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Abstract We develop a Ribaucour transformation for the class of conformally flat
hypersurfaces f : M3 → Q4

s (c) with three distinct principal curvatures of a pseudo-
Riemannian space form of dimension 4, constant curvature c and index s ∈ {0, 1}, as
well as for the class of hypersurfaces f : M3 → Q4

s (c) with three distinct principal
curvatures for which there exists another isometric immersion f̃ : M3 → Q4

s̃ (c̃) with
c̃ �= c. It gives a process to produce a family of new elements of those classes starting
froma given one and a solution of a linear systemof PDE’s. This enables us to construct
explicit new examples of hypersurfaces in both classes.

Keywords Conformally flet hypersurfaces · Hypersurfaces of two space forms ·
Ribaucour transformation

1 Introduction

The study of conformally flat hypersurfaces f : Mn → Rn+1 of dimension n of
Euclidean space is a classical topic in differential geometry initiated by Cartan (1917),
who proved that they must have a principal curvature of multiplicity at least n − 1
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if n ≥ 4. In other words, conformally flat Euclidean hypersurfaces of dimension
n ≥ 4 are generically envelopes of one-parameter families of hyperspheres. Cartan
also observed that this is no longer true for n = 3, that is, that there exist conformally
flat hypersurfaces f : M3 → R4 with three distinct principal curvatures.

Thework by Cartan was taken up byHertrich-Jeromin (1994), who showed that any
conformally flat hypersurface f : M3 → R4 with three distinct principal curvatures
admits locally principal coordinates (u1, u2, u3) such that the induced metric ds2

= ∑3
i=1 v2i du

2
i satisfies the Guichard condition, say,

v22 = v21 + v23 .

Then he used the conformal invariance of this condition to associate to each such
hypersurface aGuichard net inR3, that is, a conformallyflatmetric on anopen subset of
R3 satisfying the Guichard condition, which is unique up to a Möbius transformation.
He also proved in Hertrich-Jeromin (1994) that the converse holds, that is, that each
conformally flat 3-metric satisfying the Guichard condition gives rise to a unique (up
to a Möbius transformation) conformally flat hypersurface in R4. In this way, the
classifications of conformally flat Euclidean hypersurfaces of dimension three with
three distinct principal curvatures and of conformally flat 3-metrics satisfying the
Guichard condition are equivalent problems.

This point of view was pursued in some subsequent papers; see, for instance,
Hertrich-Jeromin and Suyama (2007) (respectively, Hertrich-Jeromin and Suyama
2013), where a classification was given of conformally flat Euclidean hypersurfaces
associated to cyclic (respectively, Bianchi-type) Guichard nets inR3, that is, Guichard
nets inR3 forwhich one of the coordinate line families consists of circular arcs (respec-
tively, the coordinate surfaces have constant sectional curvature).

Some significant advances on the understanding of the space of conformally flat
3-metrics satisfying the Guichard condition have been recently obtained in Burstall
et al. (2018). Namely, for a conformally flat 3-metric with the Guichard condition
in the interior of the space, an evolution of orthogonal Riemannian 2-metrics with
constant Gauss curvature − 1 was determined; conversely, for a 2-metric belonging to
a certain class of orthogonal analytic 2-metrics with constant Gauss curvature − 1, a
one-parameter family of conformally flat 3-metrics with the Guichard condition was
determined as evolutions issuing from the 2-metric.

However, it is not in general an easy task to translate results on conformally flat
3-metrics satisfying the Guichard condition to corresponding ones on their associated
conformally flat Euclidean hypersurfaces. In fact, due to the difficulties involved in
this approach, even the construction of further examples of conformally flat Euclidean
hypersurfaces inR4 with three distinct principal curvatures became a challenging prob-
lem. Recent progress in this direction was achieved in Hertrich-Jeromin et al. (2015)
(see also Hertrich-Jeromin and Suyama 2015) by the discovery that each conformally
flat Euclidean hypersurface has a dual one,which is related to it by aCombescure trans-
formation, and this duality can be used to obtain new conformally flat hypersurfaces
in R4 with three distinct principal curvatures from a given one.

It was recently shown in Canevari and Tojeiro (2017) that the existence of principal
coordinates satisfying some additional conditions actually characterizes conformally
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flat hypersurfaces f : M3 → Q4
s (c) with three distinct principal curvatures of any

pseudo-Riemannian space form Q4
s (c) of dimension 4, constant sectional curvature c

and index s ∈ {0, 1}, that is, Q4
s (c) is either a Riemannian or Lorentzian space-form

of constant curvature c, corresponding to s = 0 or s = 1, respectively (see Theorem 2
below).

It was also shown in Canevari and Tojeiro (2017) that the class of conformally
flat hypersurfaces f : M3 → Q4

s (c) with three distinct principal curvatures is closely
related to the class of hypersurfaces ofQ4

s (c) that are solutions of the following natural
problem:

Problem ∗: For which hypersurfaces f : M3 → Q4
s (c) does there exist another

isometric immersion f̃ : M3 → Q4
s̃ (c̃) with c̃ �= c?

In fact, a similar characterization was given of hypersurfaces of Q4
s (c) that are

solutions of Problem ∗ (see Theorem 3 below).
The aim of this paper is to use such characterizations to develop a Ribaucour

transformation (see Sect. 3) for both classes of hypersurfaces. It yields a process to
generate a family of new elements of such classes starting from a given one and a
solution of a linear system of partial differential equations (see Theorem 9 below).
In particular, explicit new examples of (one-parameter families of) conformally flat
hypersurfaces ofR4 with three distinct principal curvatures are constructed in Sect. 4,
whose associated Guichard nets are neither cyclic nor of Bianchi-type, as can be easily
checked by using the criteria in Hertrich-Jeromin and Suyama (2007) and Hertrich-
Jeromin and Suyama (2013). We also produce explicit examples of (one-parameter
families of) hypersurfaces ofQ4

s (c) with three distinct principal curvatures that admit
an isometric immersion into Q4

s (c̃) with c �= c̃.

