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Abstract We address the problem of determining the hypersurfaces f : Mn → Qn+1
s (c)

with dimension n ≥ 3 of a pseudo-Riemannian space form of dimension n + 1, con-
stant curvature c and index s ∈ {0, 1} for which there exists another isometric immersion
f̃ : Mn → Qn+1

s̃ (c̃) with c̃ �= c. For n ≥ 4, we provide a complete solution by extending
results for s = 0 = s̃ by do Carmo and Dajczer (Proc Am Math Soc 86:115–119, 1982) and
by Dajczer and Tojeiro (J Differ Geom 36:1–18, 1992). Our main results are for the most
interesting case n = 3, and these are new even in the Riemannian case s = 0 = s̃. In par-
ticular, we characterize the solutions that have dimension n = 3 and three distinct principal
curvatures. We show that these are closely related to conformally flat hypersurfaces ofQ4

s (c)
with three distinct principal curvatures, and we obtain a similar characterization of the latter
that improves a theorem by Hertrich-Jeromin (Beitr Algebra Geom 35:315–331, 1994).

Keywords Hypersurfaces of two space forms · Conformally flat hypersurfaces · Holonomic
hypersurfaces
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We denote by QN
s (c) a pseudo-Riemannian space form of dimension N , constant sectional

curvature c and index s ∈ {0, 1}, that is, QN
s (c) is either a Riemannian or Lorentzian space

formof constant curvature c, corresponding to s = 0 or s = 1, respectively. By a hypersurface
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2 S. Canevari, R. Tojeiro

f : Mn → Qn+1
s (c) we always mean an isometric immersion of a Riemannianmanifold Mn

of dimension n into Qn+1
s (c), thus f is a space-like hypersurface if s = 1.

One of the main purposes of this paper is to address the following
Problem ∗: For which hypersurfaces f : Mn → Qn+1

s (c) of dimension n ≥ 3 does there
exist another isometric immersion f̃ : Mn → Qn+1

s̃ (c̃) with c̃ �= c?
This problemwas studied for s = 0 = s̃ and n ≥ 4 by do Carmo andDajczer in [3], and by

Dajczer and the second author in [5]. Some partial results in the most interesting case n = 3
were also obtained in [5]. Including Lorentzian ambient space forms in our study of Problem
∗was motivated by our investigation in [1] of submanifolds of codimension two and constant
curvature c ∈ (0, 1) of S5 ×R, which turned out to be related to hypersurfaces f : M3 → S4

for which M3 also admits an isometric immersion into the Lorentz space R4
1 = Q4

1(0).
We first state our results for the case n ≥ 4. The next one extends a theorem due to do

Carmo and Dajczer [3] in the case s = 0 = s̃. Here and in the sequel, for s ∈ {0, 1} we
denote εs = −2s + 1.

Proposition 1 Let f : Mn → Qn+1
s (c) be a hypersurface of dimension n ≥ 4. If there exists

another isometric immersion f̃ : Mn → Qn+1
s̃ (c̃) with c̃ �= c, then c < c̃ if s = 0 and s̃ = 1

(respectively, c > c̃ if s = 1 and s̃ = 0) and f has a principal curvature λ of multiplicity at
least n − 1 everywhere satisfying ρ := εs̃(c − c̃ + εsλ

2) ≥ 0. Moreover, at any x ∈ Mn the
following holds:

(i) if λ = 0 or f is umbilical with ρ > 0, then f̃ is umbilical;
(ii) if f is umbilical and ρ = 0, then 0 is a principal curvature of f̃ with multiplicity at

least n − 1;
(iii) if λ �= 0 with multiplicity n−1, then f̃ has a principal curvature λ̃, with λ̃2 = ρ, which

has the same eigenspace as λ.

Thus, Problem ∗ has no solutions if n ≥ 4 and either c > c̃, s = 0 and s̃ = 1 or c < c̃,
s = 1 and s̃ = 0, while, in the remaining cases, having a principal curvature λ of multiplicity
at least n − 1 satisfying εs̃(c − c̃ + εsλ

2) ≥ 0 is a necessary condition for a solution. In
those cases, having a principal curvature of constant multiplicity n or n − 1 satisfying the
preceding condition is also sufficient for simply connected hypersurfaces.

Proposition 2 Let f : Mn → Qn+1
s (c), n ≥ 4 be an isometric immersion of a simply

connected Riemannian manifold. Given c̃ �= c and s̃ ∈ {0, 1}, assume that c < c̃ if s = 0
and s̃ = 1, and that c > c̃ if s = 1 and s̃ = 0. If f has a principal curvature λ of (constant)
multiplicity either n − 1 or n satisfying ρ := εs̃(c − c̃ + εsλ

2) ≥ 0, then Mn admits an
isometric immersion into Qn+1

s̃ (c̃), which is unique up to congruence if ρ > 0.

The next result, proved by Dajczer and the second author in [5] when s = 0 = s̃, shows
how any solution f : Mn → Qn+1

s (c), n ≥ 4, of Problem ∗ arises.

Proposition 3 Let f : Mn → Qn+1
s (c) and f̃ : Mn → Qn+1

s̃ (c̃), n ≥ 4, be isometric
immersions with, say, c > c̃. If s = 0, assume that s̃ = 0. Then, for s = s̃ (respectively,
s = 1 and s̃ = 0), there exist, locally on an open dense subset of Mn, isometric embeddings

H : Qn+1
s (c̃) → Qn+2

s (c̃) and i : Qn+1
s (c) → Qn+2

s (c̃)

(respectively, H : Qn+1
s (c) → Qn+2

s (c) and i : Qn+1
s̃ (c̃) → Qn+2

s (c)), with i umbilical, and
an isometry

� : M̄n := H(Qn+1
s (c̃)) ∩ i(Qn+1

s (c)) → Mn

(respectively, � : M̄n := H(Qn+1
s (c)) ∩ i(Qn+1

s̃ (c̃)) → Mn) such that
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Hypersurfaces of two space forms and conformally flat... 3

f ◦ � = i−1|M̄n and f̃ ◦ � = H−1|M̄n .

(respectively, f ◦ � = H−1|M̄n and f̃ ◦ � = i−1|M̄n ).

Proposition 3 explains the existence of a principal curvature λ of multiplicity at least n−1
for a solution f : Mn → Qn+1

s (c), n ≥ 4, of Problem ∗ : the (images by f of the) leaves of
the distribution on Mn given by the eigenspaces of λ are the intersections with i(Qn+1

s (c̃))
of the (images by H of the) relative nullity leaves of H , which have dimension at least n.

Next we consider Problem ∗ for hypersurfaces of dimension n = 3. The following result
provides the solutions in two (“dual”) special cases.

Theorem 4 Let f : M3 → Q4
s (c) be a hypersurface for which there exists an isometric

immersion f̃ : M3 → Q4
s̃ (c̃) with c̃ �= c.

(a) Assume that f has a principal curvature of multiplicity two. If either c > c̃, s = 0 and
s̃ = 1, or if c < c̃, s = 1 and s̃ = 0, then f is a rotation hypersurface whose profile curve
is a c̃-helix in a totally geodesic surface Q2

s (c) of Q
4
s (c) and f̃ is a generalized cone

over a surface with constant curvature in an umbilical hypersurface Q3
s̃ (c̄) of Q

4
s̃ (c̃),

c̄ ≥ c̃. Otherwise, either the same conclusion holds or f and f̃ are locally given on an
open dense subset as described in Proposition 3.

(b) If one of the principal curvatures of f is zero, then f is a generalized cone over a surface
with constant curvature in an umbilical hypersurface Q3

s (c̄) of Q
4
s (c), c̄ ≥ c, and f̃ is

a rotation hypersurface whose profile curve is a c-helix in a totally geodesic surface
Q2

s̃ (c̃) of Q
4
s̃ (c̃).

