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Abstract – Weakly nonstationary processes appear in many challenging problems related to the
physics of complex systems. An interesting question is how to quantify the rate of convergence
to Gaussian behavior of rescaled heteroscedastic time series with stationary first moments but
nonstationary multifractal long-range correlated second moments. Here we use the approach
which uses a recently proposed extension of the Lévy sections theorem. We analyze statistical
and multifractal properties of heteroscedastic time series and find that the Lévy sections approach
provides a faster convergence to Gaussian behavior relative to the convergence of traditional
partial sums of variables. We also observe that the rescaled signals retain multifractal properties
even after reaching what appears to be the stable Gaussian regime.

Copyright c© EPLA, 2011

Introduction. – There are many open problems
related to the dynamics of complex systems, which is a
topic of intense research [1,2]. Fluctuation phenomena
in such systems often do not follow Gaussian, Poisson
or similar statistics, e.g., the dynamics of financial
markets [3–18]. Some open questions: i) the origin of fat-
tailed distributions (see [11] and references therein), ii) the
multifractal properties of heteroscedastic signals [19] and
iii) non-convergence or ultra-slow convergence to the
Gaussian regime [19,20]. The latter led to the idea of
Lévy flights by Mandelbrot and later to the idea of
truncated Lévy flights [21] by Mantegna and Stanley.
Lévy flights are named after Paul Lévy. A seminal result
of [22] which is not well known is his theorem on Lévy
sections, which is the main topic of this article. Our
general goal here is to gain a broader understanding of
nonstationary fluctuations seen in financial time series
and other complex phenomena, such as music [19]. Our
specific goal is to apply the Lévy sections theorem (LST)
to time series [20,23] in order to study the approach to
the Gaussian regime. The central-limit theorem (CLT)

(a)E-mail: cesarmnfis@gmail.com

states that the distribution of the sums of N weakly
correlated variables converge to a Gaussian distribution
for large N . Remarkably, the LST guarantees convergence
to the Gaussian regime even for highly correlated random
variables. But at what price? We report results below
suggesting that different rates of convergence of the
central “bell”-shaped part of the Gaussian and the “tails”
lead to residual multifractal scaling.
We assume that the Gaussian regime is reached when

the first four statistical moments reach the expected values
for Gaussians. We analyze the statistical and multifractal
properties of heteroscedastic time series obtained along
the convergence process in the usual perspective of the
classical CLT and also using the extended version of the
LST.
The structure of the paper is as follows: the second

section presents the definition and data sets, the third
section presents the results and discussions, and the
last section concludes.

Definition and data sets. – Let us consider a
chain of weak-correlated variables with finite variance
{x1, x2, . . . , xN}. The classical CLT ensures that the
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distribution of the variables sn, where its j-th term is
defined as the partial sum

∑n
i=1 xn(j−1)+i, converges

to a Gaussian as n goes to infinity. From now on the
partial sums

∑n
i=1 xn(j−1)+i will be referred to as the

CLT approach. For the LST approach we first present
some definitions. Given an integer η we define the chain
{x′1, x

′

2, . . . , x
′

N−2η} with x
′

k = xk+η. We also define the

local variance m2ℓ,n as

m2ℓ,n =
1

2η+1

2η+1
∑

i=1

x2ℓ+n−1+i−

(

1

2η+1

2η+1
∑

i=1

xℓ+n−1+i

)2

,

(1)

where ℓ+n ranges between 1 and N − 2η. Now we define
λℓ,n as the partial sum

λℓ,n =

n
∑

i=1

m2ℓ,i, (2)

where mℓ,i is the local variance defined in eq. (1). We
consider a positive real number t such that the condition

λℓ,n−1 � t < λℓ,n (3)

is satisfied. We say that the sum x′ℓ+1+x
′

ℓ+2+ · · ·+x
′

ℓ+n

belongs to the section t, and condition (3) is called the
section condition. For a given value of t, one can obtain a
new chain s1t , s