2 The Characterization of Conformally Flat Hypersurfaces and of
Solutions of Problem ∗

A hypersurface f : Mn → Qn+1
s (c) is called holonomic if Mn carries global orthog-

onal coordinates u1, . . . , un such that the coordinate vector fields ∂ j = ∂

∂u j
are

everywhere eigenvectors of the shape operator A of f . Denote v j = ‖∂ j‖, and let
Vj ∈ C∞(M), 1 ≤ j ≤ n, be defined by A∂ j = v−1

j V j∂ j . The first and second
fundamental forms of f are then given by

I =
n∑

i=1

v2i du
2
i and II =

n∑

i=1

Vivi du
2
i . (1)

Set v = (v1, . . . , vn) and V = (V1, . . . , Vn). We call (v, V ) the pair associated to f .
In the next well-known result and in the sequel, for s ∈ {0, 1}we denote εs = −2s+1.
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Proposition 1 The triple (v, h, V ), where hi j = 1
vi

∂v j
∂ui

, satisfies the system of PDE’s

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i)
∂vi

∂u j
= h jiv j , (ii)

∂hik
∂u j

= hi j h jk,

(iii)
∂hi j
∂ui

+ ∂h ji

∂u j
+ hki hk j + εsVi Vj + cviv j = 0,

(iv)
∂Vi
∂u j

= h ji Vj , 1 ≤ i �= j �= k �= i ≤ n.

(2)

Conversely, if (v, h, V ) is a solution of (2) on a simply connected open subsetU ⊂ Rn,
with vi �= 0 everywhere for all 1 ≤ i ≤ n, then there exists a holonomic hypersurface
f : U → Qn+1

s (c) whose first and second fundamental forms are given by (1).

Conformally flat hypersurfaces f : M3 → Q4
s (c) with three distinct principal

curvatures have been characterized in Canevari and Tojeiro (2017) as follows.

Theorem 2 Let f : M3 → Q4
s (c) be a holonomic hypersurface whose associated

pair (v, V ) satisfies

3∑

i=1

δiv
2
i = 0,

3∑

i=1

δivi Vi = 0 and
3∑

i=1

δi V
2
i = 1, (3)

where (δ1, δ2, δ3) = (1,− 1, 1). Then M3 is conformally flat and f has three distinct
principal curvatures.

Conversely, any conformally flat hypersurface f : M3 → Q4
s (c)with three distinct

principal curvatures is locally a holonomic hypersurface whose associated pair (v, V )

satisfies (3).

The characterization in Canevari and Tojeiro (2017) of the solutions f : M3 →
Q4

s (c) of Problem ∗ with three distinct principal curvatures is as follows.

Theorem 3 Let f : M3 → Q4
s (c) be a simply connected holonomic hypersurface

whose associated pair (v, V ) satisfies

3∑

i=1

δiv
2
i = ε̂,

3∑

i=1

δivi Vi = 0 and
3∑

i=1

δi V
2
i = C := ε̃(c − c̃), (4)

where ε̂, ε̃ ∈ {− 1, 1}, c̃ �= c, ε̂ε̃ = εs , (δ1, δ2, δ3) = (1,− 1, 1) either if ε̂ = 1 or if
ε̂ = − 1 and C > 0, and (δ1, δ2, δ3) = (− 1,− 1,− 1) if ε̂ = − 1 and C < 0. Then
M3 admits an isometric immersion into Q4

s̃ (c̃), with εs̃ = ε̃, which is unique up to
congruence.

Conversely, if f : M3 → Q4
s (c) is a hypersurface with three distinct principal

curvatures for which there exists an isometric immersion f̃ : M3 → Q4
s̃ (c̃)with c̃ �= c,

then f is locally a holonomic hypersurface whose associated pair (v, V ) satisfies (4),
with ε̃ = εs̃ .
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3 The Ribaucour Transformation

Two immersions f : Mn → R
n+p
s and f ′ : Mn → R

n+p
s are said to be related by a

Ribaucour transformation if | f − f ′| �= 0 everywhere and there exist a vector bundle
isometry P : f ∗TRn+p

s → f ′∗TRn+p
s , a tensor D ∈ �(T ∗M ⊗ T M), which is sym-

metric with respect to the induced metric, and a nowhere vanishing δ ∈ �( f ∗TRn+p
s )

such that

(a) P(Z) − Z = 〈δ, Z〉( f − f ′) for all Z ∈ �( f ∗TRn+p
s );

(b) P ◦ f∗ ◦ D = f ′∗.

Given an immersion f : Mn → Q
n+p
s (c), with c �= 0, let F = i ◦ f : Mn →

R
n+p+1
s+ε0

, where ε0 = 0 or 1 corresponding to c > 0 or c < 0, respectively, and

i : Qn+p
s (c) → R

n+p+1
s+ε0

denotes an umbilical inclusion. An immersion f ′ : Mn →
Q

n+p
s (c) is said to be a Ribaucour transform of f with data (P, D, δ) if F ′ = i ◦

f ′ : Mn → R
n+p+1
s+ε0

is a Ribaucour transform of F with data (P̂, D, δ̂), where δ̂ = δ−
cF and P̂ : F∗TRn+p+1

s+ε0
→ F ′∗TRn+p+1

s+ε0
is the extension ofP such that P̂(F) = F ′.

The next result was proved in Dajczer and Tojeiro (2003).

Theorem 4 Let f : Mn → Q
n+p
s (c) be an isometric immersion of a simply connected

Riemannian manifold and let f ′ : Mn → Q
n+p
s (c) be a Ribaucour transform of f

with data (P, D, δ). Then there exist ϕ ∈ C∞(M) and β̂ ∈ �(N f M) satisfying

α f (∇ϕ, X) + ∇⊥
X β̂ = 0 for all X ∈ T M (5)

such that F ′ = i ◦ f ′ and F = i ◦ f are related by

F ′ = F − 2νϕG, (6)

where G = F∗∇ϕ + i∗β̂ + cϕF and ν = 〈G,G〉−1. Moreover,

P̂ = I − 2νGG∗, D = I − 2νϕ
 and δ̂ = −ϕ−1G, (7)

where 
 = Hess ϕ + cϕ I − A f

β̂
.