By a generalized cone over a surface g : M2 → Q3
s (c̄) in an umbilical hypersurfaceQ3

s (c̄)
of Q4

s (c), c̄ ≥ c, we mean the hypersurface parametrized by (the restriction to the subset of
regular points of) the map G : M2 × R → Q4

s (c) given by

G(x, t) = expg(x)(tξ(g(x))),

where ξ is a unit normal vector field to the inclusion i : Q3
s (c̄) → Q4

s (c) and exp is the
exponentialmap ofQ4

s (c). A c-helix inQ2
s (c̃) ⊂ R3

s+ε0
with respect to a unit vector v ∈ R3

s+ε0

is a unit-speed curve γ : I → Q2
s (c̃) ⊂ R3

s+ε0
such that the height function γv = 〈γ, v〉

satisfies γ ′′
v + cγv = 0. Here ε0 = 0 or 1, corresponding to c̃ > 0 or c̃ < 0, respectively.

In order to deal with the generic case of Problem ∗ for hypersurfaces of dimension 3,
we need to recall the notion of holonomic hypersurfaces. We call a hypersurface f : Mn →
Qn+1

s (c) holonomic if Mn carries global orthogonal coordinates (u1, . . . , un) such that the

coordinate vector fields ∂ j = ∂

∂u j
are everywhere eigenvectors of the shape operator A of

f . Set v j = ‖∂ j‖, and define Vj ∈ C∞(M), 1 ≤ j ≤ n, by A∂ j = v−1
j V j∂ j . Thus, the first

and second fundamental forms of f are

I =
n∑

i=1

v2i du
2
i and I I =

n∑

i=1

Vivi du
2
i . (1)

Set v = (v1, . . . , vn) and V = (V1, . . . , Vn). We call (v, V ) the pair associated to f . The
next result is well known.
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4 S. Canevari, R. Tojeiro

Proposition 5 The triple (v, h, V ), where hi j = 1
vi

∂v j
∂ui

, satisfies the system of PDE’s
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i)
∂vi

∂u j
= h jiv j , (i i)

∂hik
∂u j

= hi j h jk,

(i i i)
∂hi j
∂ui

+ ∂h ji

∂u j
+ hki hk j + εsVi Vj + cviv j = 0,

(iv)
∂Vi
∂u j

= h ji Vj , 1 ≤ i �= j �= k �= i ≤ n.

(2)

Conversely, if (v, h, V ) is a solution of (2) on a simply connected open subset U ⊂ Rn,
with vi �= 0 everywhere for all 1 ≤ i ≤ n, then there exists a holonomic hypersurface
f : U → Qn+1

s (c) whose first and second fundamental forms are given by (1).

The following characterization of hypersurfaces f : M3 → Q4
s (c) with three distinct

principal curvatures that are solutions of Problem ∗ is one of the main results of the paper.

Theorem 6 Let f : M3 → Q4
s (c) be a simply connected holonomic hypersurface whose

associated pair (v, V ) satisfies

3∑

i=1

δiv
2
i = ε̂,

3∑

i=1

δivi Vi = 0 and
3∑

i=1

δi V
2
i = C := ε̃(c − c̃), (3)

where ε̂, ε̃ ∈ {−1, 1}, c̃ �= c, ε̂ε̃ = εs , (δ1, δ2, δ3) = (1,−1, 1) either if ε̂ = 1 or if ε̂ = −1
and C > 0, and (δ1, δ2, δ3) = (−1,−1,−1) if ε̂ = −1 and C < 0. Then M3 admits an
isometric immersion into Q4

s̃ (c̃), with εs̃ = ε̃, which is unique up to congruence.
Conversely, if f : M3 → Q4

s (c) is a hypersurface with three distinct principal curvatures
for which there exists an isometric immersion f̃ : M3 → Q4

s̃ (c̃) with c̃ �= c, then f is locally
a holonomic hypersurface whose associated pair (v, V ) satisfies (3), with ε̃ = εs̃ .

As we shall make precise in the sequel, the class of hypersurfaces that are solutions
of Problem ∗ is closely related to that of conformally flat hypersurfaces of Qn+1

s (c), that
is, isometric immersions f : Mn → Qn+1

s (c) of conformally flat manifolds. Recall that a
Riemannian manifold Mn is conformally flat if each point of Mn has an open neighborhood
that is conformally diffeomorphic to an open subset of Euclidean space Rn . First, for n ≥ 4
we have the following extension of a result due to E. Cartan when s = 0.

Proposition 7 Let f : Mn → Qn+1
s (c) be a hypersurface of dimension n ≥ 4. Then Mn is

conformally flat if and only if f has a principal curvature of multiplicity at least n − 1.

It was already known by E. Cartan that the “only if” assertion in the preceding result is
no longer true for n = 3 and s = 0. The study of conformally flat hypersurfaces by Cartan
was taken up by Hertrich-Jeromin [6], who showed that a conformally flat hypersurface
f : M3 → Q4(c)with three distinct principal curvatures admits locally principal coordinates
(u1, u2, u3) such that the inducedmetric ds2 = ∑3

i=1 v2i du
2
i satisfies, say, v

2
2 = v21 +v23 . The

next result states that conformally flat hypersurfaces f : M3 → Q4
s (c) with three distinct

principal curvatures are characterized by the existence of such principal coordinates under
some additional conditions.

Theorem 8 Let f : M3 → Q4
s (c) be a holonomic hypersurface whose associated pair

(v, V ) satisfies

3∑

i=1

δiv
2
i = 0,

3∑

i=1

δivi Vi = 0 and
3∑

i=1

δi V
2
i = 1, (4)
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Hypersurfaces of two space forms and conformally flat... 5

where (δ1, δ2, δ3) = (1,−1, 1). Then M3 is conformally flat, and f has three distinct prin-
cipal curvatures.

Conversely, any conformally flat hypersurface f : M3 → Q4
s (c) with three distinct prin-

cipal curvatures is locally a holonomic hypersurface whose associated pair (v, V ) satisfies
(4).

It follows from Theorems 6 and 8 that, in order to produce hypersurfaces ofQ4
s (c) that are

either conformally flat or admit an isometric immersion intoQ4
s (c̃)with c̃ �= c, one must start

with solutions (v, h, V ) on an open simply connected subset U ⊂ R3 of the same system of
PDE’s, namely, the one obtained by adding to system (2) (for n = 3) the equations

δi
∂vi

∂ui
+ δ j hi jv j + δkhikvk = 0 (5)

and

δi
∂Vi
∂ui

+ δ j hi j V j + δkhikVk = 0, 1 ≤ i �= j �= k �= i ≤ 3, (6)

with (δ1, δ2, δ3) = (1,−1, 1). Such system has the first integrals

3∑

i=1

δiv
2
i = K1,

3∑

i=1

δivi Vi = K2 and
3∑

i=1

δi V
2
i = K3.

If initial conditions at some point are chosen so that K1 = 1 (respectively, K1 = 0), K2 = 0
and K3 = ε(c−c̃) (respectively, K3 = 1), then the corresponding solutions give rise to hyper-
surfaces of Q4

s (c), εs = ε, with three distinct principal curvatures that can be isometrically
immersed into Q4

s (c̃) (respectively, are conformally flat).
It was already shown in [5] for s = 0 = s̃ that, unlike the case of dimension n ≥ 4,

among hypersurfaces f : Mn → Qn+1
s (c) of dimension n = 3 with three distinct principal

curvatures the classes of solutions of Problem ∗ and conformally flat hypersurfaces are
distinct. Moreover, it was observed that their intersection contains the generalized cones over
surfaces with constant curvature in an umbilical hypersurface Q3

s (c̄) of Q
4
s (c), c̄ ≥ c. The

following result states that such intersection contains no other elements.

