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ABSTRACT

Random regression models were used to estimate 
genetic parameters for test-day milk yield in Murrah 
buffaloes using Bayesian inference. Data comprised 
17,935 test-day milk records from 1,433 buffaloes. 
Twelve models were tested using different combinations 
of third-, fourth-, fifth-, sixth-, and seventh-order or-
thogonal polynomials of weeks of lactation for additive 
genetic and permanent environmental effects. All mod-
els included the fixed effects of contemporary group, 
number of daily milkings and age of cow at calving 
as covariate (linear and quadratic effect). In addition, 
residual variances were considered to be heterogeneous 
with 6 classes of variance. Models were selected based 
on the residual mean square error, weighted average of 
residual variance estimates, and estimates of variance 
components, heritabilities, correlations, eigenvalues, 
and eigenfunctions. Results indicated that changes in 
the order of fit for additive genetic and permanent envi-
ronmental random effects influenced the estimation of 
genetic parameters. Heritability estimates ranged from 
0.19 to 0.31. Genetic correlation estimates were close to 
unity between adjacent test-day records, but decreased 
gradually as the interval between test-days increased. 
Results from mean squared error and weighted aver-
ages of residual variance estimates suggested that a 
model considering sixth- and seventh-order Legendre 
polynomials for additive and permanent environmental 
effects, respectively, and 6 classes for residual variances, 
provided the best fit. Nevertheless, this model presented 
the largest degree of complexity. A more parsimoni-
ous model, with fourth- and sixth-order polynomials, 

respectively, for these same effects, yielded very similar 
genetic parameter estimates. Therefore, this last model 
is recommended for routine applications.
Key words:  covariance function, genetic correlation, 
heritability, test-day milk yield

INTRODUCTION

The world buffalo milk production increased 43% 
from 1997 to 2007. This rate is superior to that report-
ed for cow milk production (20%) in the same period 
(FAO, 2009). However, buffalo milk yield is still much 
lower than cow’s milk yield. In 2007, worldwide buffalo 
and cow milk yields were 85 and 560 million tons[AU2: 
Metric tonnes?], respectively (FAO, 2009). Higher av-
erage milk yields are reported in India and Italy, prob-
ably because genetic evaluations are a common practice 
in these countries (Moioli and Borghese, 2005).

Few studies have reported milk yield genetic parame-
ter estimates in buffaloes. These are generally restricted 
to total milk yield, with heritability estimates ranging 
from 0.14 to 0.40 (Rosati and Van Vleck, 1998; Tonhati 
et al., 2000; Peeva, 2002), and test-day milk yield, with 
estimates ranging from 0.01 to 0.24 (Hurtado-Lugo et 
al., 2006; Aspilcueta-Borquis et al., 2007).

Random regression models have become a standard 
procedure for the genetic analysis of longitudinal traits 
such as milk yield (Meyer, 2005) because of their flex-
ibility and ability to describe (co)variances among 
test-day milk yield records measured on different days 
during the lactation (Jensen, 2001). Random regression 
models allow estimates of covariances between coeffi-
cients of random functions or, equivalently, estimates 
of covariance functions.

Compared with REML, Bayesian methods have the 
advantage of allowing the inclusion in analysis of prior 
knowledge about the unknown parameters. Addition-
ally, Bayes theorem provides a solution for the finite 
sample size problem because an exact distribution of 
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the posterior exists for each large or small data set from 
which inferences can be drawn. When a large data set is 
analyzed, a priori information tends to be overwhelmed 
by the likelihood function in the establishment of the 
a posteriori distribution. In this case, parameter esti-
mates are close to those obtained by frequentist meth-
ods based on likelihood functions. However, this may 
not be true when the sample size is limited because 
the maximum likelihood procedure only possesses well-
defined properties when the sample size is large enough 
(Gianola and Fernando, 1986).

The objective of the present study was to estimate 
covariance functions for additive genetic and perma-
nent environmental effects and genetic parameters for 
test-day milk yield in Murrah buffaloes using random 
regression models and Bayesian inference.

