$ (respectively, $\left.(s, \tilde{s})=(1,0)\right)$, set $\hat{f}=i \circ f$ (respectively, $\hat{f}=i \circ \tilde{f})$. Then, one can use the existence of normal vector fields $\zeta \in \Gamma\left(N_{\hat{f}} M\right)$ and $\tilde{N} \in$ $\Gamma\left(N_{\tilde{f}} M\right)$ satisfying $\langle\zeta, \zeta\rangle=\tilde{\epsilon}=\langle\tilde{N}, \tilde{N}\rangle$ and $A_{\zeta}^{\hat{f}}=A_{\tilde{N}}^{\tilde{f}}$ and argue as in the proof of Theorem 3 in [5]. One obtains that there exists an open dense subset $U \subset M^{n}$, each point of which has an open neighborhood $V \subset M^{n}$ such that $\left.\hat{f}\right|_{V}$ (respectively, $\left.f\right|_{V}$) is a composition $\left.\hat{f}\right|_{V}=$ $\left.H \circ \tilde{f}\right|_{V}$ (respectively, $\left.f\right|_{V}=\left.H \circ \hat{f}\right|_{V}$) with an isometric embedding $H: W \subset \mathbb{Q}_{s}^{n+1}(\tilde{c}) \rightarrow$ $\mathbb{Q}_{s}^{n+2}(\tilde{c})$ (respectively, $H: W \subset \mathbb{Q}_{s}^{n+1}(c) \rightarrow \mathbb{Q}_{s}^{n+2}(c)$), with $\tilde{f}(V) \subset W$ (respectively, $\hat{f}(V) \subset W)$. Set $\bar{M}^{n}=H(W) \cap i\left(\mathbb{Q}_{s}^{n+1}(c)\right)\left(\right.$ respectively, $\left.\bar{M}^{n}=H(W) \cap i\left(\mathbb{Q}_{\tilde{s}}^{n+1}(\tilde{c})\right)\right)$. Then $\left.i \circ f\right|_{V}=\left.H \circ \tilde{f}\right|_{V}: V \rightarrow \bar{M}^{n}$ (respectively, $\left.H \circ f\right|_{V}=\left.i \circ \tilde{f}\right|_{V}: V \rightarrow \bar{M}^{n}$) is an isometry. Let $\Psi: \bar{M}^{n} \rightarrow V$ be the inverse of this isometry. Then $f \circ \Psi=\left.i^{-1}\right|_{\bar{M}^{n}}$ and $\tilde{f} \circ \Psi=\left.H^{-1}\right|_{\bar{M}^{n}}$ (respectively, $f \circ \Psi=\left.H^{-1}\right|_{\bar{M}^{n}}$ and $\tilde{f} \circ \Psi=\left.i^{-1}\right|_{\bar{M}^{n}}$), where i^{-1} and H^{-1} denote the inverses of the maps i and H, respectively, regarded as maps onto their images.

1.4 Proof of Theorem 4

Before going into the proof of Theorem 4, we establish a basic fact that will also be used in the proof of Theorem 6 in the next section.

Lemma 11 Let $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ and $\tilde{f}: M^{3} \rightarrow \mathbb{Q}_{\tilde{s}}^{4}(\tilde{c})$ be isometric immersions with $c \neq \tilde{c}$. Then, at each point $x \in M^{3}$ there exists an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{x} M^{3}$ that simultaneously diagonalizes the second fundamental forms of f and \tilde{f}.

Proof Define $i: \mathbb{Q}_{s}^{4}(c) \rightarrow \mathbb{Q}_{s+\epsilon_{0}}^{5}(\tilde{c})$ and \hat{f}, as well as $W^{3}(x),\left\langle\langle,\rangle_{W^{3}(x)}\right.$ and β_{x} for each $x \in M^{n}$, as in the proof of Proposition 1. If $\mathcal{S}\left(\beta_{x}\right)$ is degenerate for all $x \in M^{3}$, we conclude
as in the case $n \geq 4$ that the assertions in Theorem 1 hold, hence the statement is clearly true in this case.

Suppose now that $\mathcal{S}\left(\beta_{x}\right)$ is nondegenerate at $x \in M^{3}$. Then the inequality

$$
\operatorname{dim} \mathcal{S}\left(\beta_{x}\right) \geq \operatorname{dim} T_{x} M-\operatorname{dim} \mathcal{N}\left(\beta_{x}\right)
$$

holds by Corollary 2 in [7]. Since $\mathcal{N}\left(\beta_{x}\right)=\{0\}$, the right-hand side is equal to $\operatorname{dim} T_{x} M=$ $3=\operatorname{dim} W^{3}(x)$, hence we must have equality in the above inequality. By Theorem $2-b$ in [7], there exists an orthonormal basis $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ of $W^{3}(x)$ and a basis $\left\{\theta^{1}, \theta^{2}, \theta^{3}\right\}$ of $T_{x}^{*} M$ such that

$$
\beta=\sum_{j=1}^{3} \theta^{j} \otimes \theta^{j} \xi_{j} .
$$

In particular, if $i \neq j$ then $\beta\left(e_{i}, e_{j}\right)=0$ for the dual basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $\left\{\theta^{1}, \theta^{2}, \theta^{3}\right\}$. It follows that $\left\{e_{1}, e_{2}, e_{3}\right\}$ diagonalyzes both $\hat{\alpha}$ and $\tilde{\alpha}$, and therefore both α and $\tilde{\alpha}$, in view of (7). It also follows from (7) that

$$
0=\left\langle\hat{\alpha}\left(e_{i}, e_{j}\right), \xi\right\rangle=\sqrt{|c-\tilde{c}|}\left\langle e_{i}, e_{j}\right\rangle, \quad i \neq j
$$

hence the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ is orthogonal.
Lemma 12 Under the assumptions of Lemma 11 , let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and $\mu_{1}, \mu_{2}, \mu_{3}$ be the principal curvatures of f and \tilde{f} correspondent to e_{1}, e_{2} and e_{3}, respectively.
(a) Assume that f has a principal curvature of multiplicity two, say, that $\lambda_{1}=\lambda_{2}:=\lambda$. If either $c>\tilde{c}, s=0$ and $\tilde{s}=1$, or $c<\tilde{c}, s=1$ and $\tilde{s}=0$, then

$$
c-\tilde{c}+\epsilon_{s} \lambda \lambda_{3}=0, \quad \mu_{3}=0 \quad \text { and } c-\tilde{c}+\epsilon_{s} \lambda^{2}=\epsilon_{\tilde{s}} \mu_{1} \mu_{2}
$$

Otherwise, either the same conclusion holds or

$$
\mu_{1}=\mu_{2}:=\mu, \quad c-\tilde{c}+\epsilon_{s} \lambda^{2}=\epsilon_{\tilde{s}} \mu^{2} \text { and } c-\tilde{c}+\epsilon_{s} \lambda \lambda_{3}=\epsilon_{\tilde{s}} \mu \mu_{3} .
$$

(b) Assume, say, that $\lambda_{3}=0$. Then $\mu_{1}=\mu_{2}:=\mu$,

$$
\begin{equation*}
c-\tilde{c}+\epsilon_{s} \lambda_{1} \lambda_{2}=\epsilon_{\tilde{s}} \mu^{2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
c-\tilde{c}=\epsilon_{\tilde{s}} \mu \mu_{3} . \tag{12}
\end{equation*}
$$

Proof By the Gauss equations for f and \tilde{f}, we have

$$
\begin{equation*}
c+\epsilon_{s} \lambda_{i} \lambda_{j}=\tilde{c}+\epsilon_{\tilde{s}} \mu_{i} \mu_{j}, \quad 1 \leq i \neq j \leq 3 . \tag{13}
\end{equation*}
$$

