2018 IEEE Symposium on Computers and Communications (ISCC)

A Virtual Prototype Semihosting Approach for
Early Simulation of Cyber-Physical Systems

Bruno Prado, Daniel Dantas, Kalil Bispo, Thiago Fontes, Gabriel Santana and Rafael Silva
Department of Computing, Federal University of Sergipe
Sao Cristovao, Brazil
{bruno, ddantas, kalil, thiago.fontes, gabrields, rafael.silva}@dcomp.ufs.br

Abstract—An early design space exploration of Cyber-Physical
Systems (CPS) is a challenging task due to multi-domain areas
and tight interaction of computing systems (cyber) and envi-
ronment actuation, communication and sensing (physical). The
CPS designer must be able to rapidly evaluate various solutions
and to verify if project constraints were met. In this paper,
we propose a CPS development framework based on Virtual
Prototype (VP) to provide a high level of abstraction models
to accurately simulate CPS behavior, using target independent
semihosting interfaces and assessing performance and timing
constraints. The experiments show a high timing accuracy in
CoreMark and Dhrystone compute-intensive benchmarks and a
low overhead in I/O intensive tasks for semihosting access of host
resources, such as files and memory. An ECG heart rate detection
case study was implemented using heterogeneous interfaces to
demonstrate how hardware, human and software components
can be seamlessly integrated to exchange real world data.

Index Terms—Cyber-Physical Systems, Virtual Prototype,
Semihosting, Modeling and Simulation, Embedded Systems

I. INTRODUCTION

The Cyber-Physical Systems (CPS) are a complex and
multi-disciplinary research area which aims to integrate com-
puting systems (cyber) with environment actuation, commu-
nication and sensing (physical) [1]. These systems can be
described from a high abstraction functional level [2], de-
coupled from design decisions and architecture, to detailed
temporal models where timing constraints are essential for
correct system behavior, specially in safety-critical CPS [3],
[4]. The heterogeneity of hardware and software components
and complex usage scenarios hinder CPS development, spe-
cially in situations where the hardware is not defined or even
available yet [5]. To support early CPS behavior analysis and
architectural exploration, Virtual Prototypes (VP) [6] provide
a fast and accurate virtual environment to integrate hardware/-
software components.

Despite simulation accuracy or performance, major issues
arise from modeling realistic behavior of components from
different disciplines and how they integrate and interact [7]. To
overcome these challenges, the Hardware-in-the-Loop (HWiL)
[8], Human-in-the-Loop (HUiIL) [9] and Software-in-the-Loop
(SWiL) [10] approaches can been used to host I/O operations,
data acquisition and third-party software interaction, respec-
tively. To accomplish this physical integration, low cost open-
source platforms, such as Arduino [11], ESP devices [12] and
Raspberry Pi [13], are widely available and support various
types of actuators and sensors, including software libraries to

978-1-5386-6950-1/18/$31.00 ©2018 IEEE

Target
Binary

ni O
Hardware Human Software

Fig. 1: ArchMERA overview

handle I/O requests. However, these widespread components
lack simulation support to assess performance and timing
constraints, commonly performed ad-hoc [3].

To enable early system level design, high abstraction sim-
ulation models are mandatory to cope with CPS complexity
and to evaluate which solution or combination of solutions is
more suitable to achieve system goals. In this work we propose
a C++ multithreading simulation framework for early virtual
prototyping: Architecture Modeling for Energy and Resource
Assessment (ArchMERA) to fulfill this CPS requirement. Fig.
1 shows a block diagram of the proposed framework inside
of dashed region. The framework receives as input the binary
file T'arget Binary which contains the compiled software
to be executed by Virtual Prototype. In VP environment,
functional models of buses, memories, modules, processors
and registers can be described for a Multithreading ex-
ecution to take advantage of host parallelism. By the use
of Semihosting techniques, the interaction with third-party
Software components, such as Python SciPy [14] scientific
library, can improve productivity and behavior validation.
Besides that, the support for Newlib (C library for embedded
systems) [15] provide access of embedded software to host
I/O operations for Hardware and Human interaction, for
example, file access and keyboard input, respectively. Due
to its high level of abstraction, the physical interfaces can
be seamlessly bound to host-attached (local) or to network-
attached (remote) components, since, for both situations, the
cyber software control handles the communication through
library or system calls.