MATERIALS AND METHODS

Experimental Setup and Analyses

A total of 17,935 test-day milk yield records from 
1,433 first lactations of Murrah buffaloes, raised in 11 
herds in São Paulo state in Brazil and calving from 
1985 to 2006, were analyzed. Cows’ age ranged from 
24 to 48 mo. Milk records were obtained from d 7 of 
lactation onward and lactation was truncated at 305 
d. Test-days were grouped into weekly classes of days 
in milk, ranging from 2 to 43 wk of lactation. The first 
test-day milk record was required to be at the latest 75 
d after calving. In addition, records outside the range of 
3 standard deviations from the mean were excluded.

Contemporary groups (CG) were formed by farm-
year-recording month subclasses. Only data of animals 
with at least 4 test-day records during lactation and 
CG with at least 5 animal observations were kept. A 
total of 708 CG were formed. The average number of 
animals per CG was 27 (ranging from 5 to 66). The 
relationship matrix had a total of 2,810 animals. The 
structure of the data set after editing is summarized in 
Table 1.

Preliminary analyses using least squares were per-
formed to determine the effects of age of cow at calving, 
number of daily milkings and week of lactation on the 
trait studied. The additive genetic and permanent envi-
ronmental effects were considered as random effects in 

the model and were modeled by Legendre polynomials 
(LP) of weeks of lactation considering different orders.

Estimates of the (co)variance components were ob-
tained by Bayesian analysis using the RRGIBBS pro-
gram (Meyer, 2002). This program generates Markov 
chains for the parameters of a random regression model 
by Gibbs sampling. For each analysis 5 chains with dif-
ferent starting values were run. After several trials, the 
length of the chain was set to 400,000. The burn-in pe-
riod was 100,000 iterations, higher than the minimum 
burn-in required according to the method of Raftery 
and Lewis (1992). Convergence was tested using the 
criteria proposed by Heidelberger and Welch (1983) and 
Geweke (1992) criteria. The software R, with some rou-
tines of the package Bayesian Output Analysis (BOA), 
was used to calculated Geweke’s and Heidelberger and 
Welch’s statistics (Smith, 1997).

The following variables were included in all random 
regression models analyzed: contemporary group (708 
levels) and milking number (2 levels) as fixed effects, 
linear and quadratic effects of cow age at calving as 
covariate (linear and quadratic effect), and the aver-
age trajectory of the population modeled by Legendre 
polynomials of third order. The matrix presentation of 
the single-trait random regression model is given by

	 y Xb Za Wc e= + + + , 	

where y is the vector of N observations measured in Nd 
animals; b is the vector of the systematic effects and 
fixed regression coefficients; a is the vector of additive 
genetic random regression coefficients; c is the vector 
of permanent environmental random regression coeffi-
cients; e is the random vector of error effects; and X, Z, 
and W are the incidence matrices of fixed effects and 
additive genetic and permanent environmental random 
effects.

The following assumptions are made:

•	 y b a c NMV Rel ef| , , , ,..., ~ ( , ),s s2 2 Xb Za Wc+ +  with 

R diag el= { }s2 , the likelihood function, in that 

l f= 1 2, ,....., ,  where f is the number of residual 
classes.

•	 b µ constant ;
•	 a NMV Ga| ~ ( , ),K 0  with G a= ÄA K , where A is 

the numerator relationship matrix between ani-
mals and Ka is the matrix containing (co)vari-
ances between additive genetic random regression 
coefficients;

•	 c NMV Cc| ~ ( , ),K 0  with C c= ÄI K ,  where I is 
an identity matrix, Kc is the matrix containing 
(co)variances between permanent environmental 
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Table 1. Summary of data structure after edits 

Records, n 17,935
Animals with records, n 1,433
Sires, n 114
Dams, n 975
Contemporary groups, n 708
Average daily milk yield, kg 6.25
Standard deviation of daily milk yield, kg 2.29



random regression coefficients, and NMV refers to 
a multivariate normal distribution;

•	 Ka a a a a av S W v v S| , ~ , ;2 1 2- ( )
•	 Kc c c c c cv S W v v S| , ~ , ,2 1 2- ( )  where v Sa a, 2  and v Sc c, 2  

are interpreted as degrees of belief and priori val-
ues for (co)variances of the additive genetic and 
permanent environmental regression coefficients, 
respectively, and W−1 is an inverted Wishart dis-
tribution.