Proposition 9 Let f : M3 → Q4
s (c) be a conformally flat hypersurface with three distinct

principal curvatures. If M3 admits an isometric immersion into Q4
s̃ (c̃), c̃ �= c, then f is a

generalized cone over a surface with constant curvature in an umbilical hypersurfaceQ3
s (c̄)

of Q4
s (c), c̄ ≥ c.

Our last result shows that hypersurfaces f : M3 → Q4
s (c) that can be isometrically

immersed into R4
s̃ arise in families of parallel hypersurfaces.

Proposition 10 Let f : M3 → Q4
s (c) be a holonomic hypersurface whose associated pair

(v, V ) satisfies (3) with c̃ = 0. Then any parallel hypersurface ft : M3 → Q4
s (c) to f has

also the same property.

In a forthcoming paper [2] we develop a Ribaucour transformation for the class of hyper-
surfaces ofQ4

s (c) with three distinct principal curvatures that can be isometrically immersed
into Q4

s̃ (c̃) with c �= c̃, as well as for the class of conformally flat hypersurfaces with three
distinct principal curvatures. It gives a process to generate a family of new elements of such
classes, starting from a given one and a solution of a linear system of PDE. In particular,
explicit new examples of hypersurfaces in both classes are constructed.
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6 S. Canevari, R. Tojeiro

1 The proofs

1.1 Proof of Proposition 1

Let i : Qn+1
s (c) → Qn+2

s+ε0
(c̃) be an umbilical inclusion, where ε0 = 0 or 1, corresponding to

c > c̃ or c < c̃, respectively, and set f̂ = i ◦ f . Then, the second fundamental forms α and
α̂ of f and f̂ , respectively, are related by

α̂ = i∗α + √|c − c̃|〈 , 〉ξ, (7)

where ξ is one of the unit vector fields that are normal to i .
For a fixed point x ∈ Mn , defineW 3(x) := N f̂ M(x)⊕ N f̃ M(x), and endowW 3(x) with

the inner product

〈〈(ξ + ξ̃ , η + η̃)〉〉W 3(x) := 〈ξ, η〉N f̂ M(x) − 〈ξ̃ , η̃〉N f̃ M(x),

which has index (s + ε0) + (1 − s̃).
Now define a bilinear form βx : TxM × TxM → W 3(x) by

βx = α̂(x) ⊕ α̃(x),

where α̂(x) and α̃(x) are the second fundamental forms of f̂ and f̃ , respectively, at x . Notice
thatN (βx ) ⊂ N (α̂(x)) = {0} by (7). On the other hand, it follows from the Gauss equations
of f̂ and f̃ that βx is flat with respect to 〈〈 , 〉〉, that is,

〈〈βx (X, Y ), βx (Z ,W )〉〉 = 〈〈βx (X,W ), βx (Z , Y )〉〉
for all X, Y, Z ,W ∈ TxM . Thus, if 〈〈 , 〉〉 is positive definite, which is the case when s = 0,
s̃ = 1 and ε0 = 0, that is, c > c̃, we obtain a contradiction with Corollary 1 of [7], according
to which one has the inequality

dimN (βx ) ≥ n − dimW (x) = n − 3 > 0. (8)

The same contradiction is reached by applying the preceding inequality to −〈〈 , 〉〉 when
s = 1, s̃ = 0 and c < c̃, in which case 〈〈 , 〉〉 is negative definite. Therefore, such cases
cannot occur, which proves the first assertion.

In all other cases, the index of 〈〈 , 〉〉 is either 1 or 2. Thus, by applying Corollary 2 in [7]
to 〈〈 , 〉〉 in the first case and to−〈〈 , 〉〉 in the latter, we obtain that S(βx )must be degenerate,
for otherwise the inequality (8) would still hold, and then we would reach a contradiction as
before.

Since S(βx ) is degenerate, there exist ζ ∈ N f̂ M(x) and Ñ ∈ N f̃ M(x) such that (0, 0) �=
(ζ, Ñ ) ∈ S(βx )∩S(βx )

⊥. In particular, from 0 = 〈〈ζ + Ñ , ζ + Ñ 〉〉 it follows that 〈Ñ , Ñ 〉 =
〈ζ, ζ 〉. Thus, either Ñ = 0 and ζ ∈ S(α̂(x)) ∩ S(α̂(x))⊥, or we can assume that 〈Ñ , Ñ 〉 =
εs̃ = 〈ζ, ζ 〉.

The former case occurs precisely when f is umbilical at x with a principal curvature λ

with respect to one of the unit normal vectors N to f , satisfying

εsλ
2 + c − c̃ = 0,

in which case N f̂ M(x) is a Lorentzian two-plane and ζ = λi∗N + √|c − c̃|ξ is a light-like
vector that spans S(α̂(x)). In this case, all sectional curvatures of Mn at x are equal to c̃ by
the Gauss equation of f , and hence f̃ has 0 as a principal curvature at x with multiplicity at
least n − 1 by the Gauss equation of f̃ .
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Hypersurfaces of two space forms and conformally flat... 7

Now assume that 〈Ñ , Ñ 〉 = εs̃ = 〈ζ, ζ 〉. Then, from
0 = 〈〈β, ζ + Ñ 〉〉 = 〈α̂, ζ 〉 − 〈α̃, Ñ 〉,

we obtain that A f̂
ζ = A f̃

Ñ
. Let ζ⊥ ∈ N f̂ M(x) be such that {ζ, ζ⊥} is an orthonormal basis

of N f̂ M(x). The Gauss equations for f̂ and f̃ imply that

〈A f̂
ζ⊥ X, Y 〉〈A f̂

ζ⊥ Z ,W 〉 = 〈A f̂
ζ⊥ X,W 〉〈A f̂

ζ⊥ Z , Y 〉

for all X, Y, Z ,W ∈ TxM , which is equivalent to dimN (A f̂
ζ⊥) ≥ n − 1. Since A f̂

ξ =
δ
√|c − c̃|I by (7), with δ = (c − c̃)/|c − c̃|, it follows that the restriction to N (A f̂

ζ⊥) of all

shape operators A f̂
η , η ∈ N f̂ M(x), is a multiple of the identity tensor. In particular, this is

the case for A f̂
i∗N = A f

N , where N is one of the unit normal vector fields to f , hence f has
a principal curvature λ at x with multiplicity at least n − 1.

Moreover, if λ = 0 then ζ⊥ must coincide with i∗N , and hence ζ with ξ , up to signs.

Therefore A f̃

Ñ
= A f̂

ξ , up to sign, hence f̃ is umbilical at x . If f is umbilical at x and c+εsλ
2 �=

c̃, then Aζ⊥ = 0 and A f̃

Ñ
= A f̂

ζ is a (nonzero) constant multiple of the identity tensor. Finally,

if λ �= 0 has multiplicity n − 1, then we must have ζ⊥ �= i∗N and dimN (A f̂
ζ⊥) = n − 1,

hence N (A f̂
ζ⊥) is an eigenspace of A f̂

ζ = A f̃

Ñ
. ��

1.2 Proof of Proposition 2

Suppose first that f is umbilical, with a (constant) principal curvature λ. If ρ = 0, then Mn

has constant curvature c̃, hence it admits isometric immersions into Qn+1
s̃ (c̃) having 0 as a

principal curvature with multiplicity at least n − 1. If ρ > 0, there exists λ̃ �= 0 such that
c − c̃ + εsλ

2 = εs̃ λ̃
2. Hence c + εsλ

2 = c̃ + εs̃ λ̃
2, thus Ã = λ̃I satisfies the Gauss and

Codazzi equations for an (umbilical) isometric immersion into Qn+1
s̃ (c̃).

