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Sleep spindles are considered as a marker of integrity for thalamo-cortical circuits. Recently, attention has
been given to internal frequency variation in sleep spindles. In this study, a procedure based on matching
pursuit with a Gabor-chirplet dictionary was applied in order to measure chirp rate in atoms representing
sleep spindles, also categorized into negative, positive or zero chirp types. The sample comprised 707 EEG
segments containing visual sleep spindles, labeled TP, obtained from nine healthy male volunteers (aged
20–34, average 24.6 y). Control datasets were 333 non-REM (NREM) sleep background segments and 287
REM sleep intervals, each with 16 s duration. Analyses were carried out on the C3-A2 EEG channel. In TP
and NREM groups, the proportion of non-null chirp types was non-random and total chirp distribution
was asymmetrical towards negative values, in contrast to REM. Median negative chirp rate in the TP
and NREM groups was significantly lower than in REM (−0.4 Hz/s vs −0.3 Hz/s, P < 0.05). Negative chirp
atoms outnumbered positives by 50% in TP, while in NREM and REM, they were, respectively, only 22%
ime series
atching pursuit

EG
leep spindles
pectral analysis

and 12% more prevalent. TP negative chirp atoms were significantly higher in amplitude compared to
positive or zero types. Considering individual subjects, 88.9% had a TP negative/positive chirp ratio above
1 (mean ± sd = 1.64 ± 0.65). We propose there is increasing evidence, corroborated by the present study,
favoring systematic measurement of sleep spindle chirp rate or internal frequency variation. Preferen-
tial occurrence of negatively chirping spindles is consistent with the hypothesis of electrophysiological

l mem

hirp

modulation of neocortica

. Introduction

The sleep EEG signal contains an enormous wealth of detail,
nd a lack of stationarity nearly as significant (Lopes da Silva,
005a). Conventionally, sleep EEG transients are described in terms
f their representation in the time × voltage domain. The best stud-
ed sleep EEG transient, the sleep spindle, is defined as waxing
nd waning wave trains with characteristic morphology, frequency
anging from 11 Hz to 16 Hz (most commonly, 12 Hz–14 Hz), dura-
ion equal to or greater than 0.5 s (in average, less than 2 s) and

aximal voltage in central EEG derivations (Rechtschaffen and
ales, 1968; Jankel and Niedermeyer, 1985; Iber et al., 2007).
pindles occur in hundreds to thousands within NREM sleep; “wax-
Please cite this article in press as: Schönwald SV, et al. Quan
doi:10.1016/j.jneumeth.2011.01.025

ng and waning” implies non-stationarity even within their own
hort time frame. Sleep spindles are reportedly modified in the
ontext of brain pathology; they are considered to be a marker
f integrity for thalamo-cortical circuits, and have recently been

∗ Corresponding author. Tel.: +55 51 9641 4740; fax: +55 51 3312 2725.
E-mail addresses: sschonwald@hcpa.ufrgs.br (S.V. Schönwald),

unther lew@yahoo.com.br (G.J.L. Gerhardt).
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ory consolidation.
© 2011 Elsevier B.V. All rights reserved.

incorporated into models of memory consolidation and amplify-
ing mechanisms (Born and Rasch, 2006). In model diagrams for the
sleep spindle origin (Destexhe et al., 1994; Destexhe and Sejnowski
TJ, 2009; Steriade, 2000), neurons from the thalamic reticulum (RE)
induce firing in thalamo-cortical (TC) neurons, generating spindle
oscillations that can be ultimately measured over the scalp. This
thalamo-cortical/thalamic reticulum (TC-RE) network rhythmicity
is related to excitatory and inhibitory mechanisms linked to local
changes in ion currents (Steriade, 2000).