(a) If $\lambda_{1}=\lambda_{2}:=\lambda$, then the preceding equations are

$$
\begin{align*}
c+\epsilon_{s} \lambda^{2} & =\tilde{c}+\epsilon_{\tilde{s}} \mu_{1} \mu_{2}, \tag{14}\\
c+\epsilon_{s} \lambda \lambda \lambda_{3} & =\tilde{c}+\epsilon_{\tilde{s}} \mu_{1} \mu_{3} \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
c+\epsilon_{s} \lambda \lambda_{3}=\tilde{c}+\epsilon_{\tilde{s}} \mu_{2} \mu_{3} . \tag{16}
\end{equation*}
$$

The two last equations yield

$$
\mu_{3}\left(\mu_{1}-\mu_{2}\right)=0,
$$

hence either $\mu_{3}=0$ or $\mu_{1}=\mu_{2}$. In view of (14), the second possibility cannot occur if either $c>\tilde{c}, s=0$ and $\tilde{s}=1$, or $c<\tilde{c}, s=1$ and $\tilde{s}=0$. Thus, in these cases we must have $\mu_{3}=0$, and then $c-\tilde{c}+\epsilon_{s} \lambda^{2}=\epsilon_{\tilde{s}} \mu_{1} \mu_{2}$ and $c-\tilde{c}+\epsilon_{s} \lambda \lambda_{3}=0$ by (15) and (16).

Otherwise, either the same conclusion holds or $\mu_{1}=\mu_{2}:=\mu$, and then $c-\tilde{c}+\epsilon_{s} \lambda^{2}=$ $\epsilon_{\tilde{s}} \mu^{2}$ and $c-\tilde{c}+\epsilon_{s} \lambda \lambda_{3}=\epsilon_{\tilde{s}} \mu \mu_{3}$ by (15) and (16).
(b) If $\lambda_{3}=0$, then Eq. (13) become

$$
\begin{align*}
& c-\tilde{c}+\epsilon_{s} \lambda_{1} \lambda_{2}=\epsilon_{\tilde{s}} \mu_{1} \mu_{2}, \tag{17}\\
& c-\tilde{c}=\epsilon_{\tilde{s}} \mu_{1} \mu_{3} \tag{18}
\end{align*}
$$

and

$$
\begin{equation*}
c-\tilde{c}=\epsilon_{\tilde{s}} \mu_{2} \mu_{3} \tag{19}
\end{equation*}
$$

Since $\mu_{3} \neq 0$ by (18) or (19), these equations imply that $\mu_{1}=\mu_{2}:=\mu$, and we obtain (12). Equation (11) then follows from (17).

Proof of Theorem 4 Assume that f has a principal curvature of multiplicity two, say, $\lambda_{1}=$ $\lambda_{2}:=\lambda$. Suppose first that either $c>\tilde{c}, s=0$ and $\tilde{s}=1$, or $c<\tilde{c}, s=1$ and $\tilde{s}=0$. Then, it follows from Lemma 12 that

$$
\begin{equation*}
c-\tilde{c}+\epsilon_{s} \lambda \lambda_{3}=0, \quad \mu_{3}=0 \quad \text { and } c-\tilde{c}+\epsilon_{s} \lambda^{2}=\epsilon_{\tilde{s}} \mu_{1} \mu_{2} . \tag{20}
\end{equation*}
$$

In particular, we must have $\lambda \neq 0$ by the first of the preceding equations, whereas the last one implies that $\mu_{1} \mu_{2} \neq 0$. Then, it is well known that E_{λ} is a spherical distribution, that is, it is umbilical and its mean curvature normal $\eta=v e_{3}$ satisfies $e_{1}(v)=0=e_{2}(\nu)$. In particular, a leaf σ of E_{λ} has constant sectional curvature $v^{2}+\epsilon_{s} \lambda^{2}+c=v^{2}+\epsilon_{\tilde{s}} \mu_{1} \mu_{2}+\tilde{c}$. Denoting by ∇ and $\tilde{\nabla}$ the connections on M^{3} and $\tilde{f}^{*} T \mathbb{Q}_{\tilde{s}}^{4}(\tilde{c})$, respectively, we have

$$
\tilde{\nabla}_{e_{i}} \tilde{f}_{*} e_{3}=\tilde{f}_{*} \nabla_{e_{i}} e_{3}=-v \tilde{f}_{*} e_{i}, \quad 1 \leq i \leq 2,
$$

hence $\tilde{f}(\sigma)$ is contained in an umbilical hypersurface $\mathbb{Q}_{\tilde{s}}^{3}(\bar{c})$ of $\mathbb{Q}_{\tilde{S}}^{4}(\tilde{c})$ with constant curvature $\bar{c}=\tilde{c}+v^{2}$ and $\tilde{f}_{*} e_{3}$ as a unit normal vector field.

Moreover, $E_{\lambda}^{\perp}=E_{\mu_{3}}$ is the relative nullity distribution of \tilde{f}. Thus, it is totally geodesic, and in fact its integral curves are mapped by \tilde{f} into geodesics of $\left.\mathbb{Q}_{\tilde{S}}^{4} \tilde{c}\right)$. It follows that $\tilde{f}\left(M^{3}\right)$ is contained in a generalized cone over $\tilde{f}(\sigma)$.

On the other hand, it is not hard to extend the proof of Theorem 4.2 in [4] to the case of Lorentzian ambient space forms, and conclude that f is a rotation hypersurface in $\mathbb{Q}_{s}^{4}(c)$. This means that there exist subspaces $P^{2} \subset P^{3}=P_{s+\epsilon_{0}}^{3}$ in $\mathbb{R}_{s+\epsilon_{0}}^{5} \supset \mathbb{Q}_{s}^{4}(c)$ with $P^{3} \cap \mathbb{Q}_{s}^{4}(c) \neq \emptyset$, where $\epsilon_{0}=0$ or $\epsilon_{0}=1$, corresponding to $c>0$ or $c<0$, respectively, and a regular curve γ in $\mathbb{Q}_{s}^{2}(c)=P^{3} \cap \mathbb{Q}_{s}^{4}(c)$ that does not meet P^{2}, such that $f\left(M^{2}\right)$ is the union of the orbits of points of γ under the action of the subgroup of orthogonal transformations of $\mathbb{R}_{s+\epsilon_{0}}^{5}$ that fix pointwise P^{2}. If P^{2} is nondegenerate, then f can be parameterized by

$$
f(s, u)=\left(\gamma_{1}(s) \phi_{1}(u), \gamma_{1}(s) \phi_{2}(u), \gamma_{1}(s) \phi_{3}(u), \gamma_{4}(s), \gamma_{5}(s)\right),
$$

with respect to an orthonormal basis $\left\{e_{1}, \ldots, e_{5}\right\}$ of $\mathbb{R}_{s+\epsilon_{0}}^{5}$ satisfying the conditions in either (i) or (ii) below, according to whether the induced metric on P^{2} has index $s+\epsilon_{0}$ or $s+\epsilon_{0}-1$, respectively:
(i) $\left\langle e_{i}, e_{i}\right\rangle=1$ for $1 \leq i \leq 3,\left\langle e_{3+j}, e_{3+j}\right\rangle=\epsilon_{j}$ for $1 \leq j \leq 2$, and $\left(\epsilon_{1}, \epsilon_{2}\right)$ equal to either $(1,1),(1,-1)$ or $(-1,-1)$, corresponding to $s+\epsilon_{0}=0,1$ or 2 , respectively.
(ii) $\left\langle e_{1}, e_{1}\right\rangle=-1,\left\langle e_{i}, e_{i}\right\rangle=1$ for $2 \leq i \leq 4$ and $\left\langle e_{5}, e_{5}\right\rangle=\bar{\epsilon}$, where $\bar{\epsilon}=1$ or $\bar{\epsilon}=-1$, corresponding to $s+\epsilon_{0}=1$ or 2, respectively.
In both cases, we have $P^{2}=\operatorname{span}\left\{e_{4}, e_{5}\right\}, P^{3}=\operatorname{span}\left\{e_{1}, e_{4}, e_{5}\right\}, u=\left(u_{1}, u_{2}\right), \gamma(s)=$ $\left(\gamma_{1}(s), \gamma_{4}(s), \gamma_{5}(s)\right)$ a unit-speed curve in $\mathbb{Q}_{s}^{2}(c) \subset P^{3}$ and $\phi(u)=\left(\phi_{1}(u), \phi_{2}(u), \phi_{3}(u)\right)$ an orthogonal parameterization of the unit sphere $\mathbb{S}^{2} \subset\left(P^{2}\right)^{\perp}$ in case (i) and of the hyperbolic plane $\mathbb{H}^{2} \subset\left(P^{2}\right)^{\perp}$ in case (ii). Accordingly, the hypersurface is said to be of spherical or hyperbolic type.

