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Abstract We develop a Ribaucour transformation for the class of conformally flat
hypersurfaces f: M> — @;t (c) with three distinct principal curvatures of a pseudo-
Riemannian space form of dimension 4, constant curvature ¢ and index s € {0, 1}, as
well as for the class of hypersurfaces f: M> — @‘S‘(c) with three distinct principal
curvatures for which there exists another isometric immersion f ‘M3 > Qg (¢) with
¢ # c. It gives a process to produce a family of new elements of those classes starting
from a given one and a solution of a linear system of PDE’s. This enables us to construct
explicit new examples of hypersurfaces in both classes.

Keywords Conformally flet hypersurfaces - Hypersurfaces of two space forms -
Ribaucour transformation

1 Introduction

The study of conformally flat hypersurfaces f: M" — R"*! of dimension n of
Euclidean space is a classical topic in differential geometry initiated by Cartan (1917),
who proved that they must have a principal curvature of multiplicity at least n — 1
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if n > 4. In other words, conformally flat Euclidean hypersurfaces of dimension
n > 4 are generically envelopes of one-parameter families of hyperspheres. Cartan
also observed that this is no longer true for n = 3, that is, that there exist conformally
flat hypersurfaces f: M3 — R* with three distinct principal curvatures.

The work by Cartan was taken up by Hertrich-Jeromin (1994), who showed that any
conformally flat hypersurface f: M3 — R* with three distinct principal curvatures
admits locally principal coordinates (u1, u, #3) such that the induced metric ds?
= 213: 1 vl.zdui2 satisfies the Guichard condition, say,

v% = v% + U% .

Then he used the conformal invariance of this condition to associate to each such
hypersurface a Guichard netin R?, that s, a conformally flat metric on an open subset of
RR3 satisfying the Guichard condition, which is unique up to a Mobius transformation.
He also proved in Hertrich-Jeromin (1994) that the converse holds, that is, that each
conformally flat 3-metric satisfying the Guichard condition gives rise to a unique (up
to a Mdbius transformation) conformally flat hypersurface in R*. In this way, the
classifications of conformally flat Euclidean hypersurfaces of dimension three with
three distinct principal curvatures and of conformally flat 3-metrics satisfying the
Guichard condition are equivalent problems.

This point of view was pursued in some subsequent papers; see, for instance,
Hertrich-Jeromin and Suyama (2007) (respectively, Hertrich-Jeromin and Suyama
2013), where a classification was given of conformally flat Euclidean hypersurfaces
associated to cyclic (respectively, Bianchi-type) Guichard nets in R, that is, Guichard
nets in R? for which one of the coordinate line families consists of circular arcs (respec-
tively, the coordinate surfaces have constant sectional curvature).

Some significant advances on the understanding of the space of conformally flat
3-metrics satisfying the Guichard condition have been recently obtained in Burstall
et al. (2018). Namely, for a conformally flat 3-metric with the Guichard condition
in the interior of the space, an evolution of orthogonal Riemannian 2-metrics with
constant Gauss curvature — 1 was determined; conversely, for a 2-metric belonging to
a certain class of orthogonal analytic 2-metrics with constant Gauss curvature — 1, a
one-parameter family of conformally flat 3-metrics with the Guichard condition was
determined as evolutions issuing from the 2-metric.

However, it is not in general an easy task to translate results on conformally flat
3-metrics satisfying the Guichard condition to corresponding ones on their associated
conformally flat Euclidean hypersurfaces. In fact, due to the difficulties involved in
this approach, even the construction of further examples of conformally flat Euclidean
hypersurfaces in R* with three distinct principal curvatures became a challenging prob-
lem. Recent progress in this direction was achieved in Hertrich-Jeromin et al. (2015)
(see also Hertrich-Jeromin and Suyama 2015) by the discovery that each conformally
flat Euclidean hypersurface has a dual one, which is related to it by a Combescure trans-
formation, and this duality can be used to obtain new conformally flat hypersurfaces
in R* with three distinct principal curvatures from a given one.

It was recently shown in Canevari and Tojeiro (2017) that the existence of principal
coordinates satisfying some additional conditions actually characterizes conformally
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flat hypersurfaces f: M> — Qf(c) with three distinct principal curvatures of any
pseudo-Riemannian space form Qf (c) of dimension 4, constant sectional curvature ¢
and index s € {0, 1}, that is, Q? (c) is either a Riemannian or Lorentzian space-form
of constant curvature c, corresponding to s = 0 or s = 1, respectively (see Theorem 2
below).

It was also shown in Canevari and Tojeiro (2017) that the class of conformally
flat hypersurfaces f: M3 — Q‘s‘(c) with three distinct principal curvatures is closely
related to the class of hypersurfaces of Q‘Y‘ (c) that are solutions of the following natural
problem:

Problem x: For which hypersurfaces f: M> — Q?(c) does there exist another
isometric immersion f: M> — Q?(E) with ¢ # ¢?