Assumenow thatλhas constantmultiplicityn−1. Ifλ = 0, thenMn has constant curvature
c and by the assumption there exists λ̃ �= 0 such that c = c̃ + εs̃ λ̃

2. Thus, Ã = λ̃I satisfies
the Gauss and Codazzi equations for an (umbilical) isometric immersion into Qn+1

s̃ (c̃).
From now on assume that λ �= 0. Let μ be the simple principal curvature and let Eλ and

Eμ denote the corresponding eigenbundles. Then, one can check that the Codazzi equations
for f are equivalent to the following facts:

(i) λ is constant along Eλ;
(ii) Eλ is an umbilical distribution whose mean curvature vector field is η = (λ−μ)−1∇λ;
(iii) The mean curvature vector field (geodesic curvature vector field) of Eμ is ζ = (μ −

λ)−1(∇μ)Eλ .

By the assumption, there exist λ̃, μ̃ ∈ C∞(M) such that

c − c̃ + εsλ
2 = εs̃ λ̃

2 and c − c̃ + εsλμ = εs̃ λ̃μ̃.

Moreover, since λ �= μ we must have λ̃ �= 0 everywhere, and hence λ̃ and μ̃ are unique if λ̃

is chosen to be positive. From both equations we obtain

εsλ
2 − εs̃ λ̃

2 = εsλμ − εs̃ λ̃μ̃, εsλ∇λ = εs̃ λ̃∇λ̃
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8 S. Canevari, R. Tojeiro

and

εs ((∇λ)μ + λ∇μ) = εs̃

(
(∇λ̃

)
μ̃ + λ̃∇μ̃).

It follows that

∇λ̃

λ̃ − μ̃
= ∇λ

λ − μ
(9)

and similarly,

(∇μ̃)Eλ

μ̃ − λ̃
= (∇μ)Eλ

μ − λ
. (10)

Let Ã be the endomorphism of T M with eigenvalues λ̃, μ̃ and corresponding eigenbundles
Eλ and Eμ, respectively. Since

c + εsλ
2 = c̃ + εs̃ λ̃

2 and c + εsλμ = c̃ + εs̃ λ̃μ̃,

the Gauss equations for an isometric immersion f̃ : Mn → Qn+1
s̃ (c̃) are satisfied by Ã. It

follows from (9) and (10) that Ã also satisfies the Codazzi equations. ��
1.3 Proof of Proposition 3

Since c > c̃, there exist umbilical inclusions i : Qn+1
s (c) → Qn+2

s (c̃) and i : Qn+1
s̃ (c̃) →

Qn+2
s (c) for (s, s̃) = (1, 0). If s = s̃ (respectively, (s, s̃) = (1, 0)), set f̂ = i◦ f (respectively,

f̂ = i ◦ f̃ ). Then, one can use the existence of normal vector fields ζ ∈ �(N f̂ M) and Ñ ∈
�(N f̃ M) satisfying 〈ζ, ζ 〉 = ε̃ = 〈Ñ , Ñ 〉 and A f̂

ζ = A f̃

Ñ
and argue as in the proof of Theorem

3 in [5]. One obtains that there exists an open dense subsetU ⊂ Mn , each point of which has
an open neighborhood V ⊂ Mn such that f̂ |V (respectively, f |V ) is a composition f̂ |V =
H ◦ f̃ |V (respectively, f |V = H ◦ f̂ |V ) with an isometric embedding H : W ⊂ Qn+1

s (c̃) →
Qn+2

s (c̃) (respectively, H : W ⊂ Qn+1
s (c) → Qn+2

s (c)), with f̃ (V ) ⊂ W (respectively,
f̂ (V ) ⊂ W ). Set M̄n = H(W ) ∩ i(Qn+1

s (c)) (respectively, M̄n = H(W ) ∩ i(Qn+1
s̃ (c̃))).

Then i ◦ f |V = H ◦ f̃ |V : V → M̄n (respectively, H ◦ f |V = i ◦ f̃ |V : V → M̄n) is
an isometry. Let � : M̄n → V be the inverse of this isometry. Then f ◦ � = i−1|M̄n and
f̃ ◦� = H−1|M̄n (respectively, f ◦� = H−1|M̄n and f̃ ◦� = i−1|M̄n ), where i−1 and H−1

denote the inverses of the maps i and H , respectively, regarded as maps onto their images.
��

1.4 Proof of Theorem 4

Before going into the proof of Theorem 4, we establish a basic fact that will also be used in
the proof of Theorem 6 in the next section.

Lemma 11 Let f : M3 → Q4
s (c) and f̃ : M3 → Q4

s̃ (c̃) be isometric immersions with
c �= c̃. Then, at each point x ∈ M3 there exists an orthonormal basis {e1, e2, e3} of TxM3

that simultaneously diagonalizes the second fundamental forms of f and f̃ .

Proof Define i : Q4
s (c) → Q5

s+ε0
(c̃) and f̂ , as well as W 3(x), 〈〈 , 〉〉W 3(x) and βx for each

x ∈ Mn , as in the proof of Proposition 1. If S(βx ) is degenerate for all x ∈ M3, we conclude
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Hypersurfaces of two space forms and conformally flat... 9

as in the case n ≥ 4 that the assertions in Theorem 1 hold, hence the statement is clearly true
in this case.

Suppose now that S(βx ) is nondegenerate at x ∈ M3. Then the inequality

dim S(βx ) ≥ dim TxM − dimN (βx )

holds by Corollary 2 in [7]. Since N (βx ) = {0}, the right-hand side is equal to dim TxM =
3 = dimW 3(x), hence we must have equality in the above inequality. By Theorem 2 − b in
[7], there exists an orthonormal basis {ξ1, ξ2, ξ3} of W 3(x) and a basis {θ1, θ2, θ3} of T ∗

x M
such that

β =
3∑

j=1

θ j ⊗ θ jξ j .

In particular, if i �= j then β(ei , e j ) = 0 for the dual basis {e1, e2, e3} of {θ1, θ2, θ3}. It
follows that {e1, e2, e3} diagonalyzes both α̂ and α̃, and therefore both α and α̃, in view of
(7). It also follows from (7) that

0 = 〈α̂(ei , e j ), ξ 〉 = √|c − c̃|〈ei , e j 〉, i �= j,

hence the basis {e1, e2, e3} is orthogonal. ��
Lemma 12 Under the assumptions of Lemma 11, let λ1, λ2, λ3 and μ1, μ2, μ3 be the prin-
cipal curvatures of f and f̃ correspondent to e1, e2 and e3, respectively.

(a) Assume that f has a principal curvature of multiplicity two, say, that λ1 = λ2 := λ. If
either c > c̃, s = 0 and s̃ = 1, or c < c̃, s = 1 and s̃ = 0, then

c − c̃ + εsλλ3 = 0, μ3 = 0 and c − c̃ + εsλ
2 = εs̃μ1μ2.

Otherwise, either the same conclusion holds or

μ1 = μ2 := μ, c − c̃ + εsλ
2 = εs̃μ

2 and c − c̃ + εsλλ3 = εs̃μμ3.