If P^{2} is degenerate, then f is a rotation hypersurface of parabolic type parameterized by

$$
f(s, u)=\left(\gamma_{1}(s), \gamma_{1}(s) u_{1}, \gamma_{1}(s) u_{2}, \gamma_{4}(s)-\frac{1}{2} \gamma_{1}(s)\left(u_{1}^{2}+u_{2}^{2}\right), \gamma_{5}(s)\right),
$$

with respect to a pseudo-orthonormal basis $\left\{e_{1}, \ldots, e_{5}\right\}$ of $\mathbb{R}_{s+\epsilon_{0}}^{5}$ such that $\left\langle e_{1}, e_{1}\right\rangle=0=$ $\left\langle e_{4}, e_{4}\right\rangle,\left\langle e_{1}, e_{4}\right\rangle=1,\left\langle e_{2}, e_{2}\right\rangle=1=\left\langle e_{3}, e_{3}\right\rangle$ and $\left\langle e_{5}, e_{5}\right\rangle=-2\left(s+\epsilon_{0}\right)+3$, where $\gamma(s)=\left(\gamma_{1}(s), \gamma_{4}(s), \gamma_{5}(s)\right)$ is a unit-speed curve in $\mathbb{Q}_{s}^{2}(c) \subset P^{3}=\operatorname{span}\left\{e_{1}, e_{4}, e_{5}\right\}$.

In each case, one can compute the principal curvatures of f as in [4] and check that the first equation in (20) is satisfied if and only if $\gamma_{1}^{\prime \prime}+\tilde{c} \gamma_{1}=0$, that is, γ is a \tilde{c}-helix in $\mathbb{Q}_{s}^{2}(c) \subset \mathbb{R}_{s+\epsilon_{0}}^{3}$.

Under the remaining possibilities for c, \tilde{c}, s and \tilde{s}, either the same conclusions hold or the bilinear form β_{x} in the proof of Proposition 1 is everywhere degenerate, in which case there exist normal vector fields $\zeta \in \Gamma\left(N_{\hat{f}} M\right)$ and $\tilde{N} \in \Gamma\left(N_{\tilde{f}} M\right)$ satisfying $\langle\zeta, \zeta\rangle=\epsilon_{\tilde{s}}=\langle\tilde{N}, \tilde{N}\rangle$ and $A_{\zeta}^{\hat{f}}=A_{\tilde{N}}^{\tilde{f}}$, and we obtain as before that f and \tilde{f} are locally given on an open dense subset as described in Proposition 3.

Finally, if one of the principal curvatures of f is zero, then the preceding argument applies with the roles of f and \tilde{f} interchanged.

1.5 Proof of Theorem 6

Let (v, V) be the pair associated to f. Define

$$
\begin{equation*}
\tilde{V}_{j}=(-1)^{j+1} \delta_{j}\left(v_{i} V_{k}-v_{k} V_{i}\right), \quad 1 \leq i \neq j \neq k \leq 3, \quad i<k . \tag{21}
\end{equation*}
$$

Then $\tilde{V}=\left(\tilde{V}_{1}, \tilde{V}_{2}, \tilde{V}_{3}\right)$ is the unique vector in \mathbb{R}^{3}, up to sign, such that $\left(v,|C|^{-1 / 2} V,|C|^{-1 / 2}\right.$ $\tilde{V})$ is an orthonormal basis of \mathbb{R}^{3} with respect to the inner product

$$
\begin{equation*}
\left\langle\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right\rangle=\sum_{i=1}^{3} \delta_{i} x_{i} y_{i} . \tag{22}
\end{equation*}
$$

Therefore, the matrix $D=\left(v,|C|^{-1 / 2} V,|C|^{-1 / 2} \tilde{V}\right)$ satisfies $D \delta D^{t}=\delta$, where $\delta=$ $\operatorname{diag}(\hat{\epsilon}, C /|C|,-\hat{\epsilon} C /|C|)$. It follows that

$$
\hat{\epsilon} v_{i} v_{j}+C /|C|^{2} V_{i} V_{j}-\hat{\epsilon} C /|C|^{2} \tilde{V}_{i} \tilde{V}_{j}=0, \quad 1 \leq i \neq j \leq 3 .
$$

Multiplying by $\epsilon_{s} C$ and using that $\hat{\epsilon} \epsilon_{s}=\tilde{\epsilon}$ and $\hat{\epsilon} \epsilon_{s} C=\hat{\epsilon} \epsilon_{s} \tilde{\epsilon}(c-\tilde{c})=c-\tilde{c}$ we obtain

$$
(c-\tilde{c}) v_{i} v_{j}+\epsilon V_{i} V_{j}-\tilde{\epsilon} \tilde{V}_{i} \tilde{V}_{j}=0
$$

or equivalently,

$$
c v_{i} v_{j}+\epsilon V_{i} V_{j}=\tilde{c} v_{i} v_{j}+\tilde{\epsilon} \tilde{V}_{i} \tilde{V}_{j}
$$

Substituting the preceding equation into (v) yields

$$
\frac{\partial h_{i j}}{\partial u_{i}}+\frac{\partial h_{j i}}{\partial u_{j}}+h_{k i} h_{k j}+\tilde{\epsilon} \tilde{V}_{i} \tilde{V}_{j}+\tilde{c} v_{i} v_{j}=0 .
$$

On the other hand, differentiating (21) and using equations (i)-(iv) yields

$$
\frac{\partial \tilde{V}_{j}}{\partial u_{i}}=h_{i j} \tilde{V}_{i}, \quad 1 \leq i \neq j \leq 3 .
$$

It follows from Proposition 5 that there exists a hypersurface $\tilde{f}: M^{3} \rightarrow \mathbb{Q}_{\tilde{s}}^{4}(\tilde{c})$, with $\epsilon_{\tilde{s}}=\tilde{\epsilon}$, whose first and second fundamental forms are

$$
I=\sum_{i=1}^{3} v_{i}^{2} d u_{i}^{2} \quad \text { and } \quad I I=\sum_{i=1}^{3} \tilde{V}_{i} v_{i} d u_{i}^{2}
$$

thus M^{3} admits an isometric immersion into $\mathbb{Q}_{\tilde{s}}^{4}(\tilde{c})$.
Conversely, let $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ be a hypersurface for which there exists an isometric immersion $\tilde{f}: M^{3} \rightarrow \mathbb{Q}_{\tilde{s}}^{4}(\tilde{c})$. By Lemma 11, there exists an orthonormal frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ of M^{3} of principal directions of both f and \tilde{f}. Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and $\mu_{1}, \mu_{2}, \mu_{3}$ be the principal curvatures of f and \tilde{f} correspondent to e_{1}, e_{2} and e_{3}, respectively. Assume that $\lambda_{1}<\lambda_{2}<\lambda_{3}$, and that the unit normal vector field to f has been chosen so that $\lambda_{1}<0$. The Gauss equations for f and \tilde{f} yield

$$
c+\epsilon_{s} \lambda_{i} \lambda_{j}=\tilde{c}+\epsilon_{\tilde{s}} \mu_{i} \mu_{j}, \quad 1 \leq i \neq j \leq 3 .
$$