Conversely, given ϕ ∈ C∞(M) and β̂ ∈ �(N f M) satisfying (5) such that ϕν �= 0
everywhere, let U ⊂ Mn be an open subset where the tensor D given by (7) is
invertible, and let F ′ : U → R

n+p+1
s+εo

be defined by (6). Then F ′ = i ◦ f ′, where f ′
is a Ribaucour transform of f . Moreover, the second fundamental forms of f and f ′
are related by

Ã f ′
Pξ

= D−1(A f
ξ + 2ν〈β̂, ξ 〉
) (8)

for all ξ ∈ �(N f M).

We now derive from Theorem 4 a Ribaucour transformation for holonomic hyper-
surfaces, in a form that is slightly different from the one in Dajczer and Tojeiro (2002).
For that we need the following.
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Proposition 5 Let f : Mn → Qn+1
s (c) be a holonomic hypersurface with associated

pair (v, V ). Then, the linear system of PDE’s

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i)
∂ϕ

∂ui
= viγi , (ii)

∂γ j

∂ui
= h jiγi , i �= j,

(iii)
∂γi

∂ui
= (vi − v′

i )ψ − ∑
j �=i h jiγ j + βVi − cϕvi ,

(iv) εs
∂β

∂ui
= −Viγi ,

(v)
∂ logψ

∂ui
= −γiv

′
i

ϕ
, (vi)

∂v′
i

∂u j
= h′

j iv
′
j , i �= j,

(9)

with hi j and h′
i j given by

hi j = 1

vi

∂v j

∂ui
and h′

i j = hi j + (v′
j − v j )

γi

ϕ
, (10)

is completely integrable and has the first integral

∑

i

γi
2 + εsβ

2 + cϕ2 − 2ϕψ = K ∈ R. (11)

Proof A straightforward computation. ��
Theorem 6 Let f : Mn → Qn+1

s (c) be a holonomic hypersurface with associated
pair (v, V ). If f ′ : Mn → Qn+1

s (c) is a Ribaucour transform of f , then there exists
a solution (γ, v′, ϕ, ψ, β) of (9) satisfying

∑

i

γi
2 + εsβ

2 + cϕ2 − 2ϕψ = 0 (12)

such that F ′ = i ◦ f ′ and F = i ◦ f are related by

F ′ = F − 1

ψ

(
∑

i

γi F∗ei + βi∗ξ + cϕF

)

, (13)

where ξ is a unit normal vector field to f and ei = v−1
i ∂ i , 1 ≤ i ≤ n.

Conversely, given a solution (γ, v′, ϕ, ψ, β) of (9) satisfying (12) on an open subset
U ⊂ Mn where v′

i is positive for 1 ≤ i ≤ n, then F ′ defined by (13) is an immersion
such that F ′ = i ◦ f ′, where f ′ is a Ribaucour transform of f whose associated pair
is (v′, V ′), with

V ′
i = Vi + (vi − v′

i )
εsβ

ϕ
, 1 ≤ i ≤ n. (14)

Proof Let f ′ : Mn → Qn+1
s (c) be a Ribaucour transform of f . By Theorem 4, there

exist ϕ ∈ C∞(M) and β̂ ∈ �(N f M) satisfying (5) such that F ′ is given by (6), where
G = F∗∇ϕ + i∗β̂ + cϕF and ν = 〈G,G〉−1.
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Write ∇ϕ = ∑n
i=1 γi ei , where γi ∈ C∞(M), 1 ≤ i ≤ n. Since ∂ i = vi ei ,

1 ≤ i ≤ n, this is equivalent to equation (i) of system (9). Now write β̂ = βξ , where
β ∈ C∞(M). Then (5) can be written as

A∇ϕ = −εs∇β, (15)

which is equivalent, by taking inner products of both sides with ∂i , to equation (iv) of
system (9). On the other hand, Eq. (5) implies that

G∗ = F∗
,

where 
 = Hess ϕ + cϕ I − A f

β̂
. Therefore 
 is a Codazzi tensor that satisfies

α f (
X,Y ) = α f (X,
Y )

for all X,Y ∈ T M , that is, 
 has {e1, . . . , en} as a diagonalyzing frame. Since


∂ i =
⎛

⎝ ∂γi

∂ui
+

∑

j �=i

h jiγ j − βVi + cviϕ

⎞

⎠ ei +
∑

j �=i

(
∂γ j

∂ui
− h jiγi

)

e j , (16)

equation (ii) of system (9) follows. Now define ψ ∈ C∞(M) by

2ϕψ = 〈G,G〉 =
∑

i

γi
2 + εsβ

2 + cϕ2.

Differentiating both sides with respect to ui and using (i), (ii) and (iv) of (9) yields

∂γi

∂ui
+

∑

j �=i

h jiγ j − βVi + cviϕ = viψ + ϕ

γi

∂ψ

∂ui
. (17)

Defining v′
i by (v), then (iii) follows from (17). Finally, from

∂2γi

∂ui∂u j
= ∂2γi

∂u j∂ui

we obtain

∂

∂ui

(
hi jγ j

) = ∂

∂u j

⎛

⎝(vi − v′
i )ψ −

∑

k �=i

hkiγk + βVi − cϕvi

⎞

⎠ ,
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thus

∂hi j
∂ui

γ j + hi j
∂γ j

∂ui
=

(
∂vi

∂u j
− ∂v′

i

∂u j

)

ψ + (vi − v′
i )

∂ψ

∂u j
− ∂h ji

∂u j
γ j − h ji

∂γ j

∂u j

− ∂hki
∂u j

γk − hki
∂γk

∂u j
+ ∂β

∂u j
Vi + β

∂Vi
∂u j

− c
∂ϕ

∂u j
vi − cϕ

∂vi

∂u j
.