In fact, a similar characterization was given of hypersurfaces of Q?(c) that are
solutions of Problem * (see Theorem 3 below).

The aim of this paper is to use such characterizations to develop a Ribaucour
transformation (see Sect. 3) for both classes of hypersurfaces. It yields a process to
generate a family of new elements of such classes starting from a given one and a
solution of a linear system of partial differential equations (see Theorem 9 below).
In particular, explicit new examples of (one-parameter families of) conformally flat
hypersurfaces of R* with three distinct principal curvatures are constructed in Sect. 4,
whose associated Guichard nets are neither cyclic nor of Bianchi-type, as can be easily
checked by using the criteria in Hertrich-Jeromin and Suyama (2007) and Hertrich-
Jeromin and Suyama (2013). We also produce explicit examples of (one-parameter
families of) hypersurfaces of Q? (c) with three distinct principal curvatures that admit
an isometric immersion into Q‘S‘(E) with ¢ # ¢.

2 The Characterization of Conformally Flat Hypersurfaces and of
Solutions of Problem =

A hypersurface f: M" — Q"*!(c) is called holonomic if M" carries global orthog-

onal coordinates u1, ..., u, such that the coordinate vector fields 9; = — are
; uj

everywhere eigenvectors of the shape operator A of f. Denote v; = ||9;]|, and let

Vi € C®(M), 1 < j < n, be defined by Ad; = u;‘vjaj. The first and second

fundamental forms of f are then given by

n n
[=Y vidu] and II = Vividu]. 1)

i=1 i=1

Setv=(vi,...,v,)and V = (Vq, ..., V,). We call (v, V) the pair associated to f.
In the next well-known result and in the sequel, for s € {0, 1} we denote €, = —2s+ 1.
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Proposition 1 The triple (v, h, V), where h;; = vi, giuf, satisfies the system of PDE’s

0y .. Ohig

() 871 =hjv;, (i) ﬁ = hijhjk,

... Ohjj  0hj;

(i) — + —— + hkihkj + EsViVj + cvijv; = 0, )
au,' 3uj

aV;
(iv) 8—’=h,-,-v,-, l<i#j#k#i<n
uj

Conversely, if (v, h, V) is a solution of (2) on a simply connected open subset U C R",
with v; # 0 everywhere for all 1 < i < n, then there exists a holonomic hypersurface
f:U— Q;’H (c) whose first and second fundamental forms are given by (1).

Conformally flat hypersurfaces f: M3 — Qf(c) with three distinct principal
curvatures have been characterized in Canevari and Tojeiro (2017) as follows.

Theorem 2 Let f: M? — Q‘S‘(c) be a holonomic hypersurface whose associated
pair (v, V) satisfies

3

3 3
D sivi=0, > &uiVi=0 and Y 8§V =1, 3)
i=1 i=1

i=1

where (81, 82,683) = (1, — 1, 1). Then M3 is conformally flat and f has three distinct
principal curvatures.

Conversely, any conformally flat hypersurface f: M> — @? (c) with three distinct
principal curvatures is locally a holonomic hypersurface whose associated pair (v, V)
satisfies (3).

The characterization in Canevari and Tojeiro (2017) of the solutions f: M3 —
Q? (c) of Problem * with three distinct principal curvatures is as follows.

Theorem 3 Let f: M> — Q?(C) be a simply connected holonomic hypersurface
whose associated pair (v, V) satisfies

3 3 3
dosivi=e Y suVi=0 and Y §VP=C:=é(c—0), (4)
i=1 i=1 i=1

where €,€ € {— 1,1}, C # ¢, €€ = €, (81,82,683) = (1, — 1, 1) either if ¢ = 1 or if
€=—1and C > 0, and (81,82,83) = (—1,—1,—1)ifé = —1 and C < 0. Then
M? admits an isometric immersion into Qg(E), with €; = €, which is unique up to
congruence.

Conversely, if f: M?> — Q?(c) is a hypersurface with three distinct principal
curvatures for which there exists an isometric immersion f M3 > Q? (¢c) with¢ # ¢,
then f is locally a holonomic hypersurface whose associated pair (v, V) satisfies (4),
with € = €;.
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3 The Ribaucour Transformation

Two immersions f: M" — Rgﬂ) and f': M" — R?—H’ are said to be related by a
Ribaucour transformation if | f — f’| # 0 everywhere and there exist a vector bundle
isometry P: f*TR!Y? — f*TRITP atensor D € I'(T*M ® T M), which is sym-
metric with respect to the induced metric, and a nowhere vanishing § € I'(f* T]R?er )
such that

(@) P(Z)—Z=1{8,Z)(f — f)forall Z € T(f*TRyP);
(b) Po fioD = f,.