Thus,

$$
\begin{equation*}
\mu_{i} \mu_{j}=C+\hat{\epsilon} \lambda_{i} \lambda_{j}, \quad C=\epsilon_{\tilde{s}}(c-\tilde{c}), \quad 1 \leq i \neq j \leq 3 . \tag{23}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\mu_{j}^{2}=\frac{\left(C+\hat{\epsilon} \lambda_{j} \lambda_{i}\right)\left(C+\hat{\epsilon} \lambda_{j} \lambda_{k}\right)}{C+\hat{\epsilon} \lambda_{i} \lambda_{k}}, \quad 1 \leq j \neq i \neq k \neq j \leq 3 . \tag{24}
\end{equation*}
$$

The Codazzi equations for f and \tilde{f} are, respectively,

$$
\begin{align*}
e_{i}\left(\lambda_{j}\right) & =\left(\lambda_{i}-\lambda_{j}\right)\left\langle\nabla_{e_{j}} e_{i}, e_{j}\right\rangle, \quad i \neq j, \tag{25}\\
\left(\lambda_{j}-\lambda_{k}\right)\left\langle\nabla_{e_{i}} e_{j}, e_{k}\right\rangle & =\left(\lambda_{i}-\lambda_{k}\right)\left\langle\nabla_{e_{j}} e_{i}, e_{k}\right\rangle, \quad i \neq j \neq k . \tag{26}
\end{align*}
$$

and

$$
\begin{align*}
e_{i}\left(\mu_{j}\right) & =\left(\mu_{i}-\mu_{j}\right)\left\langle\nabla_{e_{j}} e_{i}, e_{j}\right\rangle, \quad i \neq j, \tag{27}\\
\left(\mu_{j}-\mu_{k}\right)\left\langle\nabla_{e_{i}} e_{j}, e_{k}\right\rangle & =\left(\mu_{i}-\mu_{k}\right)\left\langle\nabla_{e_{j}} e_{i}, e_{k}\right\rangle, \quad i \neq j \neq k . \tag{28}
\end{align*}
$$

Multiplying (28) by μ_{j} and using (24) and (26) we obtain

$$
\hat{\epsilon} C \frac{\left(\lambda_{i}-\lambda_{j}\right)\left(\lambda_{j}-\lambda_{k}\right)}{C+\hat{\epsilon} \lambda_{i} \lambda_{k}}\left\langle\nabla_{e_{i}} e_{j}, e_{k}\right\rangle=0, i \neq j \neq k .
$$

Since the principal curvatures λ_{1}, λ_{2} and λ_{3} are distinct, it follows that

$$
\begin{equation*}
\left\langle\nabla_{e_{i}} e_{j}, e_{k}\right\rangle=0, \quad 1 \leq i \neq j \neq k \neq i \leq 3 . \tag{29}
\end{equation*}
$$

Computing $2 \mu_{j} e_{i}\left(\mu_{j}\right)$, first by differentiating (24) and then by multiplying (27) by $2 \mu_{j}$, and using (23), (24) and (25) we obtain

$$
\begin{gather*}
\left(C+\hat{\epsilon} \lambda_{j} \lambda_{k}\right)\left(\lambda_{k}-\lambda_{j}\right) e_{i}\left(\lambda_{i}\right)+\left(C+\hat{\epsilon} \lambda_{i} \lambda_{k}\right)\left(\lambda_{k}-\lambda_{i}\right) e_{i}\left(\lambda_{j}\right) \\
+\left(C+\hat{\epsilon} \lambda_{i} \lambda_{j}\right)\left(\lambda_{i}-\lambda_{j}\right) e_{i}\left(\lambda_{k}\right)=0 . \tag{30}
\end{gather*}
$$

Now let $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ be the dual frame of $\left\{e_{1}, e_{2}, e_{3}\right\}$ and define the one-forms $\gamma_{j}, 1 \leq j \leq 3$, by

$$
\gamma_{j}=\sqrt{\delta_{j} \frac{\left(\lambda_{j}-\lambda_{i}\right)\left(\lambda_{j}-\lambda_{k}\right)}{C+\hat{\epsilon} \lambda_{i} \lambda_{k}}} \omega_{j}, \quad 1 \leq j \neq i \neq k \neq j \leq 3,
$$

where $\delta_{j}=y_{j} /\left|y_{j}\right|$ for $y_{j}=\frac{\left(\lambda_{j}-\lambda_{i}\right)\left(\lambda_{j}-\lambda_{k}\right)}{C+\hat{\epsilon}_{i} \lambda_{k}}$.
By (24), either all the three numbers $C+\hat{\epsilon} \lambda_{j} \lambda_{i}, C+\hat{\epsilon} \lambda_{j} \lambda_{k}$ and $C+\hat{\epsilon} \lambda_{i} \lambda_{k}$ are positive or two of them are negative and the remaining one is positive. Hence there are four possible cases:
(I) $C+\hat{\epsilon} \lambda_{i} \lambda_{j}>0,1 \leq i \neq j \leq 3$.
(II) $C+\hat{\epsilon} \lambda_{1} \lambda_{2}<0, C+\hat{\epsilon} \lambda_{1} \lambda_{3}<0$ and $C+\hat{\epsilon} \lambda_{2} \lambda_{3}>0$.
(III) $C+\hat{\epsilon} \lambda_{1} \lambda_{2}>0, C+\hat{\epsilon} \lambda_{1} \lambda_{3}<0$ and $C+\hat{\epsilon} \lambda_{2} \lambda_{3}<0$.
(IV) $C+\hat{\epsilon} \lambda_{1} \lambda_{2}<0, C+\hat{\epsilon} \lambda_{1} \lambda_{3}>0$ and $C+\hat{\epsilon} \lambda_{2} \lambda_{3}<0$.

Notice that $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$ equals $(1,-1,1)$ in case $(I),(1,1,-1)$ in case $(I I),(-1,1,1)$ in case $(I I I)$ and $(-1,-1,-1)$ in case $(I V)$. It is easily checked that one must have $\hat{\epsilon}=-1$ and $C<0$ in case (IV), whereas in the remaining cases either $\hat{\epsilon}=1$ or $\hat{\epsilon}=-1$ and $C>0$. Therefore, $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(-1,-1,-1)$ if $\hat{\epsilon}=-1$ and $C<0$, and in the remaining cases we may assume that $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(1,-1,1)$ after possibly reordering the coordinates.