It follows that

(
∂hi j
∂ui

+ ∂h ji

∂u j

)

γ j + hi j h jiγi = ψh jiv j − ∂v′
i

∂u j
ψ − (vi − v′

i )
γ jψ

ϕ
v′
j

− h ji (v j − v′
j )ψ + h ji hi jγi + h ji hk jγk − βh ji Vj + cϕh jiv j − hkj h jiγk

− hki hk jγ j − ViVjγ j + βh ji Vj − cviv jγ j − cϕh jiv j ,

which yields equation (vi) of (9).
Conversely, let F ′ be given by (13) in terms of a solution (γ, v′, ϕ, ψ, β) of (9)

satisfying (12) on an open subset U ⊂ Mn where v′
i is nowhere vanishing for 1

≤ i ≤ n. We have ∇ϕ = ∑n
i=1 γi ei by equation (i) of (9). Defining β̂ ∈ �(N f M) by

β̂ = βξ , we can write F ′ as in (6), with G = F∗∇ϕ + i∗β̂ + cϕF and ν = 〈G,G〉−1.
In view of (iv), Eq. (15) is satisfied, and hence so is (5). Thus G∗ = F∗ ◦ 
, where

 = Hess ϕ + cϕ I − A f

β̂
.

It follows from (ii) and (16) that 
∂ i = Bi∂i , where

Bi = v−1
i

⎛

⎝ ∂γi

∂ui
+

∑

j �=i

h jiγ j − βVi + cviϕ

⎞

⎠ = v−1
i (vi − v′

i )ψ.

Using (iii) and (12) we obtain

D∂ i = (1 − 2νϕBi )∂i = (1 − 2νϕv−1
i (vi − v′

i )ψ) = v′
i

vi
∂ i .

Thus D is invertible wherever v′
i does not vanish for 1 ≤ i ≤ n. It follows from

Theorem 4 that the map F ′ defined by (13) is an immersion onU and that F ′ = i ◦ f ′,
where f ′ is a Ribaucour transform of f . Moreover, we obtain from (8) that F ′, and
hence f ′, is holonomic with u1, . . . , un as principal coordinates. It also follows from
(8) that

V ′
i

v′
i
∂ i = A f ′

∂i = vi

v′
i

(
Vi
vi

+ εsβ

ϕ

vi − v′
i

vi

)

∂ i ,

which yields (14). ��
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4 The Transformation of Conformally Flat Hypersurfaces and Solutions
of Problem ∗

We now specialize the Ribaucour transformation to the classes of hypersurfaces
f : M3 → Q4

s (c) that are either conformally flat or admit an isometric immersion
into Q4

s̃ (c̃) with c̃ �= c.

Proposition 7 If f : M3 → Q4
s (c) is a holonomic hypersurface whose associated

pair (v, V ) satisfies (4) (respectively, (3)), then the linear system of PDE’s obtained
by adding the equation

δi
∂v′

i

∂ui
+ δ j h

′
i jv

′
j + δkh

′
ikv

′
k = 0 (18)

to system (9), where h′
i j is given by (10), is completely integrable and has (besides

(11)) the first integral
δ1v

′2
1 + δ2v

′2
2 + δ3v

′2
3 = K ∈ R. (19)

Moreover, the function

� = ϕ

3∑

j=1

δ jv
′
j V j − εsβ

⎛

⎝K −
3∑

j=1

δ jv jv
′
j

⎞

⎠ (20)

satisfies
∂�

∂ui
= γi

ϕ
(vi + v′

i )�. (21)

In particular, if initial conditions for ϕ and β at x0 ∈ M3 are chosen so that� vanishes
at x0, then � vanishes everywhere.

Proof The first two assertions follow from straightforward computations. To prove
the last one, define ρ = ∑3

i=1 δiv
′
i Vi and � = K − ∑3

i=1 δiv
′
ivi . We have

∂ρ

∂ui
= δi

∂v′
i

∂ui
Vi + δiv

′
i
∂Vi
∂ui

+
∑

j �=i

δ j
∂v′

j

∂ui
Vj +

∑

j �=i

δ jv
′
j
∂Vj

∂ui

=
∑

j �=i

δ j (hi j − h′
i j )v

′
j Vi −

∑

j �=i

δ j (hi j − h′
i j )Vjv

′
i

=
∑

j �=i

δ j (v
′
j − v j )Vj

γiv
′
i

ϕ
−

∑

j �=i

δ j (v
′
j − v j )v

′
j
γi Vi
ϕ

= v′
iγi

ϕ

(
ρ − δiv

′
i Vi + δivi Vi

) − Viγi
ϕ

(
� − δiv

′
i
2 + δiviv

′
i )

)

= γi

ϕ
(v′

iρ − �Vi )
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and

∂�

∂ui
= −δi

∂vi

∂ui
v′
i − δivi

∂v′
i

∂ui
−

∑

j �=i

δ j
∂v j

∂ui
v′
j −

∑

j �=i

δ jv j
∂v′

j

∂ui

=
⎛

⎝
∑

j �=i

δ jv j (hi j − h′
i j )

⎞

⎠ v′
i +

⎛

⎝
∑

j �=i

δ j (h
′
i j − hi j )v

′
j

⎞

⎠ vi

=
⎛

⎝
∑

j �=i

δ jv j (v j − v′
j )

⎞

⎠
γiv

′
i

ϕ
+

⎛

⎝
∑

j �=i

δ j (v
′
j − v j )v

′
j

⎞

⎠ viγi

ϕ

= (� − δiv
2
i + δiviv

′
i ))

γiv
′
i

ϕ
+ (� − δiv

′
i
2 + δiviv

′
i ))

viγi

ϕ

= γi

ϕ
(vi + v′

i )�.