00208

2018 IEEE Symposium on Computers and Communications (ISCC)

This paper is organized as follows: Section II, closely
related approaches for CPS development are reviewed; Section
III, the early development flow for CPS is described focused
on Design Space Exploration, Virtual Prototype and Interface
Refinement processes; Section IV, the Semihosting Approach
is detailed; Section V, an ECG case study is demonstrated; and
Section VI, the paper conclusion, ongoing and future works.

II. RELATED WORK

Schreiner et al. [16] presented a quasi-cycle accurate proces-
sor timing model for CPS software simulation, comparing the
processor models against real hardware. His work focuses on
real-time critical benchmarks whose behavior strongly depends
on the timing simulation accuracy. The simulation results
shows a mean error of less than 1% and performance of
up to 9.6 Million of Instructions Per Second (MIPS). Their
work evaluates the accuracy of results by measuring the run-
time cycle counting, despite lacking of further integration with
physical devices. Feng et al. [9] proposed Hardware-in-the-
Loop (HWiL) and Human-in-the-Loop (HUiL) approaches for
rapid embedded software development, offering both hardware
and physical location transparent access. The development
flow consists on the validation of a MATLAB application
for domain-specific synthesis to C/C++ embedded deploy-
ment. Despite productivity gain, this approach depends on
real hardware for deployment and C/C++ platform-dependent
backend and proxies to assess system behavior and resource
usage. Werner et al. [10] explored the concept of Software-in-
the-Loop (SWiL) to capture real world data from simulation
host and validate the application. By accessing host resources,
the developer is able to evaluate early different methods of
interaction between the target embedded software (cyber) and
the host-connected devices (physical). In use cases, a simu-
lation tune adjustment can speed up performance from real-
time to up to 26.62 times when compared to real hardware.
The file-based semihosting methods prevent a higher level
of abstraction in target software calls, leading to throughput
limitations in data read and write operations.

Zhang et al. [17] proposed a formalization of hardware/soft-
ware interface to reduce the gap between tightly integrated
software and physical plant components. A satellite altitude
control system was co-simulated in a virtual execution envi-
ronment with a C language embedded software running on
QEMU [18] integrated to MATLAB/Simulink components.
There was no communication between embedded control and
real hardware, therefore, system characteristics too complex to
be modeled, such as static friction and mechanical issues, were
not properly verified. Theodoropoulos et at. [19] provide a
integrated hardware/software CPS development framework fo-
cused in optimization of performance and energy consumption
application supporting OpenCL, CUDA and C/C++ to generate
code for GPU and FPGA devices. Regardless of relying on
distributed x86 only system simulator COTSon [20], the design
space exploration flow was omitted and no information about
simulation versus real hardware prototyping was provided.

978-1-5386-6950-1/18/$31.00 ©2018 IEEE

Target
Source

|

—

Functional
Specification

Deployment
Ready?

1 o]
|

L Constraints B VI Deployment
No Satisfied? Yes

Fig. 2: Early CPS development flow

III. EARLY CPS DEVELOPMENT FLOW

Due to its tight interaction with heterogeneous devices
from various application domains, it is almost mandatory
the use of Virtual Prototype (VP) to enable early design
space exploration. Through this simulation environment, the
CPS designer is able to precisely verify which processor
architecture or communication peripherals are more suitable
to match the required integration and interaction constraints.

Fig. 2 shows an iterative and incremental early CPS de-
velopment flow based on Virtual Prototype. Starting from
Functional Specification to CPS Deployment, this de-
velopment flow supports multiple levels for physical compo-
nents abstraction and enables the fast evaluation of different
platforms to satisfy CPS constraints.