2
t , . . . from the original one, with the j-th

term given by

sjt =

nj
∑

i=1

x′ℓ+i, (4)

where the index ℓ is
∑j−1
i=1 ni. Here ni represents the

number of terms used to obtain the ith element on the
section chain. In order to clarify the process, the index ℓ
in eqs. (1) and (4) ensures that the terms of the section
series are obtained from nonoverlapping summations of
terms taken from the original chain. It was done in order
to avoid a second integration process such as the one used
in any standard analysis of the fractal properties of signals.
The LST ensures that the distribution of the variable st
converges to a Gaussian as t goes to infinity [20].
Our study is based on time series obtained from the

above defined CLT and LST approaches. Our databases
comprise the DEM/USD (Deutsch Mark / US Dollar) tick-
by-tick exchange rates taken from Reuters EFX (provided
by Olsen & Associates) during a period of 1 year from
October 1st, 1992 to September 30th, 1993. This period
corresponds to a total of 1472240 data points, or one data
point every 20 s, approximately. These samplings assure us
a good quality in our analysis since we are not considering
overlapping of variables in both aggregation processes.

Results and discussions. – Figure 1 (fig. 2) shows the
kurtosis (skewness) behavior subtracted by the value of
Gaussian kurtosis (skewness), as a function of time aggre-
gation. In the CLT approach, the time units τ refers to
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Fig. 1: Kurtosis convergence curves as a function of time to
series provided by CLT (dashed line) and LST (continuous
line). The analysis can be divided into regimes 1 (range 1)
and 2 (range 2), with the first regime ending at approximately
τ = 150. This value was chosen such that the rescaled signals in
regime 2 have approximately stationary kurtosis values in both
CLT and LST approaches. Note that the LST provides faster
convergence of the kurtosis in comparison with that of CLT.
For comparison, the “procedure” of convergence was analyzed
to a white-noise signal for both: CLT (dotted line) and LST
(times symbols).
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Fig. 2: Skewness convergence curves as function of time to series
provided by CLT (dashed line) and LST (continuous line). Note
that even for range 2 the rescaled signals have no stationary
skewness in both CLT and LST approaches. For comparison,
the “procedure” of convergence was analyzed to a white-noise
signal for both: CLT (dotted line) and LST ( times symbols).

the number of aggregated variables. In the LST approach
for a given value t, the time τt is obtained by divi-
sion of the variance of section series and the variance of
the original time series (τt = σ

2
St
/σ2SN ) (see ref. [20] for
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Fig. 3: Time section behavior as a function of section t defined
in eq. (3). Note that τt is not a monotonically increasing
function of t. The inset shows the mean number of terms used in
the composition of rescaled signal (section series) provided by
section t as a function of t. The vertical bars represent standard
deviation of the mean. Note that differently from CLT, where
N is a linear function of time with zero dispersion, in LST the
〈Nt〉 has high dispersion. The large dispersion of N around
its mean value is directed related to the dynamics of section
time τt and it is probably responsible for the LST approach
being more effective in filtering the effects of correlations and
broadening the rescaled pdfs of the aggregated data.

further details). The analysis can be divided into two
regimes (ranges 1 and 2), the first one ending at approxi-
mately τ = 150, as shown in fig. 1. This value was chosen
such that the rescaled signals in regime 2 have approxi-
mately stationary kurtosis values in both CLT and LST
approaches. The analysis started with the initial section
t= 10−13 with increments Δt= 2.5 · 10−7, which are suffi-
ciently small to guarantee a “minimal” smooth variation
of the kurtosis.
Within the LST approach a faster convergence of the

kurtosis to zero is observed (when compared to the CLT
approach). It fluctuates around zero while in the CLT
approach there is a fluctuation around 5 (indicating that
the Gaussian regime was not achieved). For comparison,
the same analysis was done for a white-noise (WN) signal.
As expected for IID variables, the kurtosis remains zero
with both CLT and LST approaches.
An important observation concerns the section time
τ , which does not increase monotonically as a function
of t, as shown in fig. 3. One possible interpretation
for this behavior is given within the broader context
of complex evolutionary systems, where mutations can
occur in systems promoting enlargement or contraction
in the distributions [1]. The fluctuations on frequency
distributions of rescaled signals (by the LST approach)
are possibly related to the fluctuation of the number of
terms of the original chain used to construct each section t.
The inset shows the number of terms (on average) of
the original chain used to construct the section series
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Fig. 4: Hürst exponent behavior as function of the q-th moment
distribution for (a) series obtained in range 1 and (b) series
obtained in range 2 (see figs. 1 and 2). The open-circle symbols
curve and the open-square symbols curve were obtained from
traditional CLT and LST, respectively. We can observe that in
the presence of correlations the generalized Hürst exponent is
multifractal and also depends nonlinearly on q. For comparison,
the generalized Hürst exponent was calculated for the WN
signal (times symbols), observe its monofractal behavior.