Spindles detected over the scalp display a spectral “chirp” or
shear effect that can be measured in a train of discharges. In other
words, the firing sequence can accelerate, decelerate or maintain
a stable frequency over time (Dehgani et al., 2011). This effect is
possibly too subtle to be reliably discriminated visually. Recently,
however, these transients have been subjected to spectral decom-
position and quantitative analysis with a variety of techniques,
including representation on a time × frequency plane related to
tifying chirp in sleep spindles. J Neurosci Methods (2011),

voltage (Fig. 1). Fine frequency modulation over a short time
span becomes thus readily visible and has been verified for single
epidurally recorded frontal sleep spindles in rats (Sitnikova et al.,
2009). Spindle frequency modulation has been studied in simu-
lated signals, modeled, tested in a limited sample of 22 spindles

dx.doi.org/10.1016/j.jneumeth.2011.01.025
dx.doi.org/10.1016/j.jneumeth.2011.01.025
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:sschonwald@hcpa.ufrgs.br
mailto:gunther_lew@yahoo.com.br
dx.doi.org/10.1016/j.jneumeth.2011.01.025


ARTICLE ING Model

NSM-5887; No. of Pages 7

2 S.V. Schönwald et al. / Journal of Neurosc

Fig. 1. Example of EEG signal reconstruction showing internal sleep spindle fre-
quency modulation in the True Positives dataset, as represented by chirplet atoms.
Below, 16 s EEG window with three visually selected sleep spindles. Above, signal
spectral decomposition in terms of Gabor chirplet atoms in a Wigner plot. The pro-
cedure is exemplified for visual spindle 2. The visual spindle is positioned in the
center of a 16 s window and spectral decomposition is carried out; atoms fulfill-
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ng the selection criteria and appearing within a 1s-margin of the window center
re collected for analysis; the procedure is repeated for each visual spindle scored.
otice important contribution from slower frequencies. Only the most significant
toms are shown for clarity.

nd found to be different between dementia patients and elderly
ontrols (Ktonas et al., 2009). Because these oscillations reflect
halamo-cortical activity, their internal frequency variation may
ear relevant information in the context of neurophysiology as well
s brain pathology investigation. However, due to the intrinsic non-
tationarity of the EEG signal, even if a chirp effect can be verified
or sleep spindles, it could still be occurring at random. Fundamen-
al hypotheses to be tested would therefore be whether spindle
hirp distribution is (a) non-random and (b) distinguishable from
hat obtained assessing non-spindle EEG signals.

We hereby present for the first time the application of match-
ng pursuit (MP) with Gabor chirplet dictionary (set of functions)
or the systematic measurement of human sleep spindle chirp rate.
hirplet functions and transforms have been introduced in order
o deal with rapid changes of frequency that often characterize sig-
als in nature (Baraniuk et al., 1993; Gribonval, 2001; Mann and
aykin, 1995; Yin et al., 2002). The use of MP in sleep analysis is
ell known (Lopes da Silva, 2005b), and MP resolution is consid-

red suitable for sleep spindle description (Durka et al., 2001, 2002;
uupponen et al., 2007; Ktonas et al., 2009). Here the procedure
escribed in (Durka et al., 2001) was modified in order to include
chirplet function, using the ridge pursuit approach proposed by

Gribonval, 2001). Matching pursuit with chirplet atoms (with dif-
erent methodology) has been previously applied to the analysis of
isual evoked potentials in humans (Cui et al., 2004). In the present
tudy, chirp rate is quantified in MP atoms representing sleep spin-
les. It is shown that human sleep spindles contain a significant
roportion of high voltage, negatively chirping elements.

. Methods

.1. Matching pursuit procedure with Gabor function dictionary

Matching pursuit is not a transform, it is an adaptive approx-
mation of the signal. MP decomposes the signal by successive
pproximations into a linear expansion of waveforms that belong
o a redundant dictionary of functions (called atoms), that are the
ilations, translations and modulations of a single window function
Mallat and Zhang, 1993). In the MP approach, a signal S(t) is taken
nd subsequent adaptation steps are made writing S(t) in terms of
Please cite this article in press as: Schönwald SV, et al. Quan
doi:10.1016/j.jneumeth.2011.01.025

= {g�i
}

(t) �
M∑

i=1

aig�i
, (1)
 PRESS
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where � i represents a set of parameters that characterize the dic-
tionary functions, M is the number of steps and ai is an amplitude
term which may be incorporated to g without loss of generality. For
a signal of size N, D = {g�i

} is a redundant dictionary of i > N elements
which will include at least N linearly independent vectors.