Given an immersion f: M" — Q?er(c), withc # 0,let F =io f: M" —

1 . .
R?L’Zf , where g = 0 or 1 corresponding to ¢ > 0 or ¢ < 0, respectively, and
i Q) — R;’iﬁf denotes an umbilical inclusion. An immersion f': M" —

Q?er (c) is said to be a Ribaucour transform of f with data (P, D,8) if F' =i o
oM — R;’L’zﬂ is a Ribaucour transform of F with data (P, D, §), where § = § —

cFandP: F*TR"TPT  FTR"TPT1 s the extension of P such that P(F) = F'.

s+e€o s+€o
The next result was proved in Dajczer and Tojeiro (2003).

Theorem 4 Let f: M" — Q?ﬂ’ (c) be an isometric immersion of a simply connected
Riemannian manifold and let f': M" — (@;H_p (¢) be a Ribaucour transform of f
with data (P, D, 8). Then there exist ¢ € C°°(M) and p € I'(Ny M) satisfying

ap(Vo,X)+Vyp =0 forall XeTM 5)
suchthat F' =io f'and F =i o f are related by
F'=F —2v¢G, (6)
where G = F, Vg + i*,é 4+ coF andv = (G, g>—1. Moreover,
P=1-20GG*, D=1-— 2vp® and § = —(p_lg, @)

where ® = Hess ¢ + cpl — A/’;

Conversely, given ¢ € C*°(M) and,é € I'(Ny M) satisfying (5) such that pv # 0
everywhere, let U C M" be an open subset where the tensor D given by (7) is
invertible, and let F': U — Rfiﬁ)ﬂ be defined by (6). Then F' =i o f', where f’
is a Ribaucour transform of f. Moreover; the second fundamental forms of f and f’
are related by

AL, =Dl +20(h.£)®) ®)
forall§ e T'(NyM).

We now derive from Theorem 4 a Ribaucour transformation for holonomic hyper-
surfaces, in a form that is slightly different from the one in Dajczer and Tojeiro (2002).
For that we need the following.
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Proposition 5 Let f: M" — Q?H (¢) be a holonomic hypersurface with associated
pair (v, V). Then, the linear system of PDE’s

0 .. 0y ..
(1) a—z=vi)/i, (ii) a—u'::hjil/ia i #J,

. 0V
(iii) 871 =i =)V — 2 hjivi + BVi — coui,

. B )
iv) e— = —Viyi,
Jogy _ yal . 0
og Yiv; . V; ;o . .
=2 —L =, ,
™ = PR el LY
with h;j and hgj given by
1 E)vj Yi
hijzv—ia—ui and hgjzhij—l—(v;—vj)é, (10)
is completely integrable and has the first integral
2 2 2 —
Y vl +eB+cp’ — 209 =K €R. (1)
i
Proof A straightforward computation. O

Theorem 6 Let f: M" — Q?H(c) be a holonomic hypersurface with associated
pair (v, V). If f': M" — Q’S”'l(c) is a Ribaucour transform of f, then there exists
a solution (y,v', ¢, ¥, B) of (9) satisfying

D vt ep e’ =209 =0 (12)

1

suchthat F' =io f'and F =i o f are related by

F’:F—%<Zy,-F*ei+ﬁi*§+C<pF>, (13)

1

where & is a unit normal vector field to f and e; = v;l d;, 1 <i <n.
Conversely, given a solution (y, v', @, ¥, B) of (9) satisfying (12) on an open subset
U C M" where v is positive for | < i < n, then F' defined by (13) is an immersion
suchthat F' =i o f/, where f' is a Ribaucour transform of f whose associated pair
is V', V'), with
’ EsB .
V,'=Vi+(vi—vl~)7, 1<i=<n. (14)
Proof Let f': M" — Q;’H (c) be a Ribaucour transform of f. By Theorem 4, there

exist ¢ € C*°(M) and B € I'(Ny M) satisfying (5) such that F” is given by (6), where
G=FVg+i,p+coFandv= (GG ".
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Write Vo = Y7, yiei, where y; € C*®(M), 1 < i < n. Since 3; = vje;,

1 < i < n, this is equivalent to equation (i) of system (9). Now write ,3 = B, where
B € C°°(M). Then (5) can be written as

AVp = —¢, VB, (15)

which is equivalent, by taking inner products of both sides with 9;, to equation (iv) of
system (9). On the other hand, Eq. (5) implies that

g* = F, P,
where ® = Hess ¢ + col — Ag . Therefore @ is a Codazzi tensor that satisfies
ap(®X,Y) =ar(X, ®Y)

forall X,Y € TM, thatis, ® has {eq, ..., e,} as a diagonalyzing frame. Since

8y Ay
P9; = d + E hjlyj BVi+cvip | e + E ( ! lel)e/’ (16)
l
J#Ei J#i

equation (ii) of system (9) follows. Now define ¥ € C*°(M) by

20y = Z% + 6B+ co.
Differentiating both sides with respect to u; and using (i), (ii) and (iv) of (9) yields