A. Design Space Exploration

The most challenging task in CPS development is the inte-
gration of multiple domain components and the achievement
of a trade-off between conflicting system metrics, such as per-
formance or power consumption. During the CPS conception,
undetected design errors are from 5 to 10 times more expensive
and problematic to solve in later development stages [21], thus,
system designer must be able to make the best decisions.

Despite a commonly large design space, the system de-
signer can easily create multiple platforms using various
combinations of processor architectures and component in-
terconnections in Virtual Prototype. Since it is focused on
software integration and interaction, in this phase, the physical
models can be highly abstract or describe an hypothetical
device. When all system decisions are evaluated and project
constraints are satisfied, the Target Source for a specific
platform can be refined until deployment in real hardware.

B. Virtual Prototype

Several system simulators, such as QEMU [18] and OVP
[22], for example, can execute unmodified target binary code
on host development machine. For CPS simulation, it is
necessary to reach a trade-off between simulation performance
and timing accuracy to provide useful results.

00209

2018 IEEE Symposium on Computers and Communications (ISCC)

Listing 1: Virtual Prototype example

1 #include <am.hpp>

2 #include <mips_i.hpp>

3 using namespace archmera;

4 using namespace archmera::mips;
5

6 int main(int argc, char=s argv) {

7 mips_i processor;

8 am_bus bus;

9 am_memory memory ;

10 processor .MEM(bus) ;

11 processor.program_arguments(argc, argv);

12 processor.run() ;

13 bus.bind (processor);

14 bus . bind (memory) ;

15 memory . allocate (8, 1024 = 1024);

16 memory . elf32 (”model/software /mips/dhrystone/
dhrystone.elf”)

17 am_start () ;

18 return O;

v}

In the proposed framework, the system designer can in-
stantiate, extend and model lightweight buses, memories,
processors and registers components using C++ classes from
a header library. In Listing 1, a minimal MIPS architecture
[23] platform can be created from built-in components in
very few lines: the dependencies are included (lines 1 to 4);
the platform components are instantiated (lines 7 to 9); the
processor memory port is bound to bus, the program arguments
are passed and the processor will run until the software exits
(lines 10 to 12); the bus is bound to processor and memory
(lines 13 and 14); the 8 MB memory is allocated to load the
Dhrystone benchmark [24] ELF binary (lines 15 and 16); and
the simulation is started (line 17).

To accomplish physical interaction, the developer can in-
put and output data using the embedded C standard library
(Newlib) [15] or import his own libraries which would require
system call routines for platform integration.

C. Interface Refinement

As already stated, an earlier detection of CPS design flaws
can prevent later costly and time consuming fixes. However, in
order to enable this early analysis, a high level of abstraction
modeling should be applied to reduce the CPS simulation
efforts.

Listing 2: High level C library write

int write(int file , chars ptr, int len) {

AM_PARAMETER(0x00, file);
AM_PARAMETER(0x04 , ptr);
AM_PARAMETER(0x08, len);

AM_SYSCALL(0x44) ;
return AM_GET_VALUE(0x0C) ;

RO T T

}

In Listing 2, a high level implementation of write syscall
uses C macros, that will be detailed in Section IV, and has
the following parts: passing function parameters (lines 2 to 4);
requesting VP handling (line 5); and retrieving return value
(line 6). If software, for example, outputs a string message
in terminal, writes sensor captured data to a file or accesses
a descriptor-based device, this write syscall will be invoked.
By redirecting these requests to simulation host through VP
syscall handling, the cyber software can readily interact with
available local and remote physical components.