•	 sel el el el el elv s X v v s2 2 2 2| , ~ ,,
- ( )  where X−2 is a scaled 

inverse chi-square distribution.

Twelve models were tested using different combina-
tions of third-, fourth-, fifth-, sixth-, and seventh-order 
Legendre polynomials (LP) of weeks of lactation for 
additive genetic and permanent environmental effects. 
Therefore, models were identified as follows: LP(ij) 
where i and j indicate the order of fit for additive genetic 
and permanent environmental effects, respectively.

Preliminary analyses were conducted to determine 
the most adequate structure to model the residual vari-
ance. Step functions were initially fitted with 42 weekly 
classes of residual variances. Afterward, the pattern of 
variation was analyzed to define step functions with 4, 
6, or 22 residual variance classes based on residual vari-
ances estimated using the initial 42 classes. In short, 
weeks of lactation were grouped in the following classes: 
4 (2, 3–4, 5, 6–43 wk), 6 (2, 3–4, 5, 6–14, 15–34, 35–42 
wk), 22 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11–14, 15–19, 20–25, 
26–29, 30, 31, 32–33, 34–36, 37–38, 39, 40–41, 42–43 
wk), or 42 weekly classes. A model with homogeneous 
residual variance across lactation was also tried. These 
preliminary analyses (results not shown) showed that 
the best structure to model the residual variance was a 
step function with 6 classes. This structure was used in 
all remaining analyses.

The highest posterior density interval was determined 
for each parameter of the model with 95% confidence. 
The residual mean square (MSR), weighted average 
of residual variance estimates (RES), and estimates 
of genetic parameters were used as criteria to choose 
the most adequate model to describe changes in ad-
ditive genetic, permanent environmental, and residual 
variances along the lactation curve. In addition, the 
degree of interdependence between model parameters 
(i.e., complexity) was also calculated and is given by 
the second term of the information-theoretic measure 
of complexity (Bozdogan, 2000). The RES and measure 
of complexity were calculated as follows:

	 RES
TS

NSel

f
l=

=å1 2
1
ˆ ,s 	

where ŝel
2  = residual variance; f = number of residual 

classes; NSl = number of weeks in the classes; and TS 
= total number of weeks (Jamrozik and Schaeffer, 
2002).

	 C C CModelo a c
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where p(K) is the rank of matrix K. Greater simplicity 
is reached when Ka and Kc tend toward an identity 
matrix, suggesting that the parameters are orthogonal 
and can be estimated with equal precision.

Standard Single-Trait Model

To assess the pattern of changes in variances along 
the lactation and to compare with results obtained 
with random regression models, the same data set was 
analyzed with a series of single-trait models. Thus, 9 
separate single-trait standard analyses were performed, 
considering milk yield from d 7 to 60, 30 to 90, 60 to 
120, 90 to 150, 120 to 180, 150 to 210, 180 to 240, 
210 to 270, and 240 to 300, respectively. The model 
included the fixed effects of contemporary group (herd-
year-recording month), number of milkings, and age 
of cow at calving as covariate (linear and quadratic 
effects). The additive genetic effect was modeled by fit-
ting a random animal effect.

RESULTS AND DISCUSSION

The number of records at each test week and the 
corresponding mean of milk yield are shown in Figure 
1. The peak period of milk production of buffaloes was 
observed around the 11th week, when animals pro-
duced an average of 7.30 kg of milk per test day. After 
this period, milk yield decreased with increasing days 
in milk. The number of records was smaller at either 
extreme of the lactation curve (Figure 1). The standard 
deviation of milk yield ranged from 2.25 kg (wk 2) to 
1.45 kg (wk 43).