As an adaptive filter, the MP procedure matches the signal with
a function g�i

at each step i, leaving a residue RS(t)i+1 to be matched
by the same procedure in step i + 1. Indeed, MP projects S(t) on a
vector g� and evaluates the residual RS(t)1:

S(t) = 〈S(t), g� 〉g� + RS(t)1. (2)

If one takes g� to be an orthogonal basis, one can write

||S(t)||2 = |〈S(t), g� 〉|2 + ||RS(t)1||2. (3)

In order to minimize ||RS(t)1||, g� is chosen such that | 〈 S(t),
g� 〉 | is maximal or at least suboptimal. The procedure is continued
iteratively replacing RS(t) for the original S(t) until some energy
threshold or number of iterations coefficient is reached. Generaliz-
ing the procedure:

RS(t)i = 〈RS(t)i, g� 〉g� + RS(t)i+1, (4)

for 0 < i < M where RS(t)0 ≡ S(t).
The original signal is thus decomposed into waveforms that can

be represented as atoms in a time–frequency plane (Wigner plane).
If a structure does not correlate well with any particular dictionary
element, decomposition will result into several elements and infor-
mation will be diluted. MP is described in detail elsewhere (Mallat
and Zhang, 1993; Mallat, 1999).

The program used in this study was obtained from http://eeg.pl
(Durka et al., 2001). The dictionary used for time–frequency anal-
ysis in this particular algorithm is built from Gabor functions
and adds a set of Dirac’s delta and Fourier functions in order
to deal with time and frequency well-localized structures. Gabor
wavelets (sine-modulated Gaussian functions) are chosen for EEG
microstructure description because they provide optimal joint
time–frequency localization with a small number of parameters
to be determined (as amplitude, time position, central frequency
and phase) (Durka and Blinowska, 1996; Durka et al., 2001).

2.2. Matching pursuit with Gabor chirplet dictionary

Chirplets are generalizations of wavelets related to each other
by two-dimensional affine coordinate transformations (transla-
tions, dilations, rotations and shears) in the time–frequency plane,
as opposed to wavelets, which are related to each other by one-
dimensional affine coordinate transformations (translations and
dilations) in the time domain only (Mann and Haykin, 1995).

In the Gaussian chirplet function

g� (t) = ˛e−�[ (t−t′)
s ]

2

sin

[
2�ω[(t − t′) + ˇ(t − t′)2]

N
+ �

]
, (5)

N is the size of the signal, the set � = {˛, t′, w, s, ˇ, �} represents
parameters of dictionary functions and ˛ is chosen such that |g� | = 1
(Mann and Haykin, 1995). Actually, Gabor functions as used in
(Durka et al., 2001) are a particular case of (5) where the chirping
(shear) parameter ˇ = 0.

A problem of working with functions like (5) is that they do
not form an orthonormal basis and are not even linearly inde-
pendent (Yin et al., 2002). Indeed, an orthonormal basis of chirp
atoms is presented in (Baraniuk et al., 1993), but those functions
tifying chirp in sleep spindles. J Neurosci Methods (2011),

may be “too rigid” for the treatment of some particular problems,
especially concerning signals of biological nature, due to parameter
dependency: ω ∝ 1/s and ˇ ∝ 1/s2 (Gribonval, 2001). Conversely, the
Gaussian chirplet has no such “rigidity” but is very redundant. As
redundancy significantly increases computational processing cost,

dx.doi.org/10.1016/j.jneumeth.2011.01.025
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ifferent approaches have been developed to deal with this issue
Yin et al., 2002; Cui et al., 2004; Talakoub et al., 2010). One way
o deal with the problem is to employ a procedure like the ridge
ursuit proposed by (Gribonval, 2001). When a scheme like MP is
pplied to signals of biological nature, the reconstruction will often
how dominance by a few strong terms (higher amplitude atoms),
hile the residue may be seen as noise (Yin et al., 2002). In the ridge

ursuit procedure, the best Gabor atom (without chirp, ˇ = 0) is ini-
ially found in the iteration; then it is explored whether an atom
ith a chirp parameter different from zero can better fit the signal

this procedure may represent a better signal description if local
requency variability is significant). If a chirp element (atom) ful-
lls the condition, this element is chosen, the residue is calculated
nd the procedure continues. If no chirp parameter results in a bet-
er fitting, zero chirp is chosen and the procedure continues to the
ext step. The ridge pursuit procedure is particularly conservative
ith respect to the ˇ factor. Considering a highly non-stationary

ignal, it is difficult to expect an absence of chirping, but if no chirp
reference occurs in the signal, MP with a procedure like ridge pur-
uit will expectedly yield a statistically equal proportion of positive
nd negative ˇ.