978-1-5386-6950-1/18/$31.00 ©2018 IEEE

RETURN VALUE = function(PARAMETER 1, ..., PARAMETER n)

Base Address —| PARAMETER 1 Low
PARAMETER n
RETURN VALUE | High

Fig. 3: Semihosting binary interface

Listing 3: Bare metal C library write

int write(int file , chars ptr, int len) {
int i;
if(file

len =

!= STDOUT_FILENO && file
—1;

!= STDERR_FILENO) {

for(i = 0; i < len; i++) {
uvart_send (x ptr++);

© % U U AW —

return len;
0}

In bare metal systems, that is, systems without operating
systems, besides its own functions, the embedded software
controls directly the hardware. In Listing 3, the write syscall
handles file descriptors to support only standard output and
error (lines 3 to 5), sends each byte via serial interface (lines 6
to 8) and returns the number of bytes written (line 9). Although
showing an accurate timing behavior, at this abstraction level,
the CPS components can be too complex to model.

For this reason, it is highly desirable to explore first the
design space from abstract models, integrated to hardware de-
vices (HWiL), human-based interfaces (HUiL) and third-party
software tools (SWiL). Once CPS constraints are satisfied, the
physical programming interfaces in T'arget Source can be it-
eratively refined until the achievement of CP.S Deployment.

IV. SEMIHOSTING APPROACH

The capability of embedded software running on a Virtual
Prototype (VP) to access host machine facilities, such as C
library functions or remote devices, is defined as semihosting.
When target software requests a semihosting operation, the VP
halts execution, reads input parameters from target to host,
performs requested operation in host environment, returns
generated values from host to target memory and resumes
execution.

A. Binary Interface

Since the VP executes unmodified target binary software,
an interface is required to request and to handle semihosting
operations. This binary interface describes how parameters are
passed, syscall flow is performed and return value from call
is retrieved.

Fig. 3 illustrates the semihosting binary interface, that is,
how the VP transfers data between host environment and
cyber software control. In compiler linker script and VP
semihosting map, a reserved memory address space, starting
from a Base Address, must be set to store an arbitrary
number of function parameters and a return value.

00210

2018 IEEE Symposium on Computers and Communications (ISCC)

B. Interaction of Target Software and VP

Each semihosting operation should be assigned to a unique
address which is used as key by an associative container. Due
to its full customization capability, system design can freely
define in which address an operation will be mapped and what
abstraction level the data will be transferred between target
software and VP.

Listing 4: Target software C macros

#define AM_ADDRESS(i)
(AM_BASE_ADDRESS + (i))
#define AM_GET_VALUE(i) \
#((int+) (AM_ADDRESS(i)))
#define AM_PARAMETER(i, p) \
AM_GET_VALUE(i) = (int)(p)
#define AM_SYSCALL(i)
int saved_return_address;\
_asm__("sw.%ra,.%0" : “=m”(saved_return_address));\
__asm__("jal_-%0” : : “r”(AM_ADDRESS(i)));\
__asm__("lw.$ra,.%0” : : "m”(saved_return_address))

220 ® a0 uwme W —

In a example of high level semihosting interface, shown in
Listing 2, it is required in target software side the use of binary
interface. In Listing 4, the used C macros are described as
follows: AM_ADDRESS calculates the address offset from
a defined base address (lines 1 and 2); AM_GET VALUFE
reads a memory content from a specific memory address
(lines 3 and 4); AM_PARAMETER writes the parameter
in a memory location (lines 5 and 6); and AM_SY SCALL,
implemented for MIPS architecture [23], saves the return
address of current flow (line 9), jumps to target address which
be handled by VP (line 10) and returns to previous execution
flow (line 11).