(b) Assume, say, that λ3 = 0. Then μ1 = μ2 := μ,

c − c̃ + εsλ1λ2 = εs̃μ
2 (11)

and

c − c̃ = εs̃μμ3. (12)

Proof By the Gauss equations for f and f̃ , we have

c + εsλiλ j = c̃ + εs̃μiμ j , 1 ≤ i �= j ≤ 3. (13)

(a) If λ1 = λ2 := λ, then the preceding equations are

c + εsλ
2 = c̃ + εs̃μ1μ2, (14)

c + εsλλ3 = c̃ + εs̃μ1μ3 (15)

and

c + εsλλ3 = c̃ + εs̃μ2μ3. (16)

The two last equations yield

μ3(μ1 − μ2) = 0,
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10 S. Canevari, R. Tojeiro

hence either μ3 = 0 or μ1 = μ2. In view of (14), the second possibility cannot occur if
either c > c̃, s = 0 and s̃ = 1, or c < c̃, s = 1 and s̃ = 0. Thus, in these cases we must have
μ3 = 0, and then c − c̃ + εsλ

2 = εs̃μ1μ2 and c − c̃ + εsλλ3 = 0 by (15) and (16).
Otherwise, either the same conclusion holds or μ1 = μ2 := μ, and then c − c̃ + εsλ

2 =
εs̃μ

2 and c − c̃ + εsλλ3 = εs̃μμ3 by (15) and (16).
(b) If λ3 = 0, then Eq. (13) become

c − c̃ + εsλ1λ2 = εs̃μ1μ2, (17)

c − c̃ = εs̃μ1μ3 (18)

and

c − c̃ = εs̃μ2μ3 (19)

Since μ3 �= 0 by (18) or (19), these equations imply that μ1 = μ2 := μ, and we obtain (12).
Equation (11) then follows from (17). ��
Proof of Theorem 4 Assume that f has a principal curvature of multiplicity two, say, λ1 =
λ2 := λ. Suppose first that either c > c̃, s = 0 and s̃ = 1, or c < c̃, s = 1 and s̃ = 0. Then,
it follows from Lemma 12 that

c − c̃ + εsλλ3 = 0, μ3 = 0 and c − c̃ + εsλ
2 = εs̃μ1μ2. (20)

In particular, we must have λ �= 0 by the first of the preceding equations, whereas the last
one implies that μ1μ2 �= 0. Then, it is well known that Eλ is a spherical distribution, that
is, it is umbilical and its mean curvature normal η = νe3 satisfies e1(ν) = 0 = e2(ν). In
particular, a leaf σ of Eλ has constant sectional curvature ν2 + εsλ

2 + c = ν2 + εs̃μ1μ2 + c̃.
Denoting by ∇ and ∇̃ the connections on M3 and f̃ ∗TQ4

s̃ (c̃), respectively, we have

∇̃ei f̃∗e3 = f̃∗∇ei e3 = −ν f̃∗ei , 1 ≤ i ≤ 2,

hence f̃ (σ ) is contained in an umbilical hypersurfaceQ3
s̃ (c̄) ofQ

4
s̃ (c̃)with constant curvature

c̄ = c̃ + ν2 and f̃∗e3 as a unit normal vector field.
Moreover, E⊥

λ = Eμ3 is the relative nullity distribution of f̃ . Thus, it is totally geodesic,
and in fact its integral curves are mapped by f̃ into geodesics ofQ4

s̃ (c̃). It follows that f̃ (M
3)

is contained in a generalized cone over f̃ (σ ).
On the other hand, it is not hard to extend the proof of Theorem 4.2 in [4] to the case of

Lorentzian ambient space forms, and conclude that f is a rotation hypersurface inQ4
s (c). This

means that there exist subspaces P2 ⊂ P3 = P3
s+ε0

inR5
s+ε0

⊃ Q4
s (c)with P3∩Q4

s (c) �= ∅,
where ε0 = 0 or ε0 = 1, corresponding to c > 0 or c < 0, respectively, and a regular curve
γ in Q2

s (c) = P3 ∩ Q4
s (c) that does not meet P2, such that f (M2) is the union of the orbits

of points of γ under the action of the subgroup of orthogonal transformations of R5
s+ε0

that
fix pointwise P2. If P2 is nondegenerate, then f can be parameterized by

f (s, u) = (γ1(s)φ1(u), γ1(s)φ2(u), γ1(s)φ3(u), γ4(s), γ5(s)),

with respect to an orthonormal basis {e1, . . . , e5} of R5
s+ε0

satisfying the conditions in either
(i) or (i i) below, according to whether the inducedmetric on P2 has index s+ε0 or s+ε0−1,
respectively:

(i) 〈ei , ei 〉 = 1 for 1 ≤ i ≤ 3, 〈e3+ j , e3+ j 〉 = ε j for 1 ≤ j ≤ 2, and (ε1, ε2) equal to either
(1, 1), (1,−1) or (−1,−1), corresponding to s + ε0 = 0, 1 or 2, respectively.
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Hypersurfaces of two space forms and conformally flat... 11

(ii) 〈e1, e1〉 = −1, 〈ei , ei 〉 = 1 for 2 ≤ i ≤ 4 and 〈e5, e5〉 = ε̄, where ε̄ = 1 or ε̄ = −1,
corresponding to s + ε0 = 1 or 2, respectively.

In both cases, we have P2 = span{e4, e5}, P3 = span{e1, e4, e5}, u = (u1, u2), γ (s) =
(γ1(s), γ4(s), γ5(s)) a unit–speed curve in Q2

s (c) ⊂ P3 and φ(u) = (φ1(u), φ2(u), φ3(u))

anorthogonal parameterizationof the unit sphereS2 ⊂ (P2)⊥ in case (i) andof the hyperbolic
plane H2 ⊂ (P2)⊥ in case (i i). Accordingly, the hypersurface is said to be of spherical or
hyperbolic type.

If P2 is degenerate, then f is a rotation hypersurface of parabolic type parameterized by

f (s, u) =
(

γ1(s), γ1(s)u1, γ1(s)u2, γ4(s) − 1

2
γ1(s)(u

2
1 + u22), γ5(s)

)
,

with respect to a pseudo-orthonormal basis {e1, . . . , e5} of R5
s+ε0

such that 〈e1, e1〉 = 0 =
〈e4, e4〉, 〈e1, e4〉 = 1, 〈e2, e2〉 = 1 = 〈e3, e3〉 and 〈e5, e5〉 = −2(s + ε0) + 3, where
γ (s) = (γ1(s), γ4(s), γ5(s)) is a unit–speed curve in Q2

s (c) ⊂ P3 = span{e1, e4, e5}.
In each case, one can compute the principal curvatures of f as in [4] and check that

the first equation in (20) is satisfied if and only if γ ′′
1 + c̃γ1 = 0, that is, γ is a c̃-helix in

Q2
s (c) ⊂ R3

s+ε0
.

Under the remaining possibilities for c, c̃, s and s̃, either the same conclusions hold or the
bilinear form βx in the proof of Proposition 1 is everywhere degenerate, in which case there
exist normal vector fields ζ ∈ �(N f̂ M) and Ñ ∈ �(N f̃ M) satisfying 〈ζ, ζ 〉 = εs̃ = 〈Ñ , Ñ 〉
and A f̂

ζ = A f̃

Ñ
, and we obtain as before that f and f̃ are locally given on an open dense

subset as described in Proposition 3.
Finally, if one of the principal curvatures of f is zero, then the preceding argument applies

with the roles of f and f̃ interchanged. ��
1.5 Proof of Theorem 6

Let (v, V ) be the pair associated to f . Define

Ṽ j = (−1) j+1δ j (vi Vk − vkVi ), 1 ≤ i �= j �= k ≤ 3, i < k. (21)

Then Ṽ = (Ṽ1, Ṽ2, Ṽ3) is the unique vector inR3, up to sign, such that (v, |C |−1/2V, |C |−1/2

Ṽ ) is an orthonormal basis of R3 with respect to the inner product

〈(x1, x2, x3), (y1, y2, y3)〉 =
3∑

i=1

δi xi yi . (22)

Therefore, the matrix D = (v, |C |−1/2V, |C |−1/2Ṽ ) satisfies DδDt = δ, where δ =
diag(ε̂,C/|C |,−ε̂C/|C |). It follows that

ε̂viv j + C/|C |2Vi Vj − ε̂C/|C |2Ṽi Ṽ j = 0, 1 ≤ i �= j ≤ 3.