Y @ oY
a—uz-i-;hm/j—ﬂ‘/i +CUi(P=UiW+_3_ul' a7

Defining vlf by (v), then (iii) follows from (17). Finally, from

Py, 9y
314,'3141' - aujaui

we obtain

0 0
— (hijvj) = — | i =)y - E hkive + BVi — coui |,
ou; ouj Py
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thus
dhij Ayj dv;  dv] Y dhj; 3y,
_J +h;; —L = - v + — _r L
8ui yj Y 31/!,‘ auj BLtj w (vl Vi ) j 3141 ]/] It Buj
Ohy; Vi a8 aV; g ov;
-V —hki— + —Vi+B— —c—vi —cop—.
u; T M T g ﬂau, “ou; " Cou;
It follows that
3/1,'] 8/111 av’ y/w
(3ui R ou Vi +hijhjivi = I/fhjivj_al/f—( v — ) =]

—hji(j = VDY + hjihijyi + hjihgve — BhjiV; +C<Phjivj — hijhjiyi
—hiihkjyj — ViViyj + BhjiVj — cvivjyj — cphjivj,

which yields equation (vi) of (9).

Conversely, let F/ be given by (13) in terms of a solution (y, V', ¢, ¥, B) of (9)
satisfying (12) on an open subset U C M" where v; is nowhere vanishing for 1
<i <n.Wehave Vg = ) "_, yie; by equation (i) of (9). Defining ﬁ e '(NyM) by
B = B&, we can write F’ as in (6), with G = F,Vg + i, + coF and v = (G, G) ™!
In view of (iv), Eq. (15) is satisfied, and hence so is (5). Thus G, = Fy o ®, where
® = Hess ¢ + cpl — A;

It follows from (ii) and (16) that ®9; = B;d;, where

1| i _
Bz‘zvi1 8Z+Zhjzyj BVi +cvip =vi1(vi—vl{)1ﬂ.
l
J#

Using (iii) and (12) we obtain
Dd; = (1 —2vpB)d; = (1 — 2vpv; ' (v; — v))y) = -

Thus D is invertible wherever vlf does not vanish for 1 < i < n. It follows from
Theorem 4 that the map F’ defined by (13) is an immersion on U and that F' =i o f”,
where f’ is a Ribaucour transform of f. Moreover, we obtain from (8) that F’, and
hence f”, is holonomic with uy, ..., u, as principal coordinates. It also follows from
(8) that

1% , i (Vi eBu — )
v; v; AV

which yields (14). O
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4 The Transformation of Conformally Flat Hypersurfaces and Solutions
of Problem =

We now specialize the Ribaucour transformation to the classes of hypersurfaces
f: M - Qf(c) that are either conformally flat or admit an isometric immersion
into Q¥(¢) with & # c.

Proposition 7 If f: M> — Q?(c) is a holonomic hypersurface whose associated
pair (v, V) satisfies (4) (respectively, (3)), then the linear system of PDE’s obtained
by adding the equation

/

ov;
8§ —- o +8 h;jv] +8khlkvk =0 (18)

to system (9), where h; j is given by (10), is completely integrable and has (besides
(11)) the first integral

81v —1—821)2 +83v3 =K eR. (19)
Moreover, the function
3 3
Q=9) 5;viVi—eB| K=Y 8jvv) (20)
j=1 j=l1
satisfies
Q2 j
=Py e, 1)
ou; )

In particular, if initial conditions for ¢ and B at xo € M? are chosen so that Q2 vanishes
at xo, then Q vanishes everywhere.

Proof The first two assertions follow from straightforward computations. To prove
the last one, define p = Y3, &; v:Viand ©® = K — s v;v;. We have

8,0 al ]
a_ui:(sa V+<S,,8 +28 V+25ua

= 8y — hipvV; — Z&;(h,;/ = hip)Vjv;

J# J#
,YiVi

=Z§,~(v v,)v,——25 W) — v =—

i i ¢

8% / Vivi 2 /
=== (p —&v;V; +8,-viVi) - — (@ —d;v; +8ivivi))

”
= —(vjp — OV))

¢
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and
00 ov; 8vj o i
a—ul:—sla—ul 81}1 Z / Z(S U/au
J#
= Z‘sjvj(hij —h;j) Ul{ + Z(Sj(h;j —h,'j)v;- v;
J#i J#i
ViV
= ZSjvj(vj—v}) 7/l—+ Z(S W —vj)v] vivi
j#i i ¢
/
=(®—8,-vl-2+6,-vl~v;) Yivi —51'1) +5 Uzv))l_yl
%
= &(vi +))0.
%
Therefore,
o dp ap aesﬂ
_ = + _ -
ou; au,»p Bu, 8u, S'Baul
Vi
= viyip + w;(vip —OV) + Viyi® — esﬁ;'(vi +v)O
€. B
= pyi(i +v)) — “5” (i +v))©
= ﬁ(vi + )2,
%
which proves (21). The last assertion follows from (21) and the lemma below. O

Lemma 8 Let M" be a connected manifold and let Q € C°°(M). Assume that there
exists a smooth one-form w on M" such that dQ2 = wS2. If Q vanishes at some point
of M", then it vanishes everywhere.