Listing 5: VP write syscall handling

1 void _write(am_interface_method* data, const am_field&
base, const am_field& width) {

am_data file , ptr, len, return_value;

2
3 data—>read (base + 0x00, file , width);
4 data—>read (base + 0x04, ptr, width);
5 data—>read (base + 0x08, len, width);
6

return_value = safe_write (file ,
ptr), len);
7 data—>write (base + 0x0C,

s)

data—>get_pointer (
return_value , width);

At VP side, a similar procedure is required, however target
specific information, such as processor word size and en-
dianness, must be handled to avoid data formatting issues.
In Listing 5, VP implements the target software high level
C library write function described in Listing 2. While the
memory interface is read to retrieve parameters (lines 2 to
5), the target specific word size in bytes (width) is passed
and, if required, data endianness adjustments are done. To
avoid race conditions from host multithreading execution, a
safe_write wrapper of write syscall is used, receiving as
parameters: file descriptor, direct host pointer of VP memory
data and total number of bytes (line 6). The return value from
syscall is written at specified address, considering word size
and endianness formatting (line 7).

The architecture independent semihosting interface imple-
mentation in VP models enables a straightforward transition
of processor models during design space exploration. This

978-1-5386-6950-1/18/$31.00 ©2018 IEEE

4
100 — 89.45 | L 3.36 3.41 |
3 - -
< 2 | |
a @9 |- N
= 50 - 6]

29.46

0 ;.

Callback RDHI

6-1073

Callback RDHI Native

Native

(a) Disk binary file copy (b) Memory data swapping

Fig. 4: Data exchange between host and VP

portability is possible due to target software source access to
binary interface, which contains all required processor specific
operations.

C. Accuracy and Performance

In order to evaluate simulation accuracy and performance,
considering platform described in Listing 1, the CoreMark [25]
and Dhrystone [24] benchmarks were executed in an Arch
Linux 4.11 Intel Core 2 Quad CPU Q9505 at 2.83 GHz host
with 4 GB of RAM and compiled with GCC 7.1.0 and Newlib
2.5.0.

The CoreMark achieved an average score of 1,310.10
and simulation performance of 44.63 MIPS, executing in
3.96£1.31% minutes. In Dhrystone, a score of 67.13 DMIPS
and simulation performance of 34.58 MIPS were achieved,
while execution time was 5.12+0.59% seconds.

In both benchmarks, the execution time deviations were
quite close to Schreiner et al. [16], but the simulation per-
formance was nearly up to 6 times faster, mainly due to low
overhead between VP and native host calls.

Another important metric for semihosting performance is
the data exchange throughput between host and VP. In Fig. 4
it is shown VP semihosting using Newlib calls (Callback), VP
runtime direct host interface (RDHI) and host native interface
(Native) data throughputs to file copy (4a) and memory data
swapping (4b).

These /O intensive tasks were developed to transfer 1 GB
from disk files (block size of 1 MB) and 10 GiB from memory
arrays (size of 1 MiB). In Fig. 4a, the proposed semihosting
interface (RDHI) achieved an average throughput of 75.87
MB/s which is about 15% slower than native host performance.
The memory data swapping using RDHI achieved an average
transfer rate of 3.36 GiB/s, while native host was slightly faster
(1.5%), as can be seen in Fig. 4b.

Werner et al. [10] showed a callback transfer rate of 5.87
MiB/s, very close to our callback results of 6.07 MiB/s, and its
native mapping approach achieved data rate of 481.73 MiB/s,
nearly 7 times slower than proposed RDHI throughput. The
low overhead RDHI approach reduces the gap between VP
and native host environments, enabling an early and fast CPS
design evaluation.

00211

2018 IEEE Symposium on Computers and Communications (ISCC)

Fig. 5: Heart rate detection CPS

V. CASE STUDY

In this case study, an instantaneous heart rate monitor
from acquired ECG signal was implemented to demonstrate
semihosting capabilities and early CPS assessments.

Fig. 5 depicts an overview of proposed case study.
Target Binary application is executed in VP platform to
acquire FCG signal, process data using Python libraries and
write instantaneous heart rate in Storage. A minimal VP
platform, already described in Listing 1, is used to execute
embedded software, while the ECG signal is retrieved from a
PhysioBank database [26] and processed by Biosppy toolbox
[27]. Through proposed high level semihosting approach,
the VP platform can seamlessly access these heterogeneous
interfaces to incrementaly and iteratively explore design space,
even when CPS components are not available yet.