We claim that (29) and (30) are precisely the conditions for the one-forms $\gamma_{j}, 1 \leq j \leq 3$, to be closed. To prove this, set $x_{j}=\sqrt{\delta_{j} y_{j}}, 1 \leq j \leq 3$, so that $\gamma_{j}=x_{j} \omega_{j}$. It follows from (29) that

$$
d \gamma_{j}\left(e_{i}, e_{k}\right)=e_{i} \gamma_{j}\left(e_{k}\right)-e_{k} \gamma_{j}\left(e_{i}\right)-\gamma_{j}\left(\left[e_{i}, e_{k}\right]\right)=0
$$

On the other hand, using (25) we obtain

$$
\begin{aligned}
d \gamma_{j}\left(e_{i}, e_{j}\right) & =e_{i} \gamma_{j}\left(e_{j}\right)-e_{j} \gamma_{j}\left(e_{i}\right)-\gamma_{j}\left(\left[e_{i}, e_{j}\right]\right) \\
& =e_{i}\left(x_{j}\right)+x_{j}\left\langle\nabla_{e_{j}} e_{i}, e_{j}\right\rangle \\
& =e_{i}\left(x_{j}\right)+x_{j} \frac{e_{i}\left(\lambda_{j}\right)}{\lambda_{i}-\lambda_{j}},
\end{aligned}
$$

hence γ_{j} is closed if and only if

$$
e_{i}\left(x_{j}\right)=\frac{x_{j}}{\lambda_{j}-\lambda_{i}} e_{i}\left(\lambda_{j}\right), \quad 1 \leq i \neq j \leq 3,
$$

or equivalently,

$$
\begin{aligned}
e_{i}\left(y_{j}\right)\left(C+\hat{\epsilon} \lambda_{i} \lambda_{k}\right) & =2 \delta_{j} x_{j} e_{i}\left(x_{j}\right)\left(C+\hat{\epsilon} \lambda_{i} \lambda_{k}\right) \\
& =2 \delta_{j} \frac{x_{j}^{2}}{\lambda_{j}-\lambda_{i}} e_{i}\left(\lambda_{j}\right)\left(C+\hat{\epsilon} \lambda_{i} \lambda_{k}\right) \\
& =2\left(\lambda_{j}-\lambda_{k}\right) e_{i}\left(\lambda_{j}\right) .
\end{aligned}
$$

The preceding equation is in turn equivalent to

$$
\begin{aligned}
2\left(\lambda_{j}-\lambda_{k}\right)\left(C+\hat{\epsilon} \lambda_{i} \lambda_{k}\right) e_{i}\left(\lambda_{j}\right)= & \left(e_{i}\left(\lambda_{j}\right)-e_{i}\left(\lambda_{i}\right)\left(\lambda_{j}-\lambda_{k}\right)\left(C+\hat{\epsilon} \lambda_{i} \lambda_{k}\right)\right. \\
& +\left(\lambda_{j}-\lambda_{i}\right)\left(e_{i}\left(\lambda_{j}\right)-e_{i}\left(\lambda_{k}\right)\right)\left(C+\hat{\epsilon} \lambda_{i} \lambda_{k}\right) \\
& -\left(\lambda_{j}-\lambda_{i}\right)\left(\lambda_{j}-\lambda_{k}\right)\left(\hat{\epsilon}\left(e_{i}\left(\lambda_{i}\right) \lambda_{k}+\lambda_{i} e_{i}\left(\lambda_{k}\right)\right),\right.
\end{aligned}
$$

which is the same as (30).
Therefore, each point $x \in M^{3}$ has an open neighborhood V where one can find functions $u_{j} \in C^{\infty}(V), 1 \leq j \leq 3$, such that $d u_{j}=\gamma_{j}$, and we can choose V so small that $\Phi=\left(u_{1}, u_{2}, u_{3}\right)$ is a diffeomorphism of V onto an open subset $U \subset \mathbb{R}^{3}$, that is, $\left(u_{1}, u_{2}, u_{3}\right)$ are local coordinates on V. From $\delta_{i j}=d u_{j}\left(\partial u_{i}\right)=x_{j} \omega_{j}\left(\partial u_{i}\right)$ it follows that $\partial u_{i}=v_{i} e_{i}$, with $v_{i}=x_{i}^{-1}$. Now notice that

$$
\begin{aligned}
\sum_{j=1}^{3} \delta_{j} v_{j}^{2} & =\sum_{i, k \neq j=1}^{3} \frac{C+\hat{\epsilon} \lambda_{i} \lambda_{k}}{\left(\lambda_{j}-\lambda_{i}\right)\left(\lambda_{j}-\lambda_{k}\right)}=\hat{\epsilon}, \\
\sum_{j=1}^{3} \delta_{j} v_{j} V_{j} & =\sum_{j=1}^{3} \delta_{j} \lambda_{j} v_{j}^{2}=\sum_{i, k \neq j=1}^{3} \lambda_{j} \frac{C+\hat{\epsilon} \lambda_{i} \lambda_{k}}{\left(\lambda_{j}-\lambda_{i}\right)\left(\lambda_{j}-\lambda_{k}\right)}=0
\end{aligned}
$$

and

$$
\sum_{j=1}^{3} \delta_{j} V_{j}^{2}=\sum_{j=1}^{3} \delta_{j} \lambda_{j}^{2} v_{j}^{2}=\sum_{i, k \neq j=1}^{3} \lambda_{j}^{2} \frac{C+\hat{\epsilon} \lambda_{i} \lambda_{k}}{\left(\lambda_{j}-\lambda_{i}\right)\left(\lambda_{j}-\lambda_{k}\right)}=C .
$$

It follows that the pair (v, V) satisfies (3).

1.6 Proof of Proposition 7

Before starting the proof of Proposition 7, recall that the Weyl tensor of a Riemannian manifold M^{n} is defined by

$$
\begin{aligned}
\langle C(X, Y) Z, W\rangle= & \langle R(X, Y) Z, W\rangle-L(X, W)\langle Y, Z\rangle-L(Y, Z)\langle X, W\rangle \\
& +L(X, Z)\langle Y, W\rangle+L(Y, W)\langle X, Z\rangle
\end{aligned}
$$

for all $X, Y, Z, W \in \mathfrak{X}(M)$, where L is the Schouten tensor of M^{n}, which is given in terms of the Ricci tensor and the scalar curvature s by

$$
L(X, Y)=\frac{1}{n-2}\left(\operatorname{Ric}(X, Y)-\frac{1}{2} n s\langle X, Y\rangle\right) .
$$

It is well known that, if $n \geq 4$, then the vanishing of the Weyl tensor is a necessary and sufficient condition for M^{n} to be conformally flat.

Proof of Proposition 7 Let $f: M^{n} \rightarrow \mathbb{Q}_{s}^{n+1}(c)$ be a conformally flat hypersurface of dimension $n \geq 4$. For a fixed point $x \in M^{n}$, choose a unit normal vector $N \in N_{x}^{f} M$ and let $A=A_{N}: T_{x} M \rightarrow T_{x} M$ be the shape operator of f with respect to N. Let W^{3} be a vector space endowed with the Lorentzian inner product $\langle\rangle$,$\rangle given by$

$$
\left.\left\langle(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right\rangle\right\rangle=\epsilon\left(-a a^{\prime}+b b^{\prime}+\epsilon c c^{\prime}\right) .
$$

Define a bilinear form $\beta: T_{x} M \times T_{x} M \rightarrow W^{3}$ by

$$
\beta(X, Y)=\left(L(X, Y)+\frac{1}{2}(1-c)\langle X, Y\rangle, L(X, Y)-\frac{1}{2}(1+c)\langle X, Y\rangle,\langle A X, Y\rangle\right) .
$$

Note that $\beta(X, X) \neq 0$ for all $X \neq 0$. Moreover,

$$
\begin{aligned}
& \langle\langle\beta(X, Y), \beta(Z, W)\rangle-\langle\langle\beta(X, W), \beta(Z, Y)\rangle\rangle=-L(X, Y)\langle Z, W\rangle \\
& \quad-L(Z, W)\langle X, Y\rangle+L(X, W)\langle Z, Y\rangle+L(Z, Y)\langle X, W\rangle+c\langle(X \wedge Z) W, Y\rangle \\
& \quad+\epsilon\langle(A X \wedge A Z) W, Y\rangle=\langle C(X, Z) W, Y\rangle=0 .
\end{aligned}
$$

