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Abstract We prove that complete submanifolds, on which the weak Omori-Yau maximum
principle for the Hessian holds, with low codimension and bounded by cylinders of small
radius must have points rich in large positive extrinsic curvature. The lower the codimension
is, the richer suchpoints are. The smaller the radius is, the larger such curvatures are. Thiswork
unifies and generalizes several previous results on submanifolds with nonpositive extrinsic
curvature.
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1 Introduction

The results of this article show that isometric immersions f : Mm → M̃n with low codimen-
sion and nonpositive extrinsic curvature at any pointmust satisfy strong geometric conditions.
The simplest result along this line is that a two-dimensional surface with nonpositive curva-
ture in R

3 cannot be compact. This is a consequence of the well-known fact that at a point
of maximum of a distance function on a compact surface in R

3, the Gaussian curvature must
be positive. It turns out that the simple idea in the proof of this elementary fact has far-
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408 S. Canevari et al.

reaching generalizations for non necessarily compact submanifolds in fairly general ambient
Riemannian manifolds.

One of the main tools to extend this idea to higher dimensions and codimensions is an
algebraic lemma due to Otsuki [13], which will be stated in next section. On the other hand,
a key ingredient to handle the noncompact case is a maximum principle due to Omori [11]
and generalized by Pigola-Rigoli-Setti [14]. Using this principle, Alías-Bessa-Dajczer [2]
obtained an estimate for the mean curvature of an isometric immersion f : Mm → Nn+l =
Pn ×R

l , under some assumptions on the manifold Pn , whose projection onto the first factor
is bounded, the so-called cylindrically bounded submanifolds. More recently, Alías-Bessa-
Montenegro [3] have provided an estimate for the extrinsic curvatures of such submanifolds.

In the statement belowand the sequel,ρ stands for the distance function to a given reference
point in Mm , log( j) is the j-th iterate of the logarithm and t � 1 means that t is sufficiently
large. Also BP [R] denotes the closed geodesic ball with radius R centered at a point o of
Pn and injP (o) is the injectivity radius of Pn at o. Finally, KM (σ ) denotes the sectional
curvature of Mm at a point x ∈ Mm along the plane σ ⊂ TxM , and similarly for Nn+l ,
K f (σ ) := KM (σ ) − KN ( f∗σ) is the extrinsic sectional curvature of f at x along σ and
K rad

P is the radial sectional curvatures of Pn with respect to o, that is, the sectional curvatures
of tangent planes to Pn containing the vector gradPr , where r is the distance function to o
in Pn .

Theorem 1 (Alías-Bessa-Montenegro, [3]) Let f : Mm → Nn+l = Pn×R
l be an isometric

immersion with codimension p = n + l − m < m − l of a complete Riemannian manifold
whose scalar curvature satisfies

sM (x) ≥ −A2ρ2 (x)
J∏

j=1

(
log( j) (ρ (x))

)2
, ρ (x) � 1, (1.1)

for some constant A > 0 and some integer J ≥ 1. Assume that f (M) ⊂ BP [R] × R
l , with

0 < R < min
{
injP (o) , π

2
√
b

}
, where π

2
√
b
is replaced by +∞ if b ≤ 0. If K rad

P ≤ b in

BP [R], then
sup
M

K f ≥ C2
b (R) , (1.2)

where

Cb(t) =

⎧
⎪⎨

⎪⎩

√
b cot(

√
bt) if b > 0 and 0 < t <

π

2
√
b
,

1
t if b = 0 and t > 0,√−b coth(

√−bt) if b < 0 and t > 0.

Moreover,

sup
M

KM ≥ C2
b (R) + inf

BP [R] KP . (1.3)

Remark 1 The geometry of the Euclidean factorRl plays essentially no role in the proof of the
above result. Indeed, estimate (1.3) remains true if the former is replaced by any Riemannian
manifold Ql , which need not be even complete, whereas for (1.2) the only requirement is
that KQ be bounded from above (see comment below Theorem 2).

It is worth pointing out that the codimension restriction p < m − l cannot be relaxed.
Actually, it implies that n > 2 and m > l + 1. In particular, in a three-dimensional ambient
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Submanifolds with nonpositive extrinsic curvature 409

space N 3, that is, n + l = 3, we have that l = 0, and therefore f (M) ⊂ BP [R]. In fact, the
flat cylinder S1 (R) × R ⊂ BR2 [R] × R shows that the restriction p < m − l is necessary.

On the other hand, estimates (1.2) and (1.3) are sharp. Indeed, the function Cb is well
known: the geodesic sphere ∂BQ

m
b

(R) of radius R in the simply connected complete space
formQ

m
b of constant sectional curvature b, with R < π

2
√
b
if b > 0, is an umbilical hypersur-

face with principal curvatures being precisely Cb(R). It shows that its extrinsic and intrinsic
sectional curvatures are constant and equal to C2

b (R) and C2
b (R) + b, respectively, the latter

following from the former by the Gauss equation. Then, for every n > 2 and l ≥ 0 we
can consider Mm−1+l = ∂BQ

m
b
(R) × R

l and take f : Mm−1+l → BQ
m
b
[R] × R

l to be the
canonical isometric embedding. Therefore supM K f and supM KM are the constant extrinsic
and intrinsic sectional curvatures C2

b (R) and C2
b (R) + b of ∂BQ

m
b
(R), respectively.