Therefore,

∂�

∂ui
= ∂ϕ

∂ui
ρ + ϕ

∂ρ

∂ui
− ∂εsβ

∂ui
� − εsβ

∂�

∂ui

= viγiρ + ϕ
γi

ϕ
(v′

iρ − �Vi ) + Viγi� − εsβ
γi

ϕ
(vi + v′

i )�

= ργi (vi + v′
i ) − εsβγi

ϕ
(vi + v′

i )�

= γi

ϕ
(vi + v′

i )�,

which proves (21). The last assertion follows from (21) and the lemma below. ��

Lemma 8 Let Mn be a connected manifold and let � ∈ C∞(M). Assume that there
exists a smooth one-form ω on Mn such that d� = ω�. If � vanishes at some point
of Mn, then it vanishes everywhere.

Proof Given any smooth curve γ : I → Mn with 0 ∈ I , denote λ(s) = ω(γ ′(s)). By
the assumption we have

(� ◦ γ )(t) = (� ◦ γ )(0) exp
∫ t

0
λ(s)ds,

and the conclusion follows from the connectedness of Mn . ��

Theorem 9 Let f : M3 → Q4
s (c) be a holonomic hypersurfacewhose associated pair

(v, V ) satisfies (4) (respectively, (3)) and f ′ : M3 → Q4
s (c) a Ribaucour transform

of f determined by a solution (γ1, γ2, γ3, v
′
1, v

′
2, v

′
3, ϕ, ψ, β) of system (9). If the
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associated pair (v′, V ′) of f ′ also satisfies (4) (respectively, (3)), then

� := ϕ

3∑

j=1

δ jv
′
j V j − εsβ

⎛

⎝K −
3∑

j=1

δ jv jv
′
j

⎞

⎠ = 0, (22)

with K = ε̂ (respectively, K = 0). Conversely, let (γ1, γ2, γ3, v
′
1, v

′
2, v

′
3, ϕ, ψ, β) be

a solution of the linear system of PDE’s obtained by adding Eq. (18) to system (9). If
(12), (22) and

3∑

i=1

δiv
′
i
2 = K , (23)

where K = ε̂ (respectively, K = 0), are satisfied at some point of M3, then (they
are satisfied at every point of M3 and) the pair (v′, V ′) associated to the Ribaucour
transform of f determined by such a solution also satisfies (4) (respectively, (3)).

Proof Let (v′, V ′) be the pair associated to f ′. Then, using conditions (4) (respectively,
(3)), we obtain

3∑

j=1

δ j V
′
j
2 −

3∑

j=1

δ j V j
2 =

3∑

j=1

δ j (V
′
j − Vj )(V

′
j + Vj )

= εsβ

ϕ

3∑

j=1

δ j (v j − v′
j )

(

2Vj + εsβ

ϕ
(v j − v′

j )

)

= εsβ

ϕ

⎛

⎝2
3∑

j=1

δ j V j (v j − v′
j ) + εsβ

ϕ

3∑

j=1

δ j (v j − v′
j )
2

⎞

⎠

= εsβ

ϕ2

⎛

⎝−2� + εsβ

⎛

⎝
3∑

j=1

δ jv
′
j
2 − K

⎞

⎠

⎞

⎠ , (24)

where K = ε̂ (respectively, K = 0). If the pair (v′, V ′) associated to f ′ satisfies (4)
(respectively, (3)), then (23) holds, as well as

3∑

j=1

δ jv
′
j V

′
j = 0 (25)

and
3∑

j=1

δ j V
′
j
2 = C, (26)

where C = ε̃(c − c̃) (respectively, C = 1). It follows from (24) that (22) holds.
Conversely, let (γ1, γ2, γ3, v′

1, v
′
2, v

′
3, ϕ, ψ, β) be a solution of the linear system of

PDE’s obtained by adding Eq. (18) to system (9). If (12), (23) and (22) are satisfied
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at some point of Mn , then they are satisfied at every point of Mn by Proposition 7.
Then, Eqs. (23), (22) and (24) imply that (26) holds. On the other hand, using (14) we
obtain

3∑

j=1

δ jv
′
j V

′
j =

3∑

j=1

δ jv
′
j V j + εsβ

ϕ

3∑

j=1

δ jv
′
jv j − εsβ

ϕ

3∑

j=1

δ jv
′
j
2

=
3∑

j=1

δ jv
′
j V j − εsβ

ϕ
(K −

3∑

j=1

δ jv
′
jv j )

= ϕ−1� = 0

by (23) and (22). Thus the pair (v′, V ′) associated to f ′ also satisfies (4) (respectively,
(3)). ��

4.1 Explicit Solutions of Problem ∗

We now use Theorem 9 to compute explicit examples of pairs of isometric immersions
f : M3 → Q4

s (c) and f̃ : M3 → Q4
s̃ (c̃), c �= c̃,with three distinct principal curvatures.

First notice that, if c = 0 (respectively, c �= 0) and (v, h, V ) is a solution of system
(2) on a simply connected open subsetU ⊂ R3 with vi �= 0 everywhere for 1 ≤ i ≤ 3,
then, in order to determine the corresponding immersion f : U → R4

s (respectively,
f : U → Q4

s (c) ⊂ R5
s+ε0

, where ε0 = c/|c|), one has to integrate the system of PDE’s

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i)
∂ f

∂ui
= vi Xi , (ii)

∂Xi

∂u j
= hi j X j , i �= j,

(iii)
∂Xi

∂ui
= −∑

k �=i hki Xk + εsVi N − cvi f,

(iv)
∂N

∂ui
= −Vi Xi , 1 ≤ i ≤ 3,

(27)

with initial conditions X1(u0), X2(u0), X3(u0), N (u0), f (u0) at some point u0
∈ U chosen so that the set {X1(u0), X2(u0), X3(u0), N (u0)} (respectively, {X1(u0),
X2(u0), X3(u0), N (u0), |c|1/2 f (u0)}) is an orthonormal basis of R4

s (respectively,
R5
s+ε0

).
The idea for the construction of explicit examples is to start with trivial solutions

(v, h, V ) of system (2). If ε̂ = 1, one can start with the solution (v, h, V ) of system
(2), with (δ1, δ2, δ3) = (1,− 1, 1), for which v = (1, 0, 0), h = 0 and V is either√−C(0, 1, 0) or