Thus, β is flat with respect to $\langle<\rangle$,$\rangle . We claim that S(\beta)$ must be degenerate. Otherwise, we would have

$$
0=\operatorname{dim} \operatorname{ker} \beta \geq n-\operatorname{dim} S(\beta)>0,
$$

a contradiction. Now let $\zeta \in S(\beta) \cap S(\beta)^{\perp}$ and choose a pseudo-orthonormal basis ζ, η, ξ of W^{3} with $\langle\langle\zeta, \zeta\rangle\rangle=0=\langle\langle\eta, \eta\rangle\rangle,\langle\langle\zeta, \eta\rangle\rangle=1=\langle\langle\xi, \xi\rangle\rangle$ and $\langle\langle\xi, \zeta\rangle\rangle=0=\langle\langle\xi, \eta\rangle\rangle$. Then

$$
\beta=\phi \zeta+\psi \xi
$$

where $\phi=\langle\langle\beta, \eta\rangle\rangle$ and $\psi=\langle\langle\beta, \xi\rangle\rangle$. Flatness of β implies that dim ker $\psi=n-1$. We claim that $\operatorname{ker} \psi$ is an eigenspace of A. Given $Z \in \operatorname{ker} \psi$ we have

$$
\begin{equation*}
\beta(Z, X)=\phi(Z, X) \zeta \tag{31}
\end{equation*}
$$

for all $X \in T_{x} M$. Let $\left\{e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)\right\}$ be the canonical basis of W and write $\zeta=\sum_{j=1}^{3} a_{j} e_{j}$. Then (31) gives

$$
L(Z, X)+\frac{1}{2}(1-c)\langle Z, X\rangle=a_{1} \phi(Z, X)
$$

and

$$
L(Z, X)-\frac{1}{2}(1+c)\langle Z, X\rangle=a_{2} \phi(Z, X) .
$$

Subtracting the second of the preceding equations from the first yields

$$
\langle Z, X\rangle=\left(a_{1}-a_{2}\right) \phi(Z, X)
$$

which implies that $a_{1}-a_{2} \neq 0$ and

$$
\phi(Z, X)=\frac{1}{a_{1}-a_{2}}\langle Z, X\rangle .
$$

Moreover, we also obtain from (31) that

$$
\langle A Z, X\rangle=a_{3} \phi(Z, X)=\frac{a_{3}}{a_{1}-a_{2}}\langle Z, X\rangle,
$$

which proves our claim.

1.7 Proof of Theorem 8

In order to prove Theorem 8, first recall that a necessary and sufficient condition for a threedimensional Riemannian manifold M^{3} to be conformally flat is that its Schouten tensor L be a Codazzi tensor, that is,

$$
\left(\nabla_{X} L\right)(Y, Z)=\left(\nabla_{Y} L\right)(X, Z)
$$

for all $X, Y, Z \in \mathfrak{X}(M)$, where

$$
\left(\nabla_{X} L\right)(Y, Z)=X(L(Y, Z))-L\left(\nabla_{X} Y, Z\right)-L\left(Y, \nabla_{X} Z\right) .
$$

Now let $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ be a holonomic hypersurface whose associated pair (v, V) satisfies (4). Then $v=\left(v_{1}, v_{2}, v_{3}\right)$ is a null vector with respect to the Lorentzian inner product \langle,$\rangle given by (22), with \left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(1,-1,1)$, and $V=\left(V_{1}, V_{2}, V_{3}\right)$ is a unit space-like vector orthogonal to v. Thus, we may write

$$
V=\frac{\rho}{v_{2}} v+\frac{\lambda}{v_{2}}\left(-v_{3}, 0, v_{1}\right), \quad \lambda= \pm 1,
$$

for some $\rho \in C^{\infty}(M)$, which is equivalent to

$$
\begin{equation*}
V_{1}=\frac{1}{v_{2}}\left(V_{2} v_{1}-\lambda v_{3}\right) \quad \text { and } \quad V_{3}=\frac{1}{v_{2}}\left(V_{2} v_{3}+\lambda v_{1}\right) . \tag{32}
\end{equation*}
$$

In particular,

$$
V_{i} v_{j}-V_{j} v_{i}=-\lambda v_{k}, \quad 1 \leq i<j \leq 3, \quad k \notin\{i, j\},
$$

hence the principal curvatures $\lambda_{j}=\frac{V_{j}}{v_{j}}, 1 \leq j \leq 3$, are pairwise distinct.
The eigenvalues μ_{1}, μ_{2} and μ_{3} of the Schouten tensor L are given by

$$
2 \mu_{j}=c+\epsilon\left(\lambda_{i} \lambda_{j}+\lambda_{k} \lambda_{j}-\lambda_{i} \lambda_{k}\right), \quad 1 \leq j \leq 3,
$$

where $\lambda_{j}, 1 \leq j \leq 3$, are the principal curvatures of f. Define

$$
\begin{equation*}
\phi_{j}=v_{j}\left(\lambda_{i} \lambda_{j}+\lambda_{k} \lambda_{j}-\lambda_{i} \lambda_{k}\right), \quad 1 \leq j \leq 3 . \tag{33}
\end{equation*}
$$

That L is a Codazzi tensor is then equivalent to the equations

$$
\begin{equation*}
\frac{\partial \phi_{j}}{\partial u_{i}}=h_{i j} \phi_{i}, \quad 1 \leq i \neq j \leq 3 . \tag{34}
\end{equation*}
$$

Replacing $\lambda_{j}=\frac{V_{j}}{v_{j}}$ in (33) and using (32) we obtain

$$
\phi_{1}=\frac{1}{v_{2}^{2}}\left(-2 \lambda V_{2} v_{3}+\left(V_{2}^{2}-1\right) v_{1}\right), \quad \phi_{2}=\frac{1}{v_{2}}\left(V_{2}^{2}+1\right)
$$

and

$$
\phi_{3}=\frac{1}{v_{2}^{2}}\left(\left(V_{2}^{2}-1\right) v_{3}+2 \lambda V_{2} v_{1}\right) .
$$

It is now a straightforward computation to verify (34) by using equations (i) and (iv) of system (2) together with Eqs. (5) and (6).

Conversely, assume that $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ is an isometric immersion with three distinct principal curvatures $\lambda_{1}<\lambda_{2}<\lambda_{3}$ of a conformally flat manifold. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a correspondent orthonormal frame of principal directions. Then $\left\{e_{1}, e_{2}, e_{3}\right\}$ also diagonalyzes the Schouten tensor L, and the correspondent eigenvalues are

$$
\begin{equation*}
2 \mu_{j}=\epsilon\left(\lambda_{i} \lambda_{j}+\lambda_{j} \lambda_{k}-\lambda_{i} \lambda_{k}\right)+c, \quad 1 \leq j \leq 3 . \tag{35}
\end{equation*}
$$

The Codazzi equations for f and L are, respectively,

$$
\begin{align*}
e_{i}\left(\lambda_{j}\right) & =\left(\lambda_{i}-\lambda_{j}\right)\left\langle\nabla_{e_{j}} e_{i}, e_{j}\right\rangle, & & i \neq j, \tag{36}\\
\left(\lambda_{j}-\lambda_{k}\right)\left\langle\nabla_{e_{i}} e_{j}, e_{k}\right\rangle & =\left(\lambda_{i}-\lambda_{k}\right)\left\langle\nabla_{e_{j}} e_{i}, e_{k}\right\rangle, & & i \neq j \neq k . \tag{37}
\end{align*}
$$

and

$$
\begin{align*}
e_{i}\left(\mu_{j}\right) & =\left(\mu_{i}-\mu_{j}\right)\left\langle\nabla_{e_{j}} e_{i}, e_{j}\right\rangle, \quad i \neq j, \tag{38}\\
\left(\mu_{j}-\mu_{k}\right)\left\langle\nabla_{e_{i}} e_{j}, e_{k}\right\rangle & =\left(\mu_{i}-\mu_{k}\right)\left\langle\nabla_{e_{j}} e_{i}, e_{k}\right\rangle, \quad i \neq j \neq k . \tag{39}
\end{align*}
$$