In this study, the MP source code as presented in http://eeg.pl
as modified in order to include a subroutine, whereby the two-

tep ridge pursuit procedure (Gribonval, 2001) was implemented
sing a set of functions like (5). Performance (sensitivity and
pecificity) of the modified code was tested for automatic spindle
etection against that of the original algorithm (Durka et al., 2001),
sing an approach identical to what was described in (Schönwald
t al., 2006), and found to be similar to the original algorithm perfor-
ance. The modified code is available from authors upon request.

.3. EEG sample

This study makes use of a sample of 6.2 h proportionally rep-
esentative of human sleep, obtained from nine healthy male
olunteers (aged 20–34, average 24.6 y). The sample was used in
revious works where it was described in better detail (Schönwald
t al., 2003, 2006). Briefly, all polysomnograms were performed in
n 18-channel analog NIHON-KOHDEN polygraph with 12 bit dig-
tal conversion (STELLATE RHYTHM V10.0), recorded with 128 Hz
esolution, with a 0.5 Hz high-pass filter provided by the manufac-
urer, 0.3 s time constant and −3 dB IIR32 digital filter conditions
pplied to the signal. Bipolar non-reformatable EEG leads included
3-A2, C4-A1, Fp1-T3, T3-O1, Fp2-T4 and T4-O2. Sleep was visu-
lly scored according to RK (Rechtschaffen and Kales, 1968). From
screen display of C3–A2 channel, two specialists scored all con-

ordant spindles, hereby called visual spindles (VS), using the RK68
pindle definition. Visual spindle duration (onset and offset points)
as taken from the numerical conversion (ASCII) of digital record-

ngs by the EEG viewer employed (RHYTHM V10.0). The sample
hus obtained contains 707 VS, being 513 from sleep stage 2 (S2)
nd 194 from sleep stages 3 (S3) and 4 (S4)(18 spindles visually
etected within REM sleep were not included in this analysis and
hose segments were disregarded). Visual Spindle prevalence (ratio
etween spindle time and sleep time) was 2.38%.

A set of 707 16 s windows was then obtained from the original
EG time series, with each visual spindle, regardless of its duration,
ocated at the window center. This dataset was subjected to signal
econstruction (see next section) and labeled true positives (TP).

Two control datasets were used in the study. The first com-
rises all S2, S3 and S4 sleep segments with 16 s duration or longer,
Please cite this article in press as: Schönwald SV, et al. Quan
doi:10.1016/j.jneumeth.2011.01.025

here no spindles were visually detected (NREM sleep background
egments, labeled NREM). There were 333 such segments in the
ample. The MP signal reconstruction is a priori expected to obtain
lements fulfilling automatic spindle detection criteria from these
egments (see next subsection for details). The second control
 PRESS
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dataset is comprised 287 16 s REM sleep intervals. These were
labeled REM. REM sleep has very broad spectral composition, with
no peaks expected in the sigma (11–16 Hz) frequency range.

2.4. Signal analysis procedure

All analyses were carried out on the C3-A2 EEG channel. Each
16 s EEG window was subjected to MP with Gabor chirplet dic-
tionary stopping at 96 iterations. A dictionary size of 106 Gabor
chirplet atoms was used. Each atom obtained with MP has a
central point both in time and frequency and limits established
by a half-width (HW) corresponding to ±� on a gaussian curve.
Atoms with HW duration between 0.5 s and 2 s, central frequency
between 11 Hz and 16 Hz and chirp rate from −2 Hz/s to 2 Hz/s
were filtered and collected in the procedure. In the TP dataset, only
atoms appearing within a 1s-margin from the window center were
included in the analysis (Fig. 1). Chirp rate threshold was arbitrated
in ±2 Hz/s for two reasons. Firstly, frequency difference between
slow and fast scalp spindles is in average below 2 Hz (Jankel and
Niedermeyer, 1985; Werth et al., 1997; Anderer et al., 2001; De
Gennaro and Ferrara, 2003; Huupponen et al., 2008). Secondly,
short elements with chirp rate beyond this range were rare in the
dataset (<1%) and associated with signal inhomogeneity.

Due to the exploratory nature of the study, no voltage ampli-
tude threshold (AT parameter in MP) was applied. This is justified
by the fact that there is still debate over an optimal voltage thresh-
old for automatic spindle detection (Huupponen et al., 2000; Bodisz
et al., 2009; Ray et al., 2010). Therefore, the NREM background atom
dataset is assumed to represent a mixture of activities in the sigma
frequency range, including elements that might correspond to false
positive spindle detections when one considers the visual criterion
as the gold standard. It should also be born in mind that AT val-
ues express a ratio, so that correspondence to signal voltage is not
straightforward.