√
C(0, 0, 1), corresponding to C < 0 or C > 0, respectively. If

ε̂ = − 1 and C > 0, we may start with the solution (v, h, V ) of system (2), with
(δ1, δ2, δ3) = (1,− 1, 1), for which v = (0, 1, 0), h = 0 and V = √

C(0, 0, 1),
whereas for C < 0 we take (δ1, δ2, δ3) = (− 1,− 1,− 1), v = (0, 0, 1), h = 0 and
V = √−C(1, 0, 0). Even though, for the corresponding solution (X1, X2, X3, N , f )
of system (27), themap f : U → Q4

s (c) is not an immersion, themap f ′ : U → Q4
s (c)
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obtained by applying Theorem 9 to it does define a hypersurface of Q4
s (c), which is

therefore a solution of Problem ∗.
In the following, we consider the case in which ε̂ = 1 and C < 0, the others being

similar. We take (v, h, V ) as the solution of system (2), with (δ1, δ2, δ3) = (1,− 1, 1),
for which v = (1, 0, 0), h = 0 and V = √−C(0, 1, 0).

If c = 0, the corresponding solution of system (27) with initial conditions

(X1(0), X2(0), X3(0), N (0), f (0)) = (E1, E2, E3, εE4, 0)

is given by

f = f (u1) = u1E1, X1 = E1, X3 = E3,

X2 =
{
cosh au2E2 + sinh au2E4, if εs = − 1,
cos au2E2 + sin au2E4, if εs = 1,

(28)

and

N =
{− sinh au2E2 − cosh au2E4, if εs = − 1,

− sin au2E2 + cos au2E4, if εs = 1,
(29)

where a = √−C . If c �= 0, the corresponding solution of system (27) with initial
conditions

(X1(0), X2(0), X3(0), N (0), f (0)) = (E1, E2, E3, E4, |c|− 1/2E5)

is given by

f = f (u1) =
{

1√
c
(cos

√
c u1E5 + sin

√
c u1E1), if c > 0,

1√−c
(cosh

√−c u1E5 + sinh
√−c u1E1), if c < 0,

(30)

X1 =
{− sin

√
c u1E5 + cos

√
c u1E1, if c > 0,

sinh
√−c u1E5 + cosh

√−c u1E1, if c < 0,
(31)

X3 = E3 and X2, N as in (28) and (29), respectively.
We now solve system (9) for (v, h, V ) as in the preceding paragraph. Notice that

(11) and (19), with K = 0 (respectively, K = 1) in (11) (respectively, (19)), reduce,
respectively, to

2ϕψ =
∑

i

γ 2
i + εsβ

2 + cϕ2 (32)

and
v′2

2 = v′2
1 + v′2

3 − 1. (33)

We also impose that

− aϕv′
2 = εsβ(1 − v′

1), (34)
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which corresponds to the function � in (22) vanishing everywhere. It follows from
equations (i), (ii) and (iv) of system (9) that ϕ, γ j and β depend only on u1, u j and u2,
respectively. Equation (iii) then implies that there exist smooth functions φi = φi (ui ),
1 ≤ i ≤ 3, such that

(δ1i − v′
i )ψ = φi . (35)

Replacing (35) in (33) gives

ψ = φ2
1 − φ2

2 + φ2
3

2φ1
. (36)

Multiplying (34) by ψ and using (35) yields

aϕφ2 = εsβφ1,

hence there exists K �= 0 such that

β = εs

K
φ2 and ϕ = 1

Ka
φ1. (37)

It follows from (i) and (iv) that

γ1 = 1

Ka
φ′
1 and γ2 = − 1

Ka
φ′
2 (38)

where φ′
i stands for the derivative of φi (with respect to ui ). Using (v) for i = 3, (35)

and the second equation in (37) we obtain that

γ3 = 1

Ka
φ′
3.

Then, it follows from (iii), (35), the first equation in (38) and the second one in (37)
that

φ′′
1 = (Ka − c)φ1. (39)

Similarly,
φ′′
2 = −(εsa

2 + Ka)φ2 and φ′′
3 = Kaφ3. (40)

Moreover, by (32) we must have

(φ′2
1 − (Ka − c)φ2

1) + (φ′2
2 + (εsa

2 + Ka)φ2
2) + (φ′2

3 − Kaφ2
3) = 0. (41)

Notice that each of the expressions under brackets in the preceding equation is constant,
as follows from (39) and (40).

We compute explicitly the corresponding hypersurface given by (13) when c = 0,
c̃ = 1, εs = 1 = ε̃ and K = 1. In this case we have C = − 1 and a = 1, hence
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Eqs. (39) and (40) yield

⎧
⎨

⎩

φ1 = A11 cosh u1 + A12 sinh u1,
φ2 = A21 cos

√
2 u2 + A22 sin

√
2 u2,

φ3 = A31 cosh u3 + A32 sinh u3,

where Ai j ∈ R, 1 ≤ i, j ≤ 3, satisfy

A2
12 − A2

11 + 2(A2
21 + A2

22) + A2
32 − A2

31 = 0,

in view of (41). Assuming, say, that

A2
12 − A2

11 < 0 and A2
32 − A2

31 < 0,

we may write A11 = ρ1 cosh θ1, A12 = ρ1 sinh θ1, A21 = ρ2 sin θ2, A22 = ρ2 cos θ2,
A31 = ρ3 cosh θ3 and A32 = ρ3 sinh θ3 for some ρi > 0 and θi ∈ R, 1 ≤ i ≤ 3. Then

⎧
⎨

⎩

φ1 = ρ1 cosh(u1 + θ1),

φ2 = ρ2 sin(
√
2 u2 + θ2),

φ3 = ρ3 cosh(u3 + θ3),

with

2ρ2
2 = ρ2

1 + ρ2
3 ,

and we can assume that θi = 0 after a suitable change ui �→ ui +u0i of the coordinates
ui , 1 ≤ i ≤ 3. Setting ρ = ρ2, we can write ρ1 = √