Proof Given any smooth curve y: I — M" with 0 € I, denote A(s) = w(y’(s)). By
the assumption we have

t
(Qoy)(t)=(Roy)0) exp/o A(s)ds,

and the conclusion follows from the connectedness of M". O
Theorem 9 Let f: M3 — Q? (¢) be a holonomic hypersurface whose associated pair

(v, V) satisfies (4) (respectively, (3)) and f': M 3 Q?(c) a Ribaucour transform
of f determined by a solution (y1, y2. y3, v}, vy, Vs, @, ¥, B) of system (9). If the
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associated pair (v', V') of f' also satisfies (4) (respectively, (3)), then
3 3
Q=) 8;0jVi—eB| K-> 8vv;| =0, (22)
j=1 j=1

with K = é (respectively, K = 0). Conversely, let (y1, 2, y3, v}, V5, V5, @, ¥, B) be
a solution of the linear system of PDE’s obtained by adding Eq. (18) to system (9). If
(12), (22) and

3
Y s =K, (23)
i=1

where K = € (respectively, K = 0), are satisfied at some point of M3, then (they
are satisfied at every point of M and) the pair (v, V') associated to the Ribaucour
transform of f determined by such a solution also satisfies (4) (respectively, (3)).

Proof Let (v/, V') be the pair associated to f’. Then, using conditions (4) (respectively,
(3)), we obtain

3 3 3
2
D SVIT =Y Vi =) 8 (Vi = VAV + V)
=1 =1 =1

3
&pB , &P ’
= ZSj(vj—vi) 2Vj+—(vj—vj)
¢ = : @
3 3
€g €
_ &P 2Z<Sjvj(vj—v;)+“—ﬂ23,-(u,-—v;)2
¢ \ o ¢ =
3
TN BT s —K 24
= (pz - +65ﬁ Z ]Uj - 9 ( )
j=1

where K = € (respectively, K = 0). If the pair (v/, V') associated to f’ satisfies (4)
(respectively, (3)), then (23) holds, as well as

3
> 8vivi=0 (25)
j=1

and
3
Ysvii=c, (26)
j=1

where C = €(c — ¢) (respectively, C = 1). It follows from (24) that (22) holds.
Conversely, let (y1, y2, y3, v}, 5, V5, @, ¥, B) be a solution of the linear system of
PDE’s obtained by adding Eq. (18) to system (9). If (12), (23) and (22) are satisfied
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at some point of M", then they are satisfied at every point of M" by Proposition 7.
Then, Egs. (23), (22) and (24) imply that (26) holds. On the other hand, using (14) we
obtain

3
Zajulv’ 251 vV +6”325,uj v — &P Z
=Za,-v;vj—%(1(—25,-u;v,)
j=1 j=1

=<p_152=0

by (23) and (22). Thus the pair (v/, V') associated to f” also satisfies (4) (respectively,
3)). O

4.1 Explicit Solutions of Problem

We now use Theorem 9 to compute explicit examples of pairs of isometric immersions
fiM3 - Q? (c)and f M3 > Qg(&), ¢ # ¢, with three distinct principal curvatures.

First notice that, if c = 0 (respeétively, ¢ # 0)and (v, h, V) is a solution of system
(2) on a simply connected open subset U C R3 with v; # 0 everywhere for 1 <i < 3,
then, in order to determine the corresponding immersion f: U — R‘s‘ (respectively,
f:U— Q4(c) C RHGO, where €p = c/|c|), one has to integrate the system of PDE’s

0
) a—f:v,X, (11) —hz/X/, i #J,
/2] ]
0X;
(111) W = Zk;ﬁl hk,Xk—i-éSVN—CU,f 27
(iv) —Z—V,'Xi, 1<i<3,
ou;

with initial conditions X7 (uq), X2(uo), X3(uo), N(ug), f(up) at some point ug
€ U chosen so that the set {X1(uo), X2(uo), X3(uo), N(ug)} (respectively, {X1(uo),
X2 (o), X3(uo), N(uo), |c|"? f (uo)}) is an orthonormal basis of R? (respectively,
R§+60)‘

The idea for the construction of explicit examples is to start with trivial solutions
(v, h, V) of system (2). If € = 1, one can start with the solution (v, i, V) of system
(2), with (81, 62, 83) = (1, —1, 1), for which v = (1,0,0), h = 0 and V is either
\/j (0,1,0) or v/C(0,0, 1), corresponding to C < 0 or C > 0, respectively. If
€ = —land C > 0, we may start with the solution (v, &, V) of system (2), with
(81,82,83) = (1,—1, 1), for which v = (0,1,0), h = 0 and V = /C(0,0, 1),
whereas for C < 0 we take (§1,62,63) = (—1,—1,—1),v = (0,0,1), h = 0 and
V= \/j(l, 0, 0). Even though, for the corresponding solution (X1, X2, X3, N, f)
of system (27),themap f: U — Q?(C) isnot an immersion, the map f/: U — Q?(c)
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obtained by applying Theorem 9 to it does define a hypersurface of Q? (c), which is
therefore a solution of Problem .