2.5. Additional statistical analysis

After signal reconstruction, data (chirp rate, atom duration,
amplitude and central frequency variables) were inspected and
found to have non-normal distributions (D’Agostino & Pearson
omnibus normality test). Descriptive values are given as median
(interquartile range). The Kruskal–Wallis analysis of variance test
followed by Dunn’s post-hoc pairwise comparisons was used for
group comparisons. Spearmann’s rank correlation was used to
determine the relationship between atom chirp rate and duration,
amplitude and central frequency variation. Elements (atoms) were
also categorized into negative, positive and zero (Null) chirp types.
A binomial test was used to verify probability of random chirp
category distribution (negative or positive) within each group.
Prevalence of different chirp types in TP, NREM and REM groups was
compared by means of the Chi-square test for categorical variables.
Statistical significance was assumed for two-tailed p-value < 0.05.
Analyses were carried out with SPSS V.17 for Windows (SPSS Inc.,
Chicago, IL, USA) and GraphPad Prism V5.01 (San Diego, CA, USA)
software packages.

3. Results

A total of 984 elements were obtained for TP, 813 for NREM
and 692 for REM groups. Prevalence of negative, positive and zero
chirp types was significantly different among groups (Fig. 2A) (Pear-
tifying chirp in sleep spindles. J Neurosci Methods (2011),

son Chi-square = 19,547; df 4; p = 0.001). The 0 Hz/s modal peak
was significantly lower in TP (17.1%) and NREM (18.0%) groups in
comparison to REM (23.4%) group (Pearson Chi-square = 11,611; df
2; p = 0.003). Considering only negative and positive chirp types,
probability of random chirp categorization was significantly low

dx.doi.org/10.1016/j.jneumeth.2011.01.025
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Fig. 2. (A) Proportions of negative, zero and positive chirp categories in the three
groups studied showing significantly higher proportion of negatively chirping ele-
ments in the TP group. Significant Pearson Chi-square values are marked as follows:
*p < 0.05, **p < 0.01, ***p < 0.001. B) Total chirp rate distribution in the three groups
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Fig. 3. Negative and positive chirp rate distribution in the three groups stud-

nary was successfully applied to the detection and measurement

T
C

V

tudied. Chirp rate distribution was asymmetrical towards more negative values
n the TP and NREM groups, but not in REM. TP = true positives, NREM = NREM
ackground, REM = REM sleep, −=negative, Z = zero, +=positive.

n TP (P < 0.001) and NREM (p = 0.011) groups, but not in REM
p = 0.208). There was a significantly higher proportion of negative
hirp elements in the TP sample (60.2%) in comparison to the NREM
55.0%) and REM (52.8%) groups (Pearson Chi-square = 7973; df 2;
= 0.0019). In other words, negative chirp atoms outnumbered pos-

tives by 50% in TP, while in NREM and REM, they were, respectively,
nly 22% and 12% more prevalent. Considering individual subjects,
P negative/positive chirp ratio ranged between 0.8 and 3 (mean
atio = 1.64; sd = 0.65), and eight of nine subjects (88.9%) had TP
egative/positive chirp ratio above 1.

Chirp rate distribution (Fig. 2B), as well as conventional sleep
ransient descriptors (voltage amplitude, duration and central fre-
uency) are shown in Table 1 and differed among TP, NREM and
EM groups. Median negative chirp rate in the TP group, as well as

n the NREM group, was significantly lower than in the REM group,
hile median positive chirp rate was similar for the three studied
Please cite this article in press as: Schönwald SV, et al. Quan
doi:10.1016/j.jneumeth.2011.01.025

roups, with a trend towards higher values in REM. Chirp rate dis-
ribution was thus asymmetrical towards more negative values in
he TP and NREM groups, but not in REM (see also Fig. 3). Com-
ared to TP elements, NREM elements were lower in amplitude

able 1
hirp rate, amplitude, duration and central frequency distribution in TP, NREM and REM.