Substituting (35) into (39), and using (37), we obtain

$$
\left(\lambda_{i}-\lambda_{j}\right)\left(\lambda_{j}-\lambda_{k}\right)\left\langle\nabla_{e_{i}} e_{j}, e_{k}\right\rangle=0, \quad i \neq j \neq k
$$

Since λ_{1}, λ_{2} and λ_{3} are pairwise distinct, it follows that

$$
\begin{equation*}
\left\langle\nabla_{e_{i}} e_{j}, e_{k}\right\rangle=0, \quad i \neq j \neq k \neq i \tag{40}
\end{equation*}
$$

Differentiating (35) with respect to e_{i}, we obtain

$$
\begin{equation*}
2 e_{i}\left(\mu_{j}\right)=\epsilon\left[\left(\lambda_{i}+\lambda_{k}\right) e_{i}\left(\lambda_{j}\right)+\left(\lambda_{j}-\lambda_{k}\right) e_{i}\left(\lambda_{i}\right)+\left(\lambda_{j}-\lambda_{i}\right) e_{i}\left(\lambda_{k}\right)\right] . \tag{41}
\end{equation*}
$$

On the other hand, it follows from (35), (36) and (38) that

$$
\begin{equation*}
e_{i}\left(\mu_{j}\right)=\epsilon \lambda_{k} e_{i}\left(\lambda_{j}\right) . \tag{42}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left(\lambda_{j}-\lambda_{k}\right) e_{i}\left(\lambda_{i}\right)+\left(\lambda_{i}-\lambda_{k}\right) e_{i}\left(\lambda_{j}\right)+\left(\lambda_{j}-\lambda_{i}\right) e_{i}\left(\lambda_{k}\right)=0 . \tag{43}
\end{equation*}
$$

Now let $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ be the dual frame of $\left\{e_{1}, e_{2}, e_{3}\right\}$ and define the one-forms $\gamma_{j}, 1 \leq$ $j \leq 3$, by

$$
\begin{equation*}
\gamma_{j}=x_{j} \omega_{j}, \quad x_{j}=\sqrt{\delta_{j}\left(\lambda_{j}-\lambda_{i}\right)\left(\lambda_{j}-\lambda_{k}\right)}, \quad 1 \leq j \neq i \neq k \neq j \leq 3, \tag{44}
\end{equation*}
$$

where $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(1,-1,1)$. As in the proof of Theorem 6, one can check that (40) and (43) are precisely the conditions for the one-forms $\gamma_{j}, 1 \leq j \leq 3$, to be closed.

Therefore, each point $x \in M^{3}$ has an open neighborhood V where one can find functions $u_{j} \in C^{\infty}(V), 1 \leq j \leq 3$, such that $d u_{j}=\gamma_{j}$, and we can choose V so small that $\Phi=\left(u_{1}, u_{2}, u_{3}\right)$ is a diffeomorphism of V onto an open subset $U \subset \mathbb{R}^{3}$, that is, $\left(u_{1}, u_{2}, u_{3}\right)$ are local coordinates on V. From $\delta_{i j}=d u_{j}\left(\partial_{i}\right)=x_{j} \omega_{j}\left(\partial_{i}\right)$ it follows that $\partial_{j}=v_{j} e_{j}$, $1 \leq j \leq 3$, with $v_{j}=x_{j}^{-1}$. Now notice that

$$
\begin{aligned}
\sum_{j=1}^{3} \delta_{j} v_{j}^{2} & =\sum_{i, k \neq j=1}^{3} \frac{1}{\left(\lambda_{j}-\lambda_{i}\right)\left(\lambda_{j}-\lambda_{k}\right)}=0, \\
\sum_{j=1}^{3} \delta_{j} v_{j} V_{j} & =\sum_{j=1}^{3} \delta_{j} \lambda_{j} v_{j}^{2}=\sum_{i, k \neq j=1}^{3} \frac{\lambda_{j}}{\left(\lambda_{j}-\lambda_{i}\right)\left(\lambda_{j}-\lambda_{k}\right)}=0
\end{aligned}
$$

and

$$
\sum_{j=1}^{3} \delta_{j} V_{j}^{2}=\sum_{j=1}^{3} \delta_{j} \lambda_{j}^{2} v_{j}^{2}=\sum_{i, k \neq j=1}^{3} \frac{\lambda_{j}^{2}}{\left(\lambda_{j}-\lambda_{i}\right)\left(\lambda_{j}-\lambda_{k}\right)}=1
$$

It follows that (v, V) satisfies (4).

1.8 Proof of Proposition 9

By Theorem $8, f$ is locally a holonomic hypersurface whose associated pair (v, V) is given in terms of the principal curvatures $\lambda_{1}<\lambda_{2}<\lambda_{3}$ of f by

$$
\begin{equation*}
v_{j}=\sqrt{\frac{\delta_{j}}{\left(\lambda_{j}-\lambda_{i}\right)\left(\lambda_{j}-\lambda_{k}\right)}} \text { and } \quad V_{j}=\lambda_{j} v_{j}, \quad 1 \leq j \leq 3, \tag{45}
\end{equation*}
$$

where $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(1,-1,1)$. Moreover, we have seen in the proofs of Theorems 6 and 8 , respectively, that λ_{1}, λ_{2} and λ_{3} satisfy (30) and (43). It is easily checked that (43) is equivalent to

$$
\left(\lambda_{k}-\lambda_{i}\right) e_{i}\left(\lambda_{i} \lambda_{j}\right)=\left(\lambda_{j}-\lambda_{i}\right) e_{i}\left(\lambda_{i} \lambda_{k}\right), \quad 1 \leq i \neq j \neq k \neq i \leq 3,
$$

whereas multiplying (43) by C and adding (30) gives

$$
\lambda_{k}\left(\lambda_{k}-\lambda_{i}\right) e_{i}\left(\lambda_{i} \lambda_{j}\right)=\lambda_{j}\left(\lambda_{j}-\lambda_{i}\right) e_{i}\left(\lambda_{i} \lambda_{k}\right), \quad 1 \leq i \neq j \neq k \neq i \leq 3 .
$$

Since λ_{1}, λ_{2} and λ_{3} are pairwise distinct, the two preceding equations together imply that

$$
e_{i}\left(\lambda_{i} \lambda_{j}\right)=0, \quad 1 \leq i \neq j \leq 3 .
$$

Assuming that $\lambda_{j} \neq 0$ for $1 \leq j \leq 3$, we can write

$$
\begin{equation*}
\lambda_{i} \lambda_{j}=\iota_{k} \phi_{k}^{2}, \quad \iota_{k} \in\{-1,1\}, \quad 1 \leq i \neq j \neq k \neq i \leq 3, \tag{46}
\end{equation*}
$$

for some positive smooth functions $\phi_{k}=\phi_{k}\left(u_{k}\right), 1 \leq k \leq 3$. It follows from (46) that

$$
\begin{equation*}
\lambda_{j}=\epsilon_{j} \frac{\phi_{i} \phi_{k}}{\phi_{j}}, \tag{47}
\end{equation*}
$$

where $\epsilon_{j}=\frac{\lambda_{j}}{\left|\lambda_{j}\right|}, 1 \leq j \leq 3$. Since $\lambda_{1}<\lambda_{2}<\lambda_{3}$ we have

$$
\epsilon_{k} \phi_{i}^{2}-\epsilon_{i} \phi_{k}^{2}>0, \quad 1 \leq i<k \leq 3 .
$$