In the following, we consider the case in which € = 1 and C < 0, the others being
similar. We take (v, &, V) as the solution of system (2), with (81, 8>, §3) = (1, — 1, 1),
for whichv = (1,0,0), h =0and V = /=C(0, 1, 0).

If ¢ = 0, the corresponding solution of system (27) with initial conditions

(X1(0), X2(0), X3(0), N(0), f(0)) = (E1, E2, E3,€E4,0)

is given by
f=fu)=wmkE, X\=E, X3=E3,
o [t e o= oy
and inh E h E if e,=—1
N e e oL@

where a = +/—C. If ¢ # 0, the corresponding solution of system (27) with initial
conditions

(X1(0), X2(0), X3(0), N(0), £(0)) = (E1, Ez, E3, Ea, c|” "/*Es)

is given by
1 . .
—=(cos \/cuiEs +sin/cu Ey), if ¢>0,
f=rfan=yY o . : 30)
ﬁ(cos —cuiEs +sinh/—cuEy), if ¢ <0,
| —sin/cui Es + cos \/cuy E, if ¢>0, 31)
U'= ] sinh o/=cuy Es + cosh /—cu Ey, if ¢ <0,

X3 = E3 and X3, N as in (28) and (29), respectively.

We now solve system (9) for (v, i, V) as in the preceding paragraph. Notice that
(11) and (19), with K = 0 (respectively, K = 1) in (11) (respectively, (19)), reduce,
respectively, to

200 =Y v+ e+ co? (32)
i
and
vy =11 4+05—1. (33)
We also impose that
—apvy = &B(1 —vy), (34)
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which corresponds to the function €2 in (22) vanishing everywhere. It follows from
equations (i), (i) and (iv) of system (9) that ¢, y; and B depend only on u1, u ; and u>,
respectively. Equation (iii) then implies that there exist smooth functions ¢; = ¢; (u;),
1 <i < 3, such that

1 —v)Y = ¢i. (35)
Replacing (35) in (33) gives
_ -+
Y= 26 . (36)

Multiplying (34) by ¥ and using (35) yields

appy = B¢,

hence there exists K # 0 such that

€ _ 1
B= E(ﬁz and ¢ = K—a¢1- (37)

It follows from (i) and (iv) that

1 1
Y= K_a¢i and ¥ = _K_aqbé (38)

where ¢ stands for the derivative of ¢; (with respect to u;). Using (v) for i = 3, (35)
and the second equation in (37) we obtain that

— 1¢/
V3= ka

Then, it follows from (iii), (35), the first equation in (38) and the second one in (37)
that

¢| = (Ka— )1 (39)

Similarly,
¢y = —(e;a> + Ka)py and ¢y = Kags. (40)

Moreover, by (32) we must have

@F — (Ka —)¢]) + (97 + (€50 + Ka)d3) + (¢5 — Kagd) =0.  (41)
Notice that each of the expressions under brackets in the preceding equation is constant,
as follows from (39) and (40).

We compute explicitly the corresponding hypersurface given by (13) when ¢ = 0,
c=1,¢ =1 =¢and K = 1. In this case we have C = — 1 and a = 1, hence
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Egs. (39) and (40) yield
¢1 = Aqrcoshuy + Ajpsinhug,
¢2 = Aai cosv2up + Axsinv/2us,
¢3 = Az1coshuz + A3y sinhus,
where A;; € R, 1 <i, j < 3, satisfy
ATy — AT} +2(A3) + Ay + A3, — A3, =0,
in view of (41). Assuming, say, that

A}, — A}, <0 and A%, — A3 <0,

we may write A1 = pj cosh6q, Ajp = p1sinh 0, Ax1 = pasinba, Ay = pycosba,
A3y = p3cosh 63 and A3y = p3sinh 03 forsome p; > 0and6; € R, 1 <i < 3. Then

¢1 = p1 cosh(uy + 0y),
¢2 = pasin(v2uz + 65),
¢3 = p3 cosh(uz + 63),

with
203 = pi + 03,

and we can assume that 9; = 0 after a suitable change u; +— u; + u? of the coordinates
uj, 1 <i <3.Setting p = pp, we can write p; = V2p cos and p3 = +/2p sin 6 for
some 6 € [0, 2r]. Thus