Multiplying by εsC and using that ε̂εs = ε̃ and ε̂εsC = ε̂εs ε̃(c − c̃) = c − c̃ we obtain

(c − c̃)viv j + εViVj − ε̃Ṽi Ṽ j = 0,

or equivalently,

cviv j + εViVj = c̃viv j + ε̃Ṽi Ṽ j .
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12 S. Canevari, R. Tojeiro

Substituting the preceding equation into (v) yields

∂hi j
∂ui

+ ∂h ji

∂u j
+ hki hk j + ε̃Ṽi Ṽ j + c̃viv j = 0.

On the other hand, differentiating (21) and using equations (i)–(iv) yields

∂ Ṽ j

∂ui
= hi j Ṽi , 1 ≤ i �= j ≤ 3.

It follows from Proposition 5 that there exists a hypersurface f̃ : M3 → Q4
s̃ (c̃), with εs̃ = ε̃,

whose first and second fundamental forms are

I =
3∑

i=1

v2i du
2
i and I I =

3∑

i=1

Ṽivi du
2
i ,

thus M3 admits an isometric immersion into Q4
s̃ (c̃).

Conversely, let f : M3 → Q4
s (c) be a hypersurface for which there exists an isometric

immersion f̃ : M3 → Q4
s̃ (c̃). By Lemma 11, there exists an orthonormal frame {e1, e2, e3}

of M3 of principal directions of both f and f̃ . Let λ1, λ2, λ3 and μ1, μ2, μ3 be the principal
curvatures of f and f̃ correspondent to e1, e2 and e3, respectively.Assume thatλ1 < λ2 < λ3,
and that the unit normal vector field to f has been chosen so that λ1 < 0. TheGauss equations
for f and f̃ yield

c + εsλiλ j = c̃ + εs̃μiμ j , 1 ≤ i �= j ≤ 3.

Thus,

μiμ j = C + ε̂λiλ j , C = εs̃(c − c̃), 1 ≤ i �= j ≤ 3. (23)

It follows that

μ2
j = (C + ε̂λ jλi )(C + ε̂λ jλk)

C + ε̂λiλk
, 1 ≤ j �= i �= k �= j ≤ 3. (24)

The Codazzi equations for f and f̃ are, respectively,

ei (λ j ) = (λi − λ j )〈∇e j ei , e j 〉, i �= j, (25)

(λ j − λk)〈∇ei e j , ek〉 = (λi − λk)〈∇e j ei , ek〉, i �= j �= k. (26)

and

ei (μ j ) = (μi − μ j )〈∇e j ei , e j 〉, i �= j, (27)

(μ j − μk)〈∇ei e j , ek〉 = (μi − μk)〈∇e j ei , ek〉, i �= j �= k. (28)

Multiplying (28) by μ j and using (24) and (26) we obtain

ε̂C
(λi − λ j )(λ j − λk)

C + ε̂λiλk
〈∇ei e j , ek〉 = 0, i �= j �= k.

Since the principal curvatures λ1, λ2 and λ3 are distinct, it follows that

〈∇ei e j , ek〉 = 0, 1 ≤ i �= j �= k �= i ≤ 3. (29)
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Computing 2μ j ei (μ j ), first by differentiating (24) and then by multiplying (27) by 2μ j , and
using (23), (24) and (25) we obtain

(C + ε̂λ jλk)(λk − λ j )ei (λi ) + (C + ε̂λiλk)(λk − λi )ei (λ j )

+(C + ε̂λiλ j )(λi − λ j )ei (λk) = 0.
(30)

Now let {ω1, ω2, ω3} be the dual frame of {e1, e2, e3} and define the one-forms γ j , 1 ≤ j ≤ 3,
by

γ j =
√

δ j
(λ j − λi )(λ j − λk)

C + ε̂λiλk
ω j , 1 ≤ j �= i �= k �= j ≤ 3,

where δ j = y j/|y j | for y j = (λ j−λi )(λ j−λk )

C+ε̂λiλk
.

By (24), either all the three numbers C + ε̂λ jλi , C + ε̂λ jλk and C + ε̂λiλk are positive
or two of them are negative and the remaining one is positive. Hence there are four possible
cases:

(I) C + ε̂λiλ j > 0, 1 ≤ i �= j ≤ 3.
(II) C + ε̂λ1λ2 < 0, C + ε̂λ1λ3 < 0 and C + ε̂λ2λ3 > 0.
(III) C + ε̂λ1λ2 > 0, C + ε̂λ1λ3 < 0 and C + ε̂λ2λ3 < 0.
(IV) C + ε̂λ1λ2 < 0, C + ε̂λ1λ3 > 0 and C + ε̂λ2λ3 < 0.

Notice that (δ1, δ2, δ3) equals (1,−1, 1) in case (I ), (1, 1,−1) in case (I I ), (−1, 1, 1) in
case (I I I ) and (−1,−1,−1) in case (I V ). It is easily checked that one must have ε̂ = −1
and C < 0 in case (I V ), whereas in the remaining cases either ε̂ = 1 or ε̂ = −1 and C > 0.
Therefore, (δ1, δ2, δ3) = (−1,−1,−1) if ε̂ = −1 and C < 0, and in the remaining cases
we may assume that (δ1, δ2, δ3) = (1,−1, 1) after possibly reordering the coordinates.

We claim that (29) and (30) are precisely the conditions for the one-forms γ j , 1 ≤ j ≤ 3,
to be closed. To prove this, set x j = √

δ j y j , 1 ≤ j ≤ 3, so that γ j = x jω j . It follows from
(29) that

dγ j (ei , ek) = eiγ j (ek) − ekγ j (ei ) − γ j ([ei , ek]) = 0.

On the other hand, using (25) we obtain

dγ j (ei , e j ) = eiγ j (e j ) − e jγ j (ei ) − γ j ([ei , e j ])
= ei (x j ) + x j 〈∇e j ei , e j 〉
= ei (x j ) + x j

ei (λ j )

λi − λ j
,

hence γ j is closed if and only if

ei (x j ) = x j
λ j − λi

ei (λ j ), 1 ≤ i �= j ≤ 3,

or equivalently,

ei (y j )(C + ε̂λiλk) = 2δ j x j ei (x j )(C + ε̂λiλk)

= 2δ j
x2j

λ j − λi
ei (λ j )(C + ε̂λiλk)

= 2(λ j − λk)ei (λ j ).
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14 S. Canevari, R. Tojeiro

The preceding equation is in turn equivalent to

2(λ j − λk)(C + ε̂λiλk)ei (λ j ) = (ei (λ j ) − ei (λi )(λ j − λk)(C + ε̂λiλk)

+(λ j − λi )(ei (λ j ) − ei (λk))(C + ε̂λiλk)

− (λ j − λi )(λ j − λk)(ε̂(ei (λi )λk + λi ei (λk)),

which is the same as (30).
Therefore, each point x ∈ M3 has an open neighborhood V where one can find functions

u j ∈ C∞(V ), 1 ≤ j ≤ 3, such that du j = γ j , and we can choose V so small that
� = (u1, u2, u3) is a diffeomorphism of V onto an open subsetU ⊂ R3, that is, (u1, u2, u3)
are local coordinates on V . From δi j = du j (∂ui ) = x jω j (∂ui ) it follows that ∂ui = vi ei ,
with vi = x−1

i . Now notice that

3∑

j=1

δ jv
2
j =

3∑

i,k �= j=1

C + ε̂λiλk

(λ j − λi )(λ j − λk)
= ε̂,

3∑

j=1

δ jv j V j =
3∑

j=1

δ jλ jv
2
j =

3∑

i,k �= j=1

λ j
C + ε̂λiλk

(λ j − λi )(λ j − λk)
= 0

and
3∑

j=1

δ j V
2
j =

3∑

j=1

δ jλ
2
jv

2
j =

3∑

i,k �= j=1

λ2j
C + ε̂λiλk

(λ j − λi )(λ j − λk)
= C.