A. ECG Acquisition

The PhysioBank database requires a specialized software
WFDB [28] to convert signal information from binary to
formatted data. After the ECG signal is processed, the VP
control software can read file contents to its internal memory.
This data is sent to Biosppy for instantaneous heart rate
calculation from ECG signal.

Listing 6: ECG signal acquisition

int acquire_ecg(intx data, int size) {
int i;

for(i = 0; i < size &% !feof (ECG);

1
2

3 i++) {
4 fscanf (ECG, "%i\n”, &data[i]);
5

6

7

return i;
¥

The CPS software reads the ECG signal using standard
formatted file input, as described in Listing 6. The function
prototype acquire_ecg receives a pointer to integer array
(data) and its number of requested samples (size) and returns
the number of samples read (line 1). While the request number
of samples and ECG file still has data, a sample is read and
stored in data at index ¢ (lines 2 to 5). The index 7 is returned
(line 6) and contains the total number of samples read from
file, a value between 0 and size.

Fig. 6 shows an example of 7,000 samples read from ECG
database. The signal was acquired with 16 bits resolution and
sampling rate of 1 kHz.

978-1-5386-6950-1/18/$31.00 ©2018 IEEE

g 500
E 0
g —500
<—-1,000 \ \ \ \ \
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
Samples
Fig. 6: ECG acquired signal sample

g

o

)

g

g

E

Q

=

Timestamp (seconds)

Fig. 7: Instantaneous heart rate

B. Heart Rate Detection

The ECG signal processing requires scientific software
libraries and domain knowledge to deal properly with noise
interference and breathing influence in R-peak amplitudes.
Instead of writing from scratch a costly and time consuming
solution, CPS designer can interface with available software
toolboxes for early assessment of system requirements.

Listing 7: ECG heart rate detection

from biosppy.signals import ecg as bs

1
2
3 def heart_rate_ecg(data):
4

output = bs.ecg(signal = data, sampling_rate = 1000,
show = False)
timestamp = output[5]
6 heart_rate = output[6]
7 return (timestamp , heart_rate)

In Listing 7, the heart rate is detected from acquired ECG
signal in very few lines of code, described as follows: Biosppy
signal processing for ECG is imported (line 1); function
heart_rate_ecg is defined, receiving ECG signal data (line
3); acquired ECG signal is processed at 1 kHz sample rate
without plotting (line 4); and timestamp of detected heartbeats
plus instantaneous heart rate tuple is returned (lines 5 to 7).

Once ECG signal is processed, the CPS software receives
the timestamps of heartbeats and instantaneous heart rate
through semihosting interface and writes them to file for
data persistence. The instantaneous heart rate of 38,400 ECG
signal samples can be seen in Fig. 7, showing an average of
approximately 82 beats per minute.

C. Discussion

This case study is a proof of concept to demonstrate
that high level of abstraction integration and interaction of
heterogeneous CPS components is feasible. Also, a reduced
CPS simulation environment footprint, that is, very few lines
of code to implement it, and target independent semihosting
approach enable a significant productivity gain. Feng et al. [9]
estimated a development performance of 15 lines of code per
man-hour, therefore, this paper proposes a CPS development

00212

2018 IEEE Symposium on Computers and Communications (ISCC)

approach which is able to evaluate various candidate solutions
in a matter of hours or days, instead of months, requiring less
than 40 lines of source code for the ECG case study, as shown
in Listings 1, 6 and 7.

As soon as CPS constraints are met, each one of its
hardware, human or software interfaces can be iteratively
refined or combined at different abstraction levels for eval-
uation purposes until CPS deployment. In this case study, for
example, the ECG database can be replaced by a real-time
ECG sensor attached to a human body, while Biosppsy toolbox
interface is still used for heart rate detection. When ECG signal
acquisition is validated, the Biosspy interface can be refined
to a embedded software solution to detect heart rate, assessing
software behavior, performance and resource usage.