The MSR, percentiles of RES, and measures of 
complexity for each model converged according to 
Heidelberger and Welch (1983) and Geweke (1992) 
criteria are shown in Table 2. The degree of complexity 
tended to increase with the number of parameters to 
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be estimated. Model LP67, which included the largest 
number of parameters to be estimated, had the lowest 
MSR and RES. However, the number of parameters 
was not the main factor that influenced the reduction 
in the residual variance. For example, low and similar 
estimates of MSR and RES were obtained for models 
LP36, LP46, LP56, LP65, and LP67, that included 
from 33 to 55 parameters.

Irrespective of the order of fit for permanent envi-
ronmental effect, genetic variance estimates remained 
almost unchanged (data not shown) when a third-order 
polynomial was fitted for the genetic effect. According 
to other studies (López-Romero et al., 2003; Roos et 
al., 2004; Assis et al., 2006), this result is biologically 
unlikely. In addition, these models were associated with 
high MSR and RES estimates. Models fitting polyno-
mials of order >3 (from 4 to 6) for the genetic effect led 
to more acceptable genetic variance estimates.

Genetic variance estimates obtained with LP65 
model were higher at the beginning of lactation when 
compared with a model containing the same number 

of parameters (LP56). Also, heritability estimates ob-
tained with LP65 model showed marked fluctuations 
along the lactation curve (data not shown). This finding 
suggests that the use of an order of fit for permanent 
environmental effect smaller than those applied for the 
additive genetic effect may not be adequate to model 
changes in (co)variances along the lactation trajectory. 
Similar results were also reported for dairy cattle and 
goats by López-Romero and Carabaño (2003), Assis et 
al. (2006), and Bignardi et al. (2009).

Variance Components and Heritability

The posterior distribution features of the (co)vari-
ances estimates between random regression coefficients 
for all models were similar. The deviation of the pos-
terior mean in relation to respective median (50% per-
centile) provides information regarding the symmetry 
of the marginal posterior distributions. In general, 
mean and median estimates for the additive genetic 
and permanent environmental random coefficients and 
the residual variance classes were similar.

Serial correlation provides information regarding the 
degree of association between samples in the Markov 
chain. In the present study, serial correlations were 
high, with the highest correlations being observed for 
the additive genetic random regression coefficients. This 
resulted in a smaller effective size of the sample for this 
effect when compared with permanent environmental 
effects. Similar results have been reported by López-
Romero et al. (2003). Another aspect is that the models 
including a large number of parameters presented dif-
ficulty to converge to the stationary distribution, re-
quiring a large number of samples and a longer burn-in 
period the first time the Markov chain was generated.
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Figure 1. Number of observations (*) and average daily milk yield 
(●) according to test week of first lactations of Murrah buffaloes.

Table 2. Fitted models and their respective number of estimated parameters (p), residual mean squared 
(MSR), percentiles of weighted average of residual variance estimates (RES), and measure of complexity 

Model1 p MSR

RES

Complexity2.5% 50% 97.5%

LP33 18 0.91 1.01 1.15 1.22 3.25
LP34 22 0.84 0.96 1.07 1.13 4.25
LP35 27 0.78 0.90 1.01 1.06 6.07
LP36 33 0.74 0.86 0.96 1.00 7.79
LP44 26 0.83 0.94 1.05 1.11 6.58
LP45 31 0.78 0.89 1.00 1.05 8.14
LP46 37 0.73 0.85 0.95 1.00 9.72
LP54 31 0.78 0.88 0.98 1.03 7.91
LP55 36 0.77 0.88 0.98 1.02 11.38
LP56 42 0.73 0.84 0.94 0.98 12.79
LP65 42 0.74 0.84 0.94 0.98 12.80
LP67 55 0.71 0.81 0.91 0.96 16.99

1LP(ij), where LP = Legendre polynomials; i and j indicate the order of fit for additive genetic and permanent 
environmental effects, respectively.