as a function of t. Note that the dispersion around
the mean value is large indicating the persistence of
heteroscedasticity in rescaled signals.
In the usual aggregation process, done accordingly to

the CLT approach, the mean number of terms in a
given partial sum is a linear function of time, with null
dispersion.
Figures 4(a) and (b) show the average behavior of the

generalized Hürst exponent as function of the q-th moment
for ranges 1 and 2, respectively.
In the first range, the value for 〈h〉 was obtained from a

total of 150 series (300 series) for the CLT (LST) case. For
the second range this value was obtained from 600 series
(1050 series). Note that the size of each range defines the
amount of signals used in the calculation of the value of 〈h〉
for the CLT case (discussion above). On the other hand,
the amount of signals used in the LST case to obtain 〈h〉
depends on the increment Δt used.
We can observe that in the presence of correlations

the generalized Hürst exponent is multifractal and also
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Fig. 5: Multifractal spectra f(α) of series provided by CLT
(open-circle symbols) and LST (open-square symbols) for:
(a) range 1 and (b) range 2. For comparison, we calculated
the multifractal spectrum for the WN signal (times symbols).
Note that the multifractal spectrum f(α) of WN becomes very
narrow and centered at α= 1/2. On the other hand, although
a stable regime was reaching (range 2), the monofractality is
not guaranteed neither to CLT nor to LST.

depends nonlinearly on q. The lack of correlations does
not eliminate multifractality, but eliminates its nonlinear
dependency on q. Although the previous observations are
valid in both CLT and LST approaches, in the last case
they are more evident. The first case confirms the well-
known influence of correlations as a possible mechanism
responsible for multifractal properties, but the second case
indicates that the correlations may act as a secondary
cause of multifractality, since even in its absence the
signals retain multifractality.
Possible reasons for the presence of multifractality are:

i) long-range correlations and ii) broadening of the pdf
(see ref. [24]). We performed a similar analysis as the one
performed in fig. 4 using shuffled data (not shown). The
multifractal properties remain unaltered. Shuffled data
presents no temporal correlation and the same pdf of the
original data. Thus the residual multifractality observed
is probably due to broadening of the rescaled pdf data.

Figures 5(a) and (b) show multifractal spectra obtained
from the average generalized Hürst exponents for ranges
1 and 2, respectively. Comparing the width between a
spectrum of range 1 with its correspondent of range 2,
we can reinforce the reduction of multifractality, but not
its complete elimination even with the elimination of
correlation.

Conclusions. – In summary, we apply the traditional
multifractal detrended fluctuations analysis to the non-
overlapping series provided by CLT and LST under differ-
ent conditions based on their kurtosis behavior. We show
that although the LST provides faster convergence of the
kurtosis in comparison to CLT, some residual multifrac-
tality remains in the rescaled signals. The residual multi-
fractality is probably due to a broadening in the rescaled
pdf signals. Although the LST approach provides a faster
convergence to the Gaussian regime, monofractality is not
guaranteed. Thus the residual multifractality could be
responsible for the ultra-slow convergence to the Gaussian
regime.
We have shown that the LST approach leads to much

faster convergence to the Gaussian regime than with the
usual CLT aggregations or summations. The LST does
not depend on finite variances or statistical indepen-
dence, as does the CLT. However, our results reported
here show that, even after the kurtosis stabilizes to its
Gaussian value, there is residual multifractality. A time
series with independently and identically Gaussian distrib-
uted random variables cannot have multifractality: Indeed
they are monofractal with H = 1/2. So the residual multi-
fractality indicates that moments higher than those of the
kurtosis retain their non-Gaussian aspects. We interpret
this residual multifractality as evidence that the higher
moments and lower moments converge to their Gaussian
values independently of each other. From a practical point
of view our results suggest that the fat tails found in the
dynamics of financial markets and other complex systems
cannot be completely “Gaussianized” on the cheap, even
with the LST approach.
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