TP NREM

Chirp rate (Hz/s)
TotalA −0.2 (0.8)c, −0.1 (0.8)
Negative −0.4 (0.6)a′ −0.4 (0.7)a

Positive 0.3 (0.6) 0.3 (0.5)
Amplitude (�V2) 87.58 (70.13)c,c′ 60.09 (39.89)c

Duration (s) 1.09 (0.68)b′ 1.04 (0.63)b

Frequency (Hz) 13.3 (1.7)c 12.8 (1.7)c

alues expressed as median (interquartile range).
A Total = (neg + pos) chirp rate; significant Kruskal–Wallis test with Dunn’s post-hoc pa
a p < 0.05 for contiguous groups.
b p < 0.01 for contiguous groups.
c p < 0.001 for contiguous groups

a′
p < 0.05 in comparisons between the first and the last group.

b′
p < 0.01 in comparisons between the first and the last group.

c′
p < 0.001 in comparisons between the first and the last group.
ied. Median negative chirp rate in the TP and NREM groups was significantly
lower than in REM (−0.4 Hz/s vs −0.3 Hz/s). *p < 0.05 in Kruskal–Wallis test with
Dunn’s post-hoc pairwise comparisons. TP = true positives, NREM = NREM back-
ground, REM = REM sleep. Box plot horizontal lines denote extreme values.

and slower in frequency, with a statistically non-significant trend
towards shorter duration. In contrast, REM elements were lowest
in amplitude, intermediate in frequency with the widest variation,
and longest in duration (see also Fig. 4).

Fig. 4 shows atom amplitude, duration and central frequency
variation according to chirp category (negative, positive or zero)
within each sample. Negative chirp atoms were significantly higher
in amplitude compared to positive or zero chirps in the TP sam-
ple (H = 35.9; df 2; p < 0.0001). Similar tendency was found within
the NREM sample, with negative and positive elements signifi-
cantly higher in amplitude compared to Zero chirps (H = 28.34; df 2;
p < 0.0001). Correlation between TP negative chirp rate and voltage
was weak (rs = −0.1689; p < 0.001). No significant category effects
were found for amplitude variation within the REM sample, nor
concerning duration or central frequency distribution in the three
groups studied. Chirp rate was moderately correlated with atom
duration in all groups studied (rs values between 0.409 and 0.503
for negatively chirping atoms, and between −0.477 and −0.555 for
positively chirping atoms; all p values < 0.001).

4. Discussion

In this study, matching pursuit with a Gabor chirplet dictio-
tifying chirp in sleep spindles. J Neurosci Methods (2011),

of spectral chirps in human sleep spindles. Chirp rate distribution
was non-random; the proportion of negative, positive and zero
chirp atoms significantly differed from that obtained for control
datasets of similar frequency range. A significantly higher propor-

REM H df p-Value

−0.1 (0.7) 14.28 2 0.0008
−0.3 (0.6)a 8.872 2 0.0118
0.4 (0.7) 4.387 2 0.1115
35.80 (17.74) 922.2 2 <0.0001
1.14 (0.74) 12.3 2 0.0021
13.1 (2.7) 20.38 2 <0.0001

irwise comparisons marked as follows:

dx.doi.org/10.1016/j.jneumeth.2011.01.025
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ig. 4. Amplitude, duration and central frequency variation according to MP wit
P negative chirp atoms were significantly higher in amplitude compared to pos
omparisons. TP = true positives, NREM = NREM background, REM = REM sleep. Box

ion of negatively chirping atoms was obtained within the sleep
pindle sample. Indeed, prevalence of negative over positive chirp
toms was 50% higher in TP, compared to 22% in NREM and 12%
n REM. Overall, characteristics of spindle chirp rate distribution
howed some similarities to those obtained for NREM background
lements, while being significantly different from those obtained
or REM sleep EEG signals. This is not unexpected, considering that
REM background EEG contains some degree of information sim-

lar to that of visually detected sleep spindles, which accounts for
he presence of so-called false positives in automatic spindle detec-
ion; in contrast, mechanisms responsible for spindle generation
ppear to be strongly inhibited during REM sleep (Steriade, 2005).
he main distinctions between True Positive and NREM background
eatures in this sample were (a) higher central frequency, (b) a trend
owards longer duration and (c) higher voltage, especially for nega-
ively chirping atoms. It thus appears that what humans recognize
s true sleep spindles contains a significant proportion of high volt-
ge, negatively chirping elements (spindle oscillations which are
aster at their beginning and slower towards their end).