2ρ cos θ and ρ3 = √
2ρ sin θ for

some θ ∈ [0, 2π ]. Thus
⎧
⎨

⎩

φ1 = √
2ρ cos θ cosh u1,

φ2 = ρ sin
√
2 u2,

φ3 = √
2ρ sin θ cosh u3,

and the coordinate functions of the corresponding one-parameter family (with θ as the
parameter) of hypersurfaces f ′ = f ′

θ : U → R4 are

f ′
1 = u1 − 2gh cos θ sinh u1, f ′

2 = gh(2 cos
√
2u2 cos u2 + √

2 sin
√
2u2 sin u2),

f ′
3 = −2gh sin θ sinh u3, f ′

4 = gh(2 cos
√
2u2 sin u2 − √

2 sin
√
2u2 cos u2),

where
g = 2 cos θ cosh u1 (42)

and
h−1 = 2 cos2 θ cosh2 u1 − sin2

√
2u2 + 2 sin2 θ cosh2 u3. (43)
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To determine the immersion f̃ ′ : U → S4 that has the same induced metric as
f ′, we start with the solution (ṽ, h̃, Ṽ ) of system (2), (δ1, δ2, δ3) = (1,− 1, 1) and c
replaced by c̃ = 1, given by ṽ = v = (1, 0, 0), h̃ = h = 0 and Ṽ = (0, 0, 1), which
satisfies conditions (4) with ε̂ = 1 and ε̃ = − 1.

The corresponding solution (X̃1, X̃2, X̃3, Ñ , f̃ ) of system (27), with ε = ε̃ = 1,
c = c̃ = 1 and initial conditions

(X̃1(0), X̃2(0), X̃3(0), Ñ (0), f̃ (0)) = (E1, E2, E3, E4, E5)

is given by

f̃ = f̃ (u1) = cos u1E5 + sin u1E1, (44)

X̃1 = − sin u1E5 + cos u1E1, X̃2 = E2, (45)

X̃3 = cos u3E3 + sin u3E4 and Ñ = − sin u3E3 + cos u3E4. (46)

Arguing as before, we solve system (9) system together with Eqs. (11) and (19),
which now become

2ϕ̃ψ̃ =
∑

i

γ̃ 2
i + β̃2 + ϕ̃2 (47)

and
ṽ′2

2 = ṽ′2
1 + ṽ′2

3 − 1. (48)

We also impose that

ϕ̃ṽ′
3 = β̃(1 − ṽ′

1), (49)

which corresponds to the function � in (22) vanishing everywhere. We obtain

ψ̃ = φ̃2
1 − φ̃2

2 + φ̃2
3

2φ̃1
, (δi1 − ṽ′

i )ψ̃ = φ̃i , (50)

β̃ = 1

K̃
φ̃3, ϕ̃ = − 1

K̃
φ̃1, (51)

γ̃1 = − 1

K̃
φ̃′
1, γ̃2 = 1

K̃
φ̃′
2 and γ̃3 = − 1

K̃
φ̃′
3 (52)

for some K̃ ∈ R, where the functions φ̃i = φ̃i (ui ) satisfy

φ̃′′
1 = −(1 + K̃ )φ̃1, φ̃′′

2 = K̃ φ̃2 φ̃′′
3 = −(1 + K̃ )φ̃3 (53)

and
(φ̃′2

1 + (1 + K̃ )φ̃2
1) + (φ′2

2 − K̃ φ̃2
2) + (φ′2

3 + (1 + K̃ )φ̃2
3) = 0. (54)

Notice that each of the expressions under brackets in the preceding equation is constant,
as follows from (53). Notice also that, for K̃ = −2, the two preceding equations
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coincide with (39), (40) and (41) for 1 = K = a = ε and c = 0, hence f ′ and
f̃ ′ : U → S4 ⊂ R5 share the same induced metric

ds2 =
3∑

i=1

v′
i
2du2i

by (35) and the second equation in (50), where the functions v′
i = ṽ′

i , 1 ≤ i ≤ 3, are
given explicitly by

v′
1
2 = ρ(−2 cos2 θ cosh2 u1 + 2 sin2 θ cosh2 u3 − sin2

√
2u2),

v′
2
2 = 8ρ(cos2 θ cosh2 u1 sin

2
√
2u2),

v′
3
2 = 4 sin2 2θ cosh2 u1 cosh

2 u3,

with

ρ−1 = 2 cos2 θ cosh2 u1 + 2 sin2 θ cosh2 u3 − sin2
√
2u2.

The coordinate functions of f̃ ′ are

f̃ ′
1 = sin u1 − gh cos θ(cos u1 sinh u1 + sin u1 cosh u1)
f̃ ′
2 = gh cos

√
2u2

f̃ ′
3 = −gh sin θ(sin u3 cosh u3 + cos u3 sinh u3)
f̃ ′
4 = gh sin θ(cos u3 cosh u3 − sin u3 sinh u3)
f̃ ′
5 = cos u1 + gh cos θ(sin u1 sinh u1 − cos u1 cosh u1)

(55)

with g and h given by (42) and (43), respectively.

4.2 Examples of Conformally Flat Hypersurfaces

One can also useTheorem9 to compute explicit examples of conformally flat hypersur-
faces f : M3 → Q4

s (c) with three distinct principal curvatures. It suffices to consider
the case c = 0, because any conformally flat hypersurface f : M3 → Q4

s (c), c �= 0,
is the composition of a conformally flat hypersurface g : M3 → R4

s with an “inverse
stereographic projection”.

We start with the trivial solution v = (0, 1, 1), V = (1, 0, 0) and h = 0 of system
(2), for which the corresponding solution of system (27) with initial conditions

(X1(0), X2(0), X3(0), N (0), f (0)) = (E1, E2, E3, E4, 0)

is given by

f = f (u2, u3) = u2E2 + u3E3, X2 = E2, X3 = E3,

X1 =
{
cosh u1E1 + sinh u1E4, if εs = − 1,
cos u1E1 + sin u1E4, if εs = 1,

(56)
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and

N =
{
sinh u1E1 + cosh u1E4, if εs = − 1,
− sin u1E1 + cos u1E4, if εs = 1.