Substituting (47) into (45), we obtain that

$$
\begin{equation*}
v_{j}=\frac{\phi_{j}}{\psi_{i} \psi_{k}}, \quad 1 \leq j \leq 3, \tag{48}
\end{equation*}
$$

where $\psi_{j}=\sqrt{\epsilon_{k} \phi_{i}^{2}-\epsilon_{i} \phi_{k}^{2}}$, and

$$
V_{j}=\lambda_{j} v_{j}=\epsilon_{j} \frac{\phi_{i} \phi_{k}}{\psi_{i} \psi_{k}}, \quad i, k \neq j, \quad i<k .
$$

We obtain from (48) that

$$
\begin{equation*}
h_{i j}=\frac{1}{v_{j}} \frac{\partial v_{j}}{\partial u_{i}}=\frac{\psi_{i} \psi_{k}}{\phi_{j}} \frac{\phi_{j}}{\psi_{i} \psi_{k}^{2}}\left(-\frac{\partial \psi_{k}}{\partial u_{i}}\right)=-\frac{1}{\psi_{k}} \frac{\partial \psi_{k}}{\partial u_{i}} . \tag{49}
\end{equation*}
$$

On the other hand, equation (iv) of system (2) yields

$$
\begin{equation*}
h_{i j}=\frac{1}{V_{j}} \frac{\partial V_{j}}{\partial u_{i}}=\frac{\psi_{i} \psi_{k}}{\phi_{i} \phi_{k}} \frac{\phi_{k}}{\psi_{i} \psi_{k}^{2}}\left(\frac{d \phi_{i}}{d u_{i}} \psi_{k}-\phi_{i} \frac{\partial \psi_{k}}{\partial u_{i}}\right)=\frac{1}{\phi_{i}} \frac{d \phi_{i}}{d u_{i}}-\frac{1}{\psi_{k}} \frac{\partial \psi_{k}}{\partial u_{i}} . \tag{50}
\end{equation*}
$$

Comparing (49) and (50), we obtain that

$$
\frac{d \phi_{i}}{d u_{i}}=0, \quad 1 \leq i \leq 3 .
$$

This implies that $\frac{\partial \psi_{k}}{\partial u_{i}}=0$ for all $1 \leq i \neq k \leq 3$, and hence $h_{i j}=0$ for all $1 \leq i \neq j \leq 3$. But then equation (ii) of system (2) gives

$$
\epsilon_{s} \lambda_{i} \lambda_{j}+c=0
$$

for all $1 \leq i \neq j \leq 3$, which implies that $-\epsilon_{s} c>0$ and $\lambda_{1}=\lambda_{2}=\lambda_{3}=\sqrt{-\epsilon_{s} c}$, a contradiction. Thus, one of the principal curvatures must be zero, and the result follows from part b) of Theorem 4.

1.9 Proof of Proposition 10

Before proving Proposition 10, given a hypersurface $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ we compute the pair $\left(v^{t}, V^{t}\right)$ associated to a parallel hypersurface $f_{t}: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c) \subset \mathbb{R}_{s+\epsilon_{0}}^{5}$ to f, with $\epsilon_{0}=0$ or 1 , corresponding to $c>0$ or $c<0$, respectively.

Set $\epsilon_{c}=c /|c|$ and $\check{\epsilon}=\epsilon_{s} \epsilon_{c}$. Let φ and ψ be defined by

$$
(\varphi(t), \psi(t))= \begin{cases}(\cos (\sqrt{|c|} t), \sin (\sqrt{|c|} t)), & \text { if } \epsilon=1 \\ (\cosh (\sqrt{|c|} t), \sinh (\sqrt{|c|} t)), & \text { if } \epsilon=-1\end{cases}
$$

If N is one of the unit normal vector fields to f and $i: \mathbb{Q}_{s}^{4}(c) \rightarrow \mathbb{R}_{s+\epsilon_{0}}^{5}$ is the inclusion, then

$$
i \circ f_{t}=\varphi(t) i \circ f+\frac{\psi(t)}{\sqrt{|c|}} i_{*} N .
$$

We denote by M_{t}^{3} the manifold M^{3} endowed with the metric induced by f_{t}.
Lemma 13 Let $f: M^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ be a holonomic hypersurface. Then any parallel hypersurface $f_{t}: M_{t}^{3} \rightarrow \mathbb{Q}_{s}^{4}(c)$ to f is also holonomic and the pairs (v, V) and $\left(v^{t}, V^{t}\right)$ associated to f and f_{t}, respectively, are related by

$$
\left\{\begin{array}{l}
v_{i}^{t}=\varphi(t) v_{i}-\frac{\psi(t)}{\sqrt{|c|}} V_{i} \tag{51}\\
V_{i}^{t}=\check{\epsilon} \sqrt{|c|} \psi(t) v_{i}+\varphi(t) V_{i}
\end{array}\right.
$$

In particular, $h_{i j}^{t}=h_{i j}$.
Proof We have

$$
\begin{equation*}
f_{t *}=\varphi(t) f_{*}+\frac{\psi(t)}{\sqrt{|c|}} N_{*}=f_{*}\left(\varphi(t) I-\frac{\psi(t)}{\sqrt{|c|}} A\right) \tag{52}
\end{equation*}
$$

thus a unit normal vector field to f_{t} is $N_{t}=-\check{\epsilon} \sqrt{|c|} \psi(t) f+\varphi(t) N$, and

$$
\begin{aligned}
N_{t *} & =f_{*}(-\check{\epsilon} \sqrt{|c|} \psi(t) I-\varphi(t) A) \\
& =-f_{t *}\left(\varphi(t) I-\frac{\psi(t)}{\sqrt{|c|}} A\right)^{-1}(\check{\epsilon} \sqrt{|c|} \psi(t) I+\varphi(t) A) .
\end{aligned}
$$

which implies that

$$
\begin{equation*}
A_{t}=\left(\varphi(t) I-\frac{\psi(t)}{\sqrt{|c|}} A\right)^{-1}(\check{\epsilon} \sqrt{|c|} \psi(t) I+\varphi(t) A) \tag{53}
\end{equation*}
$$

It follows from (52) and (53) that \tilde{f} is also holonomic with associated pair given by (51). The assertion on $h_{i j}^{t}$ follows from a straightforward computation.

Proof of Proposition 10: In view of (51), conditions (3) for $\left(v^{t}, V^{t}\right)$ (with $\tilde{c}=0$) follow immediately from those for (v, V).

References

1. Canevari, S., Tojeiro, R.: Isometric immersions of space forms into $\mathbb{S}^{n} \times \mathbb{R}$ (In preparation)
2. Canevari, S., Tojeiro, R.: The Ribaucour transformation for hypersurfaces of two space forms and conformally flat hypersurfaces (Preprint)
3. do Carmo, M., Dajczer, M.: Riemannian metrics induced by two immersions. Proc. Am. Math. Soc. 86, 115-119 (1982)
4. do Carmo, M., Dajczer, M.: Rotation hypersurfaces in spaces of constant curvature. Trans. Am. Math. Soc. 277, 685-709 (1983)
5. Dajczer, M., Tojeiro, R.: On compositions of isometric immersions. J. Differ. Geom. 36, 1-18 (1992)
6. Hertrich-Jeromin, U.: On conformally flat hypersurfaces and Guichard's nets. Beitr. Algebra Geom. 35, 315-331 (1994)
7. Moore, J.D.: Submanifolds of constant positive curvature I. Duke Math. J. 44, 449-484 (1977)

[^0]: Partially supported by CNPq Grant 307338/2013-4 and FAPESP Grant 2011/21362-2.
 R. Tojeiro
 tojeiro@dm.ufscar.br
 S. Canevari
 scanevari@gmail.com
 1 Universidade Federal de Sergipe, Av. Vereador Olimpio Grande s/n., Itabaiana, Brazil
 2 Universidade Federal de São Carlos, Via Washington Luiz km 235, São Carlos 13565-905, Brazil