Models LP46, LP56, and LP67 differed little in the 
partition of phenotypic variance into genetic, perma-
nent environmental, and residual variance. The largest 
differences were observed at the beginning and end of 
lactation. Estimates obtained with models LP56 and 
LP67 were very similar to each other. Phenotypic vari-
ances obtained by the 3 models were very similar to 
those obtained with standard single-trait analyses, 
ranging from 2.44 to 5.47 kg2, and were higher at wk 
2 followed by a strong decrease and remaining almost 
unchanged after wk 6. A similar behavior was observed 
for permanent environmental variances which were 
higher than the genetic variance estimates, except at 
the end of the lactation curve. Genetic variances ob-
tained with random regression models showed the same 
trend as those estimated by a single-trait model (data 
not shown).

The magnitude of variance not explained by the 

model se
2( )  decreased with week of lactation, with re-

sidual variance estimates of 1.30, 1.23, 1.02, 0.88, and 
0.71 kg2. A similar trend was reported by Assis et al. 
(2006) for milking goats.

Whereas residual variance estimates decreased at 
the end of lactation, estimates of genetic variances in-
creased. Cows with high persistency of lactation and 
similar milk yields at the end of lactation tend to remain 
in the herd. These animals are probably influenced in 
a similar manner by the environment (e.g., feeding, cli-
mate, management) and most of the differences in milk 
yield observed can be attributed to genetic rather than 
environmental factors.

Figure 2 shows the posterior means of heritability 
(h2) and proportion of phenotypic variance correspond-
ing to permanent environmental variance (c2) estimated 
using the models LP46, LP56, and LP67. Changes in 
heritability estimates with week of lactation reflect the 
pattern described previously for variance component 
estimates and followed trends in genetic variance es-
timates. Differences in heritability estimates between 
models were detected at the beginning (0.33 and 0.44 
for LP56 and LP67, respectively) and the end of lacta-
tion (0.43 and 0.50 for LP56 and LP46, respectively), 
when heritabilities were high, except for those obtained 
with model LP46 at the beginning of lactation (0.19). 
Furthermore, a small difference in heritability estimates 
obtained with the 3 models was observed during the 
phase of highest milk production (wk 6 to 14), with 
model LP56 yielding higher estimates than LP46 and 
lower estimates than LP67. After the second week, heri-
tability declined until wk 6 (0.20), a period character-
ized by the onset of milk production peak (Figure 1). 
Heritability estimates increased between wk 6 and 12 
and then decreased again until wk 31 (0.21). Ignoring 

heritabilities for milk yield in the first and final weeks of 
lactation, the estimates ranged from 0.19 to 0.31. The 
highest estimates obtained by the 3 random regression 
models were between wk 9 and wk 19. Until the 28th 
week of lactation, the heritability estimates obtained 
with standard single-trait test-day models showed the 
same trend as the random regression model estimates.

As can be seen in Figure 2, the largest influence of 
the permanent environment effect was observed on wk 
6 of lactation (0.43) and between wk 21 and 37 (0.45 to 
0.48). These weeks were also characterized by a smaller 
genetic influence, indicating a strong sample correla-
tion between h2 and c2. Meyer (2005) observed a lower 
permanent environmental variance for models with a 
higher order of kc. This trend was not observed in the 
present study when kc was increased from sixth (LP46 
and LP56) to seventh order (LP67). This finding sug-
gests that an order of kc equal to 6 is sufficient to model 
the changes in permanent environmental variances 
across lactation without producing marked alterations 
in the genetic and residual variance estimates.