(57)

Even though this solution does not correspond to a three-dimensional hypersurface,
one can still apply Theorem 9. We solve system (9) for (v, h, V ) as in the preceding
paragraph. Equations (11) and (19), with K = 0 in both equations, become

2ϕψ =
∑

i

γ 2
i + εsβ

2 (58)

and
v′2

2 = v′2
1 + v′2

3. (59)

We also impose that

ϕv′
1 = −εsβ

(
v′
3 − v′

2

)
, (60)

which corresponds to the function � in (22) vanishing everywhere. It follows from
(iii) that

v′
1ψ = β − ∂γ1

∂u1
.

Since the right-hand-side of the preceding equation depends only on u1 by (ii) and
(iv), there exists a smooth function φ1 = φ1(u1) such that

v′
1ψ = φ1. (61)

Similarly,
(1 − v′

i )ψ = φi (62)

for some smooth functions φi = φi (ui ), 2 ≤ i ≤ 3. In particular,

(v′
2 − v′

3)ψ = φ3 − φ2. (63)

Multiplying (60) by ψ and using (61) and (63) yields

ϕ = 1

K
(φ3 − φ2) (64)

and
β = εs

K
φ1 (65)

for some K ∈ R. On the other hand, replacing (61) and (62) in (59), and using (63),
we obtain

ψ = φ2
1 − φ2

2 + φ2
3

2(φ3 − φ2)
. (66)
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It follows from (i) and (64) that

γ2 = − 1

K
φ′
2 and γ3 = 1

K
φ′
3,

whereas (iv) and (65) yield

γ1 = − 1

K
φ′
1. (67)

We obtain from (iii), (61), (65) and (67) that

φ′′
1 = (K − εs)φ1. (68)

Similarly,
φ′′
2 = −Kφ2 and φ′′

3 = Kφ3. (69)

Moreover, by (58) we must have

(φ′2
1 − (K − εs)φ

2
1) + (φ′2

2 + Kφ2
2) + (φ′2

3 − Kφ2
3) = 0. (70)

Notice that each of the expressions under brackets in the preceding equation is constant,
as follows from (68) and (69).

The conformally flat hypersurface given by (13) (with c = 0) has coordinate func-
tions

f ′
1 = (Kψ)−1(φ′

1 cos u1 + φ1 sin u1), f ′
2 = u2 + (Kψ)−1φ′

2,

f ′
3 = u3 − (Kψ)−1φ′

3 and f ′
4 = (Kψ)−1(φ′

1 sin u1 − φ1 cos u1),

if εs = 1, and

f ′
1 = (Kψ)−1(φ′

1 cosh u1 + φ1 sinh u1), f ′
2 = u2 + (Kψ)−1φ′

2,

f ′
3 = u3 − (Kψ)−1φ′

3 and f ′
4 = (Kψ)−1(φ′

1 sinh u1 + φ1 cosh u1),

if εs = − 1, with ψ as in (66). We compute them explicitly for the particular case
εs = 1 and K < 0, the others being similar. In this case we have

⎧
⎨

⎩

φ1 = A11 cos
√|K − 1| u1 + A12 sin

√|K − 1| u1,
φ2 = A21 cosh

√|K | u2 + A22 sinh
√|K | u2,

φ3 = A31 cos
√|K | u3 + A32 sin

√|K | u3,

with Ai j ∈ R for 1 ≤ i, j ≤ 3, and Eq. (70) reduces to

|K − 1|(A2
11 + A2

12) + |K |(A2
22 − A2

21) + |K |(A2
31 + A2

32) = 0.

This implies that

A2
22 − A2

21 < 0,
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hence we may write A21 = ρ2 cosh θ2 and A22 = ρ2 sinh θ2 for some ρ2 > 0 and
θ2 ∈ R. We may also write A11 = ρ1 cos θ1, A12 = ρ1 sin θ1, A31 = ρ3 cos θ3 and
A32 = ρ3 sin θ3 for some ρ1, ρ3 > 0 and θ1, θ3 ∈ [0, 2π ]. Then

⎧
⎨

⎩

φ1 = ρ1 cos(
√|K − 1| u1 − θ1),

φ2 = ρ2 cosh(
√|K | u2 + θ2),

φ3 = ρ3 cos(
√|K | u3 − θ3),

with

|K |ρ2
2 = |K − 1|ρ2

1 + |K |ρ2
3 ,

and we can assume that θi = 0 after a suitable change ui �→ ui +u0i of the coordinates

ui , 1 ≤ i ≤ 3. Setting ρ = ρ2, we can write ρ1 =
√ |K |

|K−1|ρ cos θ and ρ3 = ρ sin θ

for some θ ∈ [0, 2π ]. Thus
⎧
⎪⎨

⎪⎩

φ1 =
√ |K |

|K−1|ρ cos θ cos(
√|K − 1| u1),

φ2 = ρ cosh(
√|K | u2),

φ3 = ρ sin θ cos(
√|K | u3).

For instance, for K = − 1weobtain the one-parameter family (with θ as the parameter)
of conformally flat hypersurfaces of R4 whose coordinate functions are given by

f ′
1 = 2 cos θ(

√
2 cos

√
2u1 sin u1 − 2 sin

√
2u1 cos u1)gh,

f ′
2 = u2 + 4 sinh u2gh, f ′

3 = u3 + 4 sin θ sin u3gh

and

f ′
4 = −2 cos θ(2 sin

√
2u1 sin u1 + √

2 cos
√
2u1 cos u1)gh

where

g = cosh u2 − sin θ cos u3

and

h−1 = cos2 θ cos2
√
2u1 − 2 cosh2 u2 + 2 sin2 θ cos2 u3.

One can verify by direct computations that (u1, u2, u3) are principal coordinates
for the above hypersurfaces, and that their associated pairs (v, V ) satisfy conditions
(3). Therefore, they are indeed conformally flat hypersurfaces inR4 with three distinct
principal curvatures.
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