These results are in line with recent findings indicating that
or scalp-detected sleep spindles, the most common temporospa-
ial frequency evolution is a decline in high frequency power and
ncrease in low frequency power from early to late in a single
pindle, in association with power shift from more posterior to
ore anterior regions (Dehgani et al., 2011). In that study, spec-

ral power from visually detected spindles was calculated as the
verage 10–16 Hz squared Morlet transform power; spindles were
ivided into early and late parts, and power at 12 Hz and 14 Hz was
rbitrated to characterize low and high frequency energy. To the
est of our knowledge, the present study is the first reporting a
ystematic analysis of a putatively individual sleep spindle chirp
ate. Sleep spindles have been formerly reported to lack chirps
Schiff et al., 2000). However, in that study, spectral chirps with
very distinctive pattern were recognized in brain signals during

ocal epileptic seizures, consisting of multilayered, rapid frequency
eclines often spanning 10 Hz and 10–15 s windows (Schiff et al.,
000; Molaee-Ardekani et al., 2010). Human sleep spindles are
uch shorter in duration, and expressed over a narrower frequency

and, so here a more subtle chirp effect is being considered.
Preferential occurrence of negatively chirping spindles draws

ttention to mechanisms initiating and terminating the spindle
equence and may have several implications. In the first place,
esults from current theoretical and computational models for
Please cite this article in press as: Schönwald SV, et al. Quan
doi:10.1016/j.jneumeth.2011.01.025

leep spindle generation closely approximate data obtained exper-
mentally, except for assuming these transients to oscillate with
table internal frequency (Destexhe et al., 1994; Destexhe and
ejnowski TJ, 2009; Steriade, 2000). Possibly, the inclusion of an
nternal frequency variation factor would further approximate the
or chirp atom category (negative, positive or zero) in the three groups studied.
r zero types. ***p < 0.0001 in Kruskal–Wallis test with Dunn’s post-hoc pairwise

orizontal lines denote extreme values.

output from these models to experimental data. Secondly, the
inclusion of a probability term relative to the differential preva-
lence of negative, positive and non-chirping elements might help
improve automatic spindle detection algorithms. The expected
benefit from such an approach, however, might be currently
unworthy of the computational cost involved. More interestingly,
the chirping effect may be related to neurophysiological processes
modulating thalamic reticular sleep spindling in the context of
memory consolidation. Declarative memory consolidation during
sleep has been linked to repetitive reactivation of newly-encoded
information, in connection with sharp wave-ripple (ultra-fast)
activity in the hippocampus (Buzsáki, 1998). Conceptually, slow
oscillations originated in neocortical networks help synchronize
hippocampal memory reactivation with the occurrence of sleep
spindles, ultimately leading to selective long-term plastic changes
in neocortical synapses (preferentially those that were used during
encoding) (Born and Rasch, 2006). In a recent study, relationship
between spindle activity and procedural memory consolidation
was investigated in a group of subjects trained on a motor-skill
task using their left hand (Nishida and Walker, 2007). Significant
correlations between memory improvement and spindle density
were detected when spindle activity at the central scalp position
on the non-learning (left) hemisphere was subtracted from that
obtained from the learning (right) hemisphere, an effect assumed
to represent a homeostatic difference following learning (Nishida
and Walker, 2007). As depicted in their Fig. 4, while the averaged
12–16 Hz spectral power with 1-s duration corresponding to sleep
spindles over the non-learning (left) and learning (right) central
scalp positions maintained a stable frequency over time, the aver-
aged spectral power of the difference between those two locations
showed a deceleration (negative chirp) towards the second half
(end) of the period. It is thus possible to hypothesize that negatively
chirping spindles occur preferentially in association with specific
memory consolidation processes.