It follows that the pair (v, V ) satisfies (3). ��
1.6 Proof of Proposition 7

Before starting the proof of Proposition7, recall that theWeyl tensor of aRiemannianmanifold
Mn is defined by

〈C(X, Y )Z ,W 〉 = 〈R(X, Y )Z ,W 〉 − L(X,W )〈Y, Z〉 − L(Y, Z)〈X,W 〉
+ L(X, Z)〈Y,W 〉 + L(Y,W )〈X, Z〉

for all X, Y, Z ,W ∈ X(M), where L is the Schouten tensor of Mn , which is given in terms
of the Ricci tensor and the scalar curvature s by

L(X, Y ) = 1

n − 2

(
Ric (X, Y ) − 1

2
ns〈X, Y 〉

)
.

It is well known that, if n ≥ 4, then the vanishing of the Weyl tensor is a necessary and
sufficient condition for Mn to be conformally flat.

Proof of Proposition 7 Let f : Mn → Qn+1
s (c) be a conformally flat hypersurface of dimen-

sion n ≥ 4. For a fixed point x ∈ Mn , choose a unit normal vector N ∈ N f
x M and let

A = AN : TxM → TxM be the shape operator of f with respect to N . Let W 3 be a vector
space endowed with the Lorentzian inner product 〈〈 , 〉〉 given by

〈〈(a, b, c), (a′, b′, c′)〉〉 = ε(−aa′ + bb′ + εcc′).

Define a bilinear form β : TxM × TxM → W 3 by

β(X, Y ) = (L(X, Y ) + 1

2
(1 − c)〈X, Y 〉, L(X, Y ) − 1

2
(1 + c)〈X, Y 〉, 〈AX, Y 〉).
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Note that β(X, X) �= 0 for all X �= 0. Moreover,

〈〈β(X, Y ), β(Z ,W )〉〉 − 〈〈β(X,W ), β(Z , Y )〉〉 = −L(X, Y )〈Z ,W 〉
− L(Z ,W )〈X, Y 〉 + L(X,W )〈Z , Y 〉 + L(Z , Y )〈X,W 〉 + c〈(X ∧ Z)W, Y 〉
+ ε〈(AX ∧ AZ)W, Y 〉 = 〈C(X, Z)W, Y 〉 = 0.

Thus, β is flat with respect to 〈〈 , 〉〉. We claim that S(β) must be degenerate. Otherwise, we
would have

0 = dim ker β ≥ n − dim S(β) > 0,

a contradiction. Now let ζ ∈ S(β) ∩ S(β)⊥ and choose a pseudo-orthonormal basis ζ, η, ξ

of W 3 with 〈〈ζ, ζ 〉〉 = 0 = 〈〈η, η〉〉, 〈〈ζ, η〉〉 = 1 = 〈〈ξ, ξ 〉〉 and 〈〈ξ, ζ 〉〉 = 0 = 〈〈ξ, η〉〉. Then
β = φζ + ψξ,

where φ = 〈〈β, η〉〉 and ψ = 〈〈β, ξ 〉〉. Flatness of β implies that dim kerψ = n−1. We claim
that kerψ is an eigenspace of A. Given Z ∈ kerψ we have

β(Z , X) = φ(Z , X)ζ (31)

for all X ∈ TxM . Let {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} be the canonical basis
of W and write ζ = ∑3

j=1 a j e j . Then (31) gives

L(Z , X) + 1

2
(1 − c)〈Z , X〉 = a1φ(Z , X)

and

L(Z , X) − 1

2
(1 + c)〈Z , X〉 = a2φ(Z , X).

Subtracting the second of the preceding equations from the first yields

〈Z , X〉 = (a1 − a2)φ(Z , X),

which implies that a1 − a2 �= 0 and

φ(Z , X) = 1

a1 − a2
〈Z , X〉.

Moreover, we also obtain from (31) that

〈AZ , X〉 = a3φ(Z , X) = a3
a1 − a2

〈Z , X〉,

which proves our claim. ��
1.7 Proof of Theorem 8

In order to prove Theorem 8, first recall that a necessary and sufficient condition for a three-
dimensional Riemannian manifold M3 to be conformally flat is that its Schouten tensor L
be a Codazzi tensor, that is,

(∇X L)(Y, Z) = (∇Y L)(X, Z)

for all X, Y, Z ∈ X(M), where

(∇X L)(Y, Z) = X (L(Y, Z)) − L(∇XY, Z) − L(Y,∇X Z).
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16 S. Canevari, R. Tojeiro

Now let f : M3 → Q4
s (c) be a holonomic hypersurface whose associated pair (v, V )

satisfies (4). Then v = (v1, v2, v3) is a null vector with respect to the Lorentzian inner
product 〈 , 〉 given by (22), with (δ1, δ2, δ3) = (1,−1, 1), and V = (V1, V2, V3) is a unit
space-like vector orthogonal to v. Thus, we may write

V = ρ

v2
v + λ

v2
(−v3, 0, v1), λ = ±1,

for some ρ ∈ C∞(M), which is equivalent to

V1 = 1

v2
(V2v1 − λv3) and V3 = 1

v2
(V2v3 + λv1). (32)

In particular,

Viv j − Vjvi = −λvk, 1 ≤ i < j ≤ 3, k /∈ {i, j},

hence the principal curvatures λ j = Vj
v j
, 1 ≤ j ≤ 3, are pairwise distinct.

The eigenvalues μ1, μ2 and μ3 of the Schouten tensor L are given by

2μ j = c + ε(λiλ j + λkλ j − λiλk), 1 ≤ j ≤ 3,

where λ j , 1 ≤ j ≤ 3, are the principal curvatures of f . Define

φ j = v j (λiλ j + λkλ j − λiλk), 1 ≤ j ≤ 3. (33)

That L is a Codazzi tensor is then equivalent to the equations

∂φ j

∂ui
= hi jφi , 1 ≤ i �= j ≤ 3. (34)

Replacing λ j = Vj
v j

in (33) and using (32) we obtain

φ1 = 1

v22
(−2λV2v3 + (

V 2
2 − 1)v1

)
, φ2 = 1

v2

(
V 2
2 + 1

)

and

φ3 = 1

v22

(
(V 2

2 − 1)v3 + 2λV2v1
)
.

It is now a straightforward computation to verify (34) by using equations (i) and (iv) of
system (2) together with Eqs. (5) and (6).

Conversely, assume that f : M3 → Q4
s (c) is an isometric immersion with three distinct

principal curvatures λ1 < λ2 < λ3 of a conformally flat manifold. Let {e1, e2, e3} be a
correspondent orthonormal frame of principal directions. Then {e1, e2, e3} also diagonalyzes
the Schouten tensor L , and the correspondent eigenvalues are

2μ j = ε
(
λiλ j + λ jλk − λiλk

) + c, 1 ≤ j ≤ 3. (35)

The Codazzi equations for f and L are, respectively,

ei (λ j ) = (λi − λ j )〈∇e j ei , e j 〉, i �= j, (36)

(λ j − λk)〈∇ei e j , ek〉 = (λi − λk)〈∇e j ei , ek〉, i �= j �= k. (37)
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and

ei (μ j ) = (μi − μ j )〈∇e j ei , e j 〉, i �= j, (38)

(μ j − μk)〈∇ei e j , ek〉 = (μi − μk)〈∇e j ei , ek〉, i �= j �= k. (39)

Substituting (35) into (39), and using (37), we obtain

(λi − λ j )(λ j − λk)〈∇ei e j , ek〉 = 0, i �= j �= k.