VI. CONCLUSION

To cope with CPS design integration and interaction com-
plexity, Hardware-in-the-Loop (HWiL), Human-in-the-Loop
(HUiL) and Software-in-the-Loop (SWiL), through semihost-
ing techniques, provide to cyber software a straightforward
approach for physical device interfacing. The proposed design
space exploration flow and a target independent semihosting
approach enable rapid prototyping of various designs, showing
small error in timing accuracy running benchmarks (< 1.18%),
low execution overhead from 1.5% to 15% in I/O experiments
and demanding very low effort from development team.

Ongoing and future works include: more multi-domain case
studies using HWiL, HUIL and SWiL components; improve-
ment of VP simulation performance without compromising
timing accuracy supporting various processor architectures,
such as ARM and RISC-V; and comparison of high level
CPS models to deployment solutions in terms of performance,
source code productivity and timing behavior.

REFERENCES
[11 V. Gunes, S. Peter, T. Givargis, and F. Vahid, “A survey
on concepts, applications, and challenges in cyber-physical

systems,” KSII Transactions on Internet and Information Systems
(TIIS), vol. 12, mno. 12, Dec 2014. [Online]. Available:
http://dx.doi.org/10.3837/tiis.2014.12.001

[2] J. Wan, A. Canedo, and M. A. A. Faruque, “Functional model-based
design methodology for automotive cyber-physical systems,” IEEE Sys-
tems Journal, vol. 11, no. 4, pp. 2028-2039, Dec 2017.

[3] A. Shrivastava, M. Mehrabian, M. Khayatian, P. Derler, H. Andrade,
K. Stanton, Y.-S. Li-Baboud, E. Griffor, M. Weiss, and J. Eidson, “A
testbed to verify the timing behavior of cyber-physical systems: Invited,”
in Proceedings of the 54th Annual Design Automation Conference
2017, ser. DAC *17. New York, NY, USA: ACM, 2017, pp. 69:1-69:6.
[Online]. Available: http://doi.acm.org/10.1145/3061639.3072955

[4] I. Graja, S. Kallel, N. Guermouche, and A. H. Kacem, “Time patterns
for cyber-physical systems,” in 2016 IEEE Symposium on Computers
and Communication (ISCC), June 2016, pp. 1208-1211.

[5] P. J. Mosterman and J. Zander, “Cyber-physical systems challenges: a
needs analysis for collaborating embedded software systems,” Software
& Systems Modeling, vol. 15, no. 1, pp. 5-16, Feb 2016. [Online].
Available: https://doi.org/10.1007/s10270-015-0469-x

[6] O. Bringmann, W. Ecker, A. Gerstlauer, A. Goyal, D. Mueller-
Gritschneder, P. Sasidharan, and S. Singh, “The next generation
of virtual prototyping: Ultra-fast yet accurate simulation of hw/sw
systems,” in Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, ser. DATE ’15. San Jose, CA,
USA: EDA Consortium, 2015, pp. 1698-1707. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2757012.2757206

978-1-5386-6950-1/18/$31.00 ©2018 IEEE

[7]1 P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard, T. Tomiyama,
and S. Achiche, “Design, modelling, simulation and integration of cyber
physical systems: Methods and applications,” Computers in Industry,
vol. 82, no. Supplement C, pp. 273 — 289, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166361516300902

[8] F. Gao and F. Deng, “Design of a networked embedded software test
platform based on software and hardware co-simulation,” in 2016 IEEE
International Conference on Software Quality, Reliability and Security
Companion (QRS-C), Aug 2016, pp. 375-381.

[9] S. Feng, F. Quivira, and G. Schirner, “Framework for rapid development
of embedded human-in-the-loop cyber-physical systems,” in 2016 I[EEE
16th International Conference on Bioinformatics and Bioengineering
(BIBE), Oct 2016, pp. 208-215.