¢1 = /2pcosf coshuy,
$2 = psinv/2uy,
$3 = ~/2psin @ coshuz,

and the coordinate functions of the corresponding one-parameter family (with 0 as the
parameter) of hypersurfaces ' = f): U — R* are

fl =uy —2ghcosOsinhuy, f3 = gh(2cos~2uscosus + ~/2sin~2us sin uy),
f3 = —2ghsin@sinhuz, f; = gh(2cos V2us sinus — v/2 sin v/2us cos uz),

where
g = 2cosfcoshu 42)

and
h~! =2cos? 6 cosh? u; — sin® \/Euz + 2 sin” 6 cosh® us3. 43)
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To determine the immersion f : U — S* that has the same induced metric as
£, we start with the solution (3, &z, V) of system (2), (81, 82,83) = (1, — 1, 1) and ¢
replaced by ¢ = 1, givenby o = v = (1,0,0), h = h = 0 and V = (0, 0, 1), which
satisfies conditions (4) withé = 1 and é = — 1.

The corresponding solution (f(l, 5(2, 5(3, 1\7, f) of system (27), withe = € =1,
¢ = ¢ = 1 and initial conditions

(X1(0), X2(0), X3(0), N(0), £(0)) = (Ey, Ea, E3, Es, Es)

is given by
f = f@uy) =cosu Es + sinu Ey, (44)
5(1 = —sinujEs + cosui Eq, 5(2=E2, 45)
f(g =cosuzEs +sinuzEs and N = —sin usEs + cosusEy. (46)

Arguing as before, we solve system (9) system together with Egs. (11) and (19),
which now become

29 =) W +B+§ (47)
i
and
~2 =2 ~2
'U/2 = U/l + U/3 — 1 (48)
We also impose that
gvy = B(1 — o)), (49)

which corresponds to the function €2 in (22) vanishing everywhere. We obtain

P — §3 + 43

U = pos N Si - ~{ ) = Nia 50

v % Gi1 — ¥ =¢ (0)

fmtds =i o
— IE' 3, (p - I% s

~ 1 7/ ~ 1 7 ~ e

V1= _E(bl’ V2= E% and y3 = —E¢3 (52)

for some K € R, where the functions <5,~ = ¢~>,~ (u;) satisfy

¢ =—(1+K)p1, ¢ =K¢ ¢ =—-1+K)¢s (53)
and } o . o
@7 + (1 4+ K)pD) + 9% — KP3) + @7 + (1 + K)$3) = 0. (54)

Notice that each of the expressions under brackets in the preceding equation is constant,
as follows from (53). Notice also that, for K = —2, the two preceding equations
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coincide with (39), (40) and (41) for 1 = K = a = € and ¢ = 0, hence f! and
f': U — S* c R share the same induced metric

3
2
ds* = Z V! dui2
i=1

by (35) and the second equation in (50), where the functions vlf = f)lf, 1 <i<3 are
given explicitly by

v’12 = p(—2cos? 6 cosh® u; + 2sin’ 6 cosh? uz — sin® v/2u),

véz = 8p(cos® 6 cosh? uy sin® v/2us),

vgz = 4in% 26 cosh? u; cosh? us,
with
,o*1 = 2 cos? 6§ cosh? uy +2 sin’ 6 cosh? uz — sin’ \/Em.
The coordinate functions of f' are

fl’ =sinu| — ghcosfO(cosuy sinhuy + sinu; coshuy)

fz’ = ghcos «/Eug

f3’ = —gh sin 0 (sin u3 cosh uz + cos u3 sinh u3) (55)
fi = ghsin6(cos uz coshuz — sin u3 sinh u3)

fs’ =cosuj + ghcosO(sinuj sinhuy — cosujcoshuy)

with g and & given by (42) and (43), respectively.

4.2 Examples of Conformally Flat Hypersurfaces

One can also use Theorem 9 to compute explicit examples of conformally flat hypersur-
faces f: M3 — @;t (c) with three distinct principal curvatures. It suffices to consider
the case ¢ = 0, because any conformally flat hypersurface f: M> — Q¥(c), ¢ # 0,
is the composition of a conformally flat hypersurface g: M> — R;‘ with an “inverse
stereographic projection”.

We start with the trivial solution v = (0, 1, 1), V = (1,0, 0) and & = 0 of system
(2), for which the corresponding solution of system (27) with initial conditions

(X1(0), X2(0), X3(0), N(0), f(0)) = (E1, E2, E3, E4,0)
is given by
f = f(ua,u3) =urEr +usks, Xo=E;, X3=E3,
x {coshu1E1+Sinhu1E4, if € =—1,
1 =

cosuiE; +sinuj Ey4, if ¢ =1, (56)
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and

N = {81nhu1E1—|—coshu1E4, if ¢ =—1, 57)

—sinuiE1 +cosuiEq, if € =1.