The purpose of this paper is to provide amore accurate conclusion than the one of Theorem
1 by precising how much extrinsic (respectively, intrinsic) sectional curvature satisfying
estimate (1.2) [(respectively (1.3)] appears depending on how low the codimension is. The
idea is that the lower the codimension is, the more extrinsic (respectively, intrinsic) sectional
curvature satisfying (1.2) [(respectively (1.3)] will appear. Our main result can be stated as
follows.

Theorem 2 Let f : Mm → Nn+l = Pn × Ql be an isometric immersion with codimension
p = n+l−m < m−l of a complete Riemannianmanifold whose radial sectional curvatures
satisfy

K rad
M (x) ≥ −A2ρ2 (x)

J∏

j=1

(
log( j) (ρ (x))

)2
, ρ (x) � 1, (1.4)

for some constant A > 0 and some integer J ≥ 1. Assume that f (M) ⊂ BP [R] × Ql, with

0 < R < min
{
injP (o) , π

2
√
b

}
, where π

2
√
b
is replaced by +∞ if b ≤ 0. If K rad

P ≤ b in

BP [R], then

sup
M

min

{
max
σ⊂W

K f (σ ) : dimW > p + l

}
≥ C2

b (R) . (1.5)

Moreover,

sup
M

min

{
max
σ⊂W

KM (σ ) : dimW > p + l

}
≥ C2

b (R) + inf
BP [R] KP . (1.6)

The estimates of Theorem 2 are clearly better than the ones of Theorem 1. Actually, (1.5)
and (1.6) reduce to (1.2) and (1.3), respectively, only in the case of the highest allowed
codimension p = m − 1− l. On the other hand, although we make a stronger assumption on
the curvature of Mm , if (1.1) holds but (1.4) does not, then, since the scalar curvature is an
average of sectional curvatures, we have that supM KM = +∞, and hence (1.3) is trivially
satisfied. Moreover, KP is clearly bounded in BP [R], thus if also KQ is bounded from above,
we conclude that supM K f = +∞ by the Gauss equation, so that (1.2) also holds trivially
in this case. Finally, note that the same example considered below Theorem 1 shows that our
estimates (1.5) and (1.6) are also sharp.

Remark 2 Theorem 2 is a special case of the much stronger result, Theorem 12, given in
Sect. 3.
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410 S. Canevari et al.

Let f : Mm → Nn+l = Pn × Ql be an isometric immersion. Recall that f is said to
be cylindrically bounded if there exists a (closed) geodesic ball BP [R] of Pn , centered at a
point o ∈ Pn with radius R > 0, such that

f (M) ⊂ BP [R] × Ql . (1.7)

Otherwise, we say that f is cylindrically unbounded. Denote by R f the extrinsic radius of
a cylindrically bounded isometric immersion f (from o), that is, the smallest R for which
(1.7) holds. As a consequence of Theorem 2, we have the following versions of the extrinsic
radius results of Alías-Bessa-Montenegro [3].

Corollary 1 Let f : Mm → Nn+l = Pn ×Ql be an isometric immersion with codimension
p = n + l − m < m − l of a complete Riemannian manifold whose radial sectional
curvatures satisfy (1.4). Assume that Pn is a complete Riemannian manifold with a pole and
radial sectional curvatures K rad

P ≤ b ≤ 0. If f is cylindrically bounded, then

sup
M

min

{
max
σ⊂W

K f (σ ) : dimW > p + l

}
> −b

and the extrinsic radius satisfies

R f ≥ C−1
b

(√

sup
M

min

{
max
σ⊂W

K f (σ ) : dimW > p + l

})
. (1.8)

In particular, if

sup
M

min

{
max
σ⊂W

K f (σ ) : dimW > p + l

}
≤ −b,

then f is cylindrically unbounded.

Corollary 2 Let f : Mm → Nn+l = S
n × Ql be an isometric immersion with codimension

p = n+l−m < m−l of a complete Riemannianmanifold whose radial sectional curvatures
satisfy (1.4). If

sup
M

min

{
max
σ⊂W

KM (σ ) : dimW > p + l

}
≤ 1,

then

R f ≥ π

2
. (1.9)

On the other hand, a sharp lower bound for the Ricci curvature of bounded complete
Euclidean hypersurfaces was obtained by Leung [8] and extended by Veeravalli [21] to
nonflat ambient space forms.

Theorem 3 (Veeravalli, [21]) Let f : Mn → Q
n+1
b be a complete hypersurface with sec-

tional curvature bounded away from −∞ such that f (M) ⊂ B
Q
n+1
b

[R], with R < π

2
√
b
if

b > 0. Then

sup
M

RicM ≥ C2
b (R) + b, (1.10)

where RicM is the Ricci curvature of Mn.
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Submanifolds with nonpositive extrinsic curvature 411

Theorem2also gives an improvement of the above result,wherewe consider hypersurfaces
of much more general ambient spaces and obtain that estimate (