The largest differences between random regression 
models in terms of variance component estimates, heri-
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Figure 2. Posterior means of heritability (h2) and the proportion of 
phenotypic variance corresponding to permanent environmental vari-
ance (c2) for weekly test-day milk obtained with the LP46, LP56, and 
LP67 random regression models and by a standard single trait model 
(STM). LP(ij), where LP = Legendre polynomials and i and j indicate 
the order of fit for additive genetic and permanent environmental ef-
fects, respectively.



tabilities, and c2 were observed at the beginning and 
the end of the lactation. This finding can be explained 
by the small number of records available for analysis 
during these periods (Figure 1). The same finding was 
described by Meyer (2005) in a random regression 
analysis of growth traits in Angus. During the lactation 
peak (from wk 6 to 14), a period characterized by a 
large number of records, the models also showed differ-
ences in the estimates of sc

2  and sa
2 , which affected the 

heritability estimates (Figure 2). However, these differ-
ences were smaller than those observed at the beginning 
and end of lactation.

The difference between models is better illustrated 
in Figure 3, which shows the heritability estimates and 
their approximate confidence intervals for wk 6, 11, and 
29. In general, for wk 6 and 29, models LP46 and LP56 
presented posterior means of heritabilities that were 
close to and within the confidence interval observed in 
other models. In wk 11, a smaller confidence interval 
was observed for model LP56 than those obtained for 
LP46 model, suggesting higher reliability of the esti-
mates provided by model LP56 at wk 11.

Correlations

Negative genetic correlations between the initial and 
final weeks of lactation were obtained for the 3 random 
regression models. However, models LP56 and LP67 
yielded negative genetic correlations also between wk 2 
and mid-lactation (after wk 9). Negative genetic corre-
lations obtained with models LP56 and LP67 involving 
the second week of lactation might be attributed to 
the inability of high-order polynomials to model the 
extremes of the lactation curve. In addition, during 
this stage, the cow usually suffers from postcalving 
stress and energy deficits as reported by Bignardi et al. 
(2009) for dairy cattle. A similar trend has been also 
described in the literature (Brotherstone et al., 2000; 
López-Romero and Carabaño, 2003).

In general, except for the first week, estimates of ge-
netic, permanent environmental, and phenotypic corre-
lations decreased with increasing interval between test 
weeks. This behavior is illustrated in Figure 4, which 
shows the genetic and permanent environmental corre-
lations between milk yield at wk 11 (peak production) 
and the other weeks. Genetic correlations obtained by 
model LP46 were high until wk 25 and then decreased 
rapidly over subsequent weeks. In contrast, estimates 
obtained with models LP56 and LP67 after wk 15 be-
gan to decrease slowly. The genetic correlation between 
wk 11 and 37 was 0.56 for LP56, 0.48 for LP67, and 
0.43 for LP46, suggesting that selection for higher milk 
yields at the beginning of lactation may exert positive 
effects on milk yield during the final weeks (Olori et al., 
1999; Assis et al., 2006). With respect to permanent 
environmental correlations, differences were observed 
during the first 4 wk, with lower estimates obtained 
with model LP46. Similar permanent environmental 
correlations were obtained with the 3 models in the 
other weeks.

Eigenvalues and Eigenfunctions

The estimates of the first 2 eigenvalues of the genetic 
and permanent environmental covariance functions 
obtained with LP46, LP56, and LP67 models were 
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Figure 3. Posterior means of heritabilities (●) and approximate 
95% highest posterior density regions (bars) of the models with dif-
ferent orders of fit of polynomials for wk 6, 11, and 29 of lactation: 
solid and dashed lines indicate the posterior mean of heritabilities esti-
mated using models LP56 and LP46, respectively. LP(ij), where LP = 
Legendre polynomials and i and j indicate the order of fit for additive 
genetic and permanent environmental effects, respectively.



practically the same: the first 2 eigenvalues of the coef-
ficient matrix of the additive genetic covariance func-
tion corresponded to 88, 87, and 86% of total genetic 
variation, respectively, and the first 2 eigenvalues of 
the coefficient matrix of the permanent environmental 
covariance function accounted for approximately 89% 
of variation in each case.