Even though this solution does not correspond to a three-dimensional hypersurface,
one can still apply Theorem 9. We solve system (9) for (v, #, V) as in the preceding
paragraph. Equations (11) and (19), with K = 0 in both equations, become

200 =yl +&B (58)
i
and
V5 =17+ (59)
We also impose that
pv) = —€B (v — v3), (60)

which corresponds to the function 2 in (22) vanishing everywhere. It follows from
(iii) that

Iy
VY =f— —

duy

Since the right-hand-side of the preceding equation depends only on u; by (ii) and
(iv), there exists a smooth function ¢; = ¢ (u1) such that

vy = ¢r. (61)

Similarly,
(1 —v)y = ¢; (62)

for some smooth functions ¢; = ¢;(u;),2 < i < 3. In particular,
(vy — V)Y = ¢3 — ¢o. (63)

Multiplying (60) by v and using (61) and (63) yields

1
¢ =@ —d) (64)

and c
B = E¢1 (65)

for some K € R. On the other hand, replacing (61) and (62) in (59), and using (63),

we obtain 5 s )
_Pi—htds

= 66
v 2(¢3 — ¢2) (66)
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It follows from (i) and (64) that

1¢/ d 1¢/
= —— an = — .
=g V3= g

whereas (iv) and (65) yield
1
v = —Efﬁi- (67)

We obtain from (iii), (61), (65) and (67) that

¢ = (K — €)1 (68)
Similarly,
¢y = —K¢p and ¢f = K¢s. (69)

Moreover, by (58) we must have

@7 — (K — €)¢?) + (B7 + K3) + (97 — Kp3) = 0. (70)

Notice that each of the expressions under brackets in the preceding equation is constant,
as follows from (68) and (69).

The conformally flat hypersurface given by (13) (with ¢ = 0) has coordinate func-
tions

fl = (Ky)~' () cosuy + prsinuy), f3=us+ (Ky) "'},
fA=us— (Ky)~'¢y and fi = (Ky)~ ' (@] sinuy — ¢1 cosuy),

if e, = 1, and

fl = (Ky)~ (¢} coshuy + ¢y sinhuy), f3 = us+ (Kyr) ™' b,
f=us— (Ky) "¢} and f; = (Ky)"'(¢] sinhu; + ¢ coshuy),

if ¢, = — 1, with ¥ as in (66). We compute them explicitly for the particular case
€; = 1 and K < 0, the others being similar. In this case we have

¢1 = Aj1cos/|K —1u; + Apsiny/|K — 1| uy,
¢ = Apicosh /| K|uy + Ay sinh /| K| usy,
¢3 = Azrcos/|K|u3z + Az sin/|K|u3,
with A;; € Rfor 1 <1, j < 3, and Eq. (70) reduces to
|K — 1](AT, + ADy) + [K|(A3, — A3)) + |K|(A3; + A%,) = 0.
This implies that

A}, — A3 <0,
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hence we may write Ay; = p2 cosh6, and Az = pp sinh 6, for some pp > 0 and
0> € R. We may also write Aj; = pjcosfy, Ajp = p1sinb, A31 = p3cosdz and
A3y = p3sin 6 for some p1, p3 > 0and 61, 63 € [0, 27]. Then

1 = p1cos(y/|K — 1|u; —01),
¢2 = p2cosh(/|K|uz + 62),
¢3 = p3cos(y/|K|uz —03),

with
IK|p3 =K —1lpi + K |p3,

and we can assume that 6; = 0 after a suitable change u; — u; + u? of the coordinates
uj, 1 <i < 3. Setting p = py, we can write p; = ”{le‘p cosf and p3 = psiné

for some 6 € [0, 2 ]. Thus

b1 = —ll‘{lilllpCOSQCOS(«NK —1luy),
¢2 = pCOSh(\/ |K| M2)a
¢3 = psinb cos(V[K | u3).

Forinstance, for K = — 1 we obtain the one-parameter family (with 6 as the parameter)
of conformally flat hypersurfaces of R* whose coordinate functions are given by

f{ = 2c059(«/§cos \/Eul sinup — 2sin ﬁul cosuy)gh,
fo = up +4sinhusgh, f3=u3+4sin6sinuzgh

and
fi = —2cos0(2sin~2uy sinuy + +/2 cos v/2u cos uy)gh
where
g = coshuy — sin 6 cos u3
and

h~! = cos? 0 cos? \/Eul — 2cosh? uy +2 sin® 0 cos> us.

One can verify by direct computations that (u1, u;, u3) are principal coordinates
for the above hypersurfaces, and that their associated pairs (v, V) satisfy conditions
(3). Therefore, they are indeed conformally flat hypersurfaces in R* with three distinct
principal curvatures.
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