[10] S. Werner, L. Masing, F. Lesniak, and J. Becker, “Software-in-the-loop
simulation of embedded control applications based on virtual platforms,”
in 2015 25th International Conference on Field Programmable Logic
and Applications (FPL), Sept 2015, pp. 1-8.

[11] Arduino, “Arduino - home,” 2018.
https://www.arduino.cc/

[12] Espressif, “Products — espressif systems,” 2018. [Online]. Available:
http://espressif.com/en/products

[13] T. R. P. Foundation, “Raspberry pi - teach, learn, and make with
raspberry pi,” 2018. [Online]. Available: https://www.raspberrypi.org/

[14] S. developers, “Scientific computing tools for python,” 2018. [Online].
Available: https://www.scipy.org/

[15] C. Vinschen and J. Johnston, “The newlib homepage,” 2018. [Online].
Available: https://sourceware.org/newlib/

[16] S. Schreiner, R. Grgen, K. Grttner, and W. Nebel, “A quasi-cycle accu-
rate timing model for binary translation based instruction set simulators,”
in 2016 International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS), July 2016, pp. 348—
353.

[17] Y. Zhang, Y. Dong, W. Feng, and M. Huang, “A co-simulation interface
for cyber-physical systems,” in 2016 13th International Conference on
Embedded Software and Systems (ICESS), Aug 2016, pp. 176—181.

[18] F. Bellard, “Qemu, a fast and portable dynamic translator,”
in Proceedings of the Annual Conference on USENIX Annual

[Online]. Available:

Technical Conference, ser. ATEC ’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 41-41. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1247360.1247401

[19] D. Theodoropoulos, S. Mazumdar, E. Ayguade, N. Bettin,

J. Bueno, S. Ermini, A. Filgueras, D. Jimnez-Gonzlez, C. lvarez
Martnez, X. Martorell, F. Montefoschi, D. Oro, D. Pnevmatikatos,
A. Rizzo, P. Gai, S. Garzarella, B. Morelli, A. Pomella,
and R. Giorgi, “The axiom platform for next-generation cyber
physical systems,” Microprocessors and Microsystems, vol. 52,
no. Supplement C, pp. 540 — 555, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933116304434

[20] E. Argollo, A. Falcén, P. Faraboschi, M. Monchiero, and D. Ortega,
“Cotson: infrastructure for full system simulation,” SIGOPS Oper. Syst.
Rev., vol. 43, no. 1, pp. 52-61, 2009.

[21] J. Wan, A. Canedo, and M. A. A. Faruque, “Physical codesign at the
functional level for multidomain automotive systems,” IEEE Systems
Journal, vol. 11, no. 4, pp. 2949-2959, Dec 2017.

[22] OVP, “Open virtual platforms,” 2018. [Online].
http://www.ovpworld.org/

[23] Imagination, “Mips processors - the leading alternative mainstream cpu
architecture,” 2018. [Online]. Available: https://www.imgtec.com/mips/

[24] R. P. Weicker, “Dhrystone: a synthetic systems programming
benchmark,” Commun. ACM, vol. 27, no. 10, pp. 1013-1030, Oct.
1984. [Online]. Available: http://doi.acm.org/10.1145/358274.358283

[25] CoreMark, “Eembc - coremark - processor benchmark,” 2018. [Online].
Available: https://www.eembc.org/coremark/index.php

[26] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff,
P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K.
Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet,”
Circulation, vol. 101, no. 23, pp. e215-e220, 2000. [Online]. Available:
http://circ.ahajournals.org/content/101/23/e215

[27] C. Carreiras, A. P. Alves, A. Lourenco, F. Canento, H. Silva, A. Fred
et al., “BioSPPy: Biosignal processing in Python,” 2015-. [Online].
Available: https://github.com/PIA-Group/BioSPPy/

[28] PhysioNet, “The wfdb software package,” 2018. [Online]. Available:
https://www.physionet.org/physiotools/wfdb.shtml

Available:

00213