The 2 main eigenfunctions for additive genetic ef-
fects obtained using models LP46, LP56, and LP67 are 
shown in Figure 5. The first eigenfunction obtained 
with model LP46 was positive and tended to oscillate 
along the trajectory of lactation. The first eigenfunc-
tions obtained with LP56 and LP67 models were only 
negative in the second week. This finding probably 
explains the negative genetic correlations observed be-
tween the second week and mid lactation. In general, 
the first eigenfunction increased over the first weeks of 
lactation and only decreased after the lactation peak, 
remaining practically constant in the subsequent weeks. 
The relatively constant values observed after the period 
of production peak indicate that milk yield is mainly 
controlled by genes with similar effects (Olori et al., 
1999). The positive first eigenfunction suggests that 
milk yield can change in the same direction in all weeks. 
In addition, this change is easily achieved because ap-
proximately 70% of the genetic variation is attributable 
to the first eigenfunction.

The second eigenvalue of the genetic covariance 
functions provided by models LP46, LP56, and LP67 
corresponded to 18, 18, and 17% of the sum of eigen-
values, respectively. For all 3 models, the corresponding 
eigenfunction was negative until mid-lactation (wk 26) 
and positive in the following weeks. This sign change 
suggests an association with a factor that exerts con-
trasting effects on milk yield at the beginning and the 
end of lactation. Selection based on such a factor (e.g., 
persistency of lactation) might be used to change the 
shape of the lactation curve (Olori et al., 1999). The 
other eigenvalues together were responsible for less 
than 15% of the total sum, suggesting a small potential 
for change in milk yield pattern along lactation when 
selection is based on the third, fourth, fifth, and sixth 
eigenfunctions, as they contribute little to total genetic 
variation.

Results obtained in this study clearly illustrate the 
effects of the random regression model chosen on the 
estimates of genetic parameters. According to Misztal 
et al. (2000), there are marked differences between es-
timates of genetic parameters obtained with different 
random regression models. These differences might be 
attributed to the small number of milk yield records 
or to the models and functions used to describe the 
random regression. Meyer (2005) suggested that the 
choice of the best model is a compromise between the 
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Figure 4. Posterior means of genetic and permanent environmental 
correlations between milk yield in wk 11 and wk 2 to 43. LP(ij), where 
LP = Legendre polynomials and i and j indicate the order of fit for 
additive genetic and permanent environmental effects, respectively.

Figure 5. Estimates of the first and second genetic eigenfunctions 
obtained using models LP46, LP56, and LP67. LP(ij), where LP = 
Legendre polynomials and i and j indicate the order of fit for additive 
genetic and permanent environmental effects, respectively.



complexity of the model, credibility of the results and 
fit (measured by the mean square error). In this re-
spect, models LP46, LP56, and LP67 produced similar 
estimates of the genetic parameters, with the largest 
differences being observed at the beginning and end 
of lactation and small differences being found in the 
weeks corresponding to peak of milk production. An 
order of kc = 7 did not change the variance estimates 
when compared with models that used kc = 6, thus 
not justifying the adoption of this model to describe 
changes in (co)variances along the lactation curve. In 
addition, models LP67 and LP56 resulted in a higher 
degree of interdependence between additive genetic 
and permanent environmental random regression coef-
ficients, with a consequent higher estimated complexity 
of the model as illustrated in Table 2.

The LP46 is a relatively parsimonious model; it re-
sulted in a smaller degree of interdependence between 
random regression coefficients and yielded genetic pa-
rameter estimates similar to LP67 and LP56 models.

CONCLUSIONS

The fitted random regression models detected genetic 
variability and the existence of positive genetic correla-
tions between test-day milk yields, which suggests that 
the selection of buffaloes that are genetically superior 
for milk yield on a given test-day may result in positive 
responses at any point of the lactation curve. A model 
with orders of 4 and 6 for genetic additive and perma-
nent environmental effects is recommended to describe 
changes in milk yield (co)variances along the lactation 
curve for this data set.
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