The present study was limited to information available from
EEG derivation C3-A2, which is assumed to represent a mixture
of more posterior faster, and more anterior slower sleep spin-
dles (Jobert et al., 1992; Broughton and Hasan, 1995; Zeitlhofer
et al., 1997; Huupponen et al., 2008). Therefore, ascertaining to
what extent the chirp effect represents true frequency modula-
tion within single sleep spindles, or sleep spindle superimposition
effects, is beyond the scope of the study. However, clear spec-
tral chirps have been previously demonstrated and qualitatively
tifying chirp in sleep spindles. J Neurosci Methods (2011),

described for single epidurally recorded frontal sleep spindles in
rats (Sitnikova et al., 2009). Moreover, the absolute median chirp
rate obtained here (0.3–0.4 Hz/s) lies well below the difference
expected from the superimposition of fast and slow spindles (with
a frequency difference around 1–2 Hz), considering a sleep spin-

dx.doi.org/10.1016/j.jneumeth.2011.01.025
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le duration between 0.5 Hz and 2 Hz. There is evidence from
agnetoencephalography, functional brain imaging and electro-

hysiological depth studies (Werth et al., 1997; Anderer et al.,
001; Schabus et al., 2007; Dehgani et al., 2011) indicating sleep
pindle temporospatial frequency variation may result from acti-
ation of differential intracranial sources, with faster, more parietal
pindles often preceding and being partially superimposed with
lower frontal spindles (Werth et al., 1997; Zygierewicz et al.,
999; Dehgani et al., 2011). A detailed study of the influence
f scalp topography over spindle frequency also showed diffuse
central + frontal) spindles to have similar frequency in central
nd anterior positions, which was intermediate between that of
ure central (faster) and frontal (slower) spindles (Huupponen
t al., 2008). Sleep spindles are known to originate in thalamic TC-
E networks before being distributed over TC projections. Visual

nspection of figures showing spindle recordings obtained from
ifferent preparations – for instance, in vivo depth intracellular
ecordings from anesthetized cats (Steriade, 2000), or in vitro slice
reparations obtained from ferrets (von Krosigk et al., 1993) – sug-
ests some frequency modulation may already be present at the
halamic RE level, where spindle-generating rhythmic spike bursts
re superimposed on a background of slowly changing polarization.
ntra-spindle frequency has been directly attributed to the dura-
ions of the hyperpolarizations in thalamocortical neurons, with
onger hyperpolarizations resulting in lower frequencies (Steriade,
993).

There are several limitations to this study, including the small
umber of subjects, which does not allow differential sleep stage,
leep time or clock time analysis. The use of MP for sleep spindle
ignal reconstruction is already known. The novelty here is to use
function dictionary suitable for linear spectral chirp description,

n the context of sleep spindle characterization. This dictionary is
ot unique, neither is the tool expected to be optimal; it should
e noticed that Matching Pursuit captures the general behavior
f the signal, being robust and reliable at the statistical level. An
tom fitting the required criteria is not conceptually equivalent to
he spindle. In this study, 707 visual spindles were reconstructed
nto 984 atoms, and atom duration was inversely correlated with
hirp rate, despite wide variation in Zero chirp atom duration. In
ther words, a proportion of spindles was decomposed into rela-
ively shorter atoms with higher chirp rates. This possibly implies a
egree of non-linear, rather than linear chirp effect, which can not
e verified here due to the relatively low (128 Hz) sampling rate.
he problem of spindle frequency modulation has been recently
reated in (Ktonas et al., 2009) using an approach focused on AM/FM
ignal modelling, thereby assuming non-linear frequency variation.
n that study, a function with amplitude and frequency modulation

as defined, and four different methods, including MP, were used
o investigate six model fitting parameters in simulated signals,
s well as in a limited number of spindles obtained from demen-
ia patients and older controls (11 spindles in each sample) with

sampling rate of 512 Hz. Particularly MP as used in that work
onsidered sine functions as mother waveforms; MP was applied
ithout any chirp function and frequency modulation was obtained
posteriori. Differences between patients and controls were found

n the frequency modulation parameters, suggesting this variable
o bear promising information in the clinical context. When observ-
ng oscillation models for TC-RE or other brain structures, the tools
mployed to compare measures should be consistent with the type
f information that is expected to emerge from those models.

In conclusion, it was possible to systematically quantify internal
Please cite this article in press as: Schönwald SV, et al. Quan
doi:10.1016/j.jneumeth.2011.01.025

requency variation in human sleep spindles using Gabor chirplet-
P signal reconstruction. It was shown that sleep spindles contain
significant proportion of high voltage, negatively chirping ele-
ents. We suggest there is increasing evidence, including that from

he present study, favoring systematic measurement of one more
 PRESS
ience Methods xxx (2011) xxx–xxx

spindle variable, its chirp rate or internal frequency variation. Pref-
erential occurrence of negatively chirping spindles is consistent
with the hypothesis of electrophysiological modulation of neocor-
tical memory consolidation.
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