Since λ1, λ2 and λ3 are pairwise distinct, it follows that

〈∇ei e j , ek〉 = 0, i �= j �= k �= i. (40)

Differentiating (35) with respect to ei , we obtain

2ei (μ j ) = ε
[
(λi + λk)ei (λ j ) + (λ j − λk)ei (λi ) + (λ j − λi )ei (λk)

]
. (41)

On the other hand, it follows from (35), (36) and (38) that

ei (μ j ) = ελkei (λ j ). (42)

Hence
(λ j − λk)ei (λi ) + (λi − λk)ei (λ j ) + (λ j − λi )ei (λk) = 0. (43)

Now let {ω1, ω2, ω3} be the dual frame of {e1, e2, e3} and define the one-forms γ j , 1 ≤
j ≤ 3, by

γ j = x jω j , x j =
√

δ j (λ j − λi )(λ j − λk), 1 ≤ j �= i �= k �= j ≤ 3, (44)

where (δ1, δ2, δ3) = (1,−1, 1). As in the proof of Theorem 6, one can check that (40) and
(43) are precisely the conditions for the one-forms γ j , 1 ≤ j ≤ 3, to be closed.

Therefore, each point x ∈ M3 has an open neighborhood V where one can find functions
u j ∈ C∞(V ), 1 ≤ j ≤ 3, such that du j = γ j , and we can choose V so small that
� = (u1, u2, u3) is a diffeomorphism of V onto an open subsetU ⊂ R3, that is, (u1, u2, u3)
are local coordinates on V . From δi j = du j (∂ i ) = x jω j (∂ i ) it follows that ∂ j = v j e j ,
1 ≤ j ≤ 3, with v j = x−1

j . Now notice that

3∑

j=1

δ jv
2
j =

3∑

i,k �= j=1

1

(λ j − λi )(λ j − λk)
= 0,

3∑

j=1

δ jv j V j =
3∑

j=1

δ jλ jv
2
j =

3∑

i,k �= j=1

λ j

(λ j − λi )(λ j − λk)
= 0

and

3∑

j=1

δ j V
2
j =

3∑

j=1

δ jλ
2
jv

2
j =

3∑

i,k �= j=1

λ2j

(λ j − λi )(λ j − λk)
= 1.

It follows that (v, V ) satisfies (4). ��
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18 S. Canevari, R. Tojeiro

1.8 Proof of Proposition 9

By Theorem 8, f is locally a holonomic hypersurface whose associated pair (v, V ) is given
in terms of the principal curvatures λ1 < λ2 < λ3 of f by

v j =
√

δ j

(λ j − λi )(λ j − λk)
and Vj = λ jv j , 1 ≤ j ≤ 3, (45)

where (δ1, δ2, δ3) = (1,−1, 1). Moreover, we have seen in the proofs of Theorems 6 and 8,
respectively, that λ1, λ2 and λ3 satisfy (30) and (43). It is easily checked that (43) is equivalent
to

(λk − λi )ei (λiλ j ) = (λ j − λi )ei (λiλk), 1 ≤ i �= j �= k �= i ≤ 3,

whereas multiplying (43) by C and adding (30) gives

λk(λk − λi )ei (λiλ j ) = λ j (λ j − λi )ei (λiλk), 1 ≤ i �= j �= k �= i ≤ 3.

Since λ1, λ2 and λ3 are pairwise distinct, the two preceding equations together imply that

ei (λiλ j ) = 0, 1 ≤ i �= j ≤ 3.

Assuming that λ j �= 0 for 1 ≤ j ≤ 3, we can write

λiλ j = ιkφ
2
k , ιk ∈ {−1, 1}, 1 ≤ i �= j �= k �= i ≤ 3, (46)

for some positive smooth functions φk = φk(uk), 1 ≤ k ≤ 3. It follows from (46) that

λ j = ε j
φiφk

φ j
, (47)

where ε j = λ j
|λ j | , 1 ≤ j ≤ 3. Since λ1 < λ2 < λ3 we have

εkφ
2
i − εiφ

2
k > 0, 1 ≤ i < k ≤ 3.

Substituting (47) into (45), we obtain that

v j = φ j

ψiψk
, 1 ≤ j ≤ 3, (48)

where ψ j =
√

εkφ
2
i − εiφ

2
k , and

Vj = λ jv j = ε j
φiφk

ψiψk
, i, k �= j, i < k.

We obtain from (48) that

hi j = 1

v j

∂v j

∂ui
= ψiψk

φ j

φ j

ψiψ
2
k

(
−∂ψk

∂ui

)
= − 1

ψk

∂ψk

∂ui
. (49)

On the other hand, equation (iv) of system (2) yields

hi j = 1

Vj

∂Vj

∂ui
= ψiψk

φiφk

φk

ψiψ
2
k

(
dφi

dui
ψk − φi

∂ψk

∂ui

)
= 1

φi

dφi

dui
− 1

ψk

∂ψk

∂ui
. (50)
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Comparing (49) and (50), we obtain that

dφi

dui
= 0, 1 ≤ i ≤ 3.

This implies that ∂ψk
∂ui

= 0 for all 1 ≤ i �= k ≤ 3, and hence hi j = 0 for all 1 ≤ i �= j ≤ 3.
But then equation (i i) of system (2) gives

εsλiλ j + c = 0

for all 1 ≤ i �= j ≤ 3, which implies that −εsc > 0 and λ1 = λ2 = λ3 = √−εsc, a
contradiction. Thus, one of the principal curvatures must be zero, and the result follows from
part b) of Theorem 4. ��
1.9 Proof of Proposition 10

Before proving Proposition 10, given a hypersurface f : M3 → Q4
s (c) we compute the pair

(vt , V t ) associated to a parallel hypersurface ft : M3 → Q4
s (c) ⊂ R5

s+ε0
to f , with ε0 = 0

or 1, corresponding to c > 0 or c < 0, respectively.
Set εc = c/|c| and ε̌ = εsεc. Let ϕ and ψ be defined by

(ϕ(t), ψ(t)) =
{

(cos(
√|c|t), sin(√|c|t)), if ε = 1,

(cosh(
√|c|t), sinh(√|c|t)), if ε = −1.

If N is one of the unit normal vector fields to f and i : Q4
s (c) → R5

s+ε0
is the inclusion, then

i ◦ ft = ϕ(t)i ◦ f + ψ(t)√|c| i∗N .

We denote by M3
t the manifold M3 endowed with the metric induced by ft .

Lemma 13 Let f : M3 → Q4
s (c) be a holonomic hypersurface. Then any parallel hypersur-

face ft : M3
t → Q4

s (c) to f is also holonomic and the pairs (v, V ) and (vt , V t ) associated
to f and ft , respectively, are related by

{
vti = ϕ(t)vi − ψ(t)√|c|Vi
V t
i = ε̌

√|c|ψ(t)vi + ϕ(t)Vi .
(51)

In particular, hti j = hi j .

Proof We have

ft ∗ = ϕ(t) f∗ + ψ(t)√|c| N∗ = f∗
(

ϕ(t)I − ψ(t)√|c| A
)

, (52)

thus a unit normal vector field to ft is Nt = −ε̌
√|c|ψ(t) f + ϕ(t)N , and

Nt ∗ = f∗
(
−ε̌

√|c|ψ(t)I − ϕ(t)A
)

= − ft ∗
(

ϕ(t)I − ψ(t)√|c| A
)−1 (

ε̌
√|c|ψ(t)I + ϕ(t)A

)
.

which implies that

At =
(

ϕ(t)I − ψ(t)√|c| A
)−1 (

ε̌
√|c|ψ(t)I + ϕ(t)A

)
. (53)
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20 S. Canevari, R. Tojeiro

It follows from (52) and (53) that f̃ is also holonomic with associated pair given by (51).
The assertion on hti j follows from a straightforward computation.

Proof of Proposition 10: In view of (51), conditions (3) for (vt , V t ) (with c̃ = 0) follow
immediately from those for (v, V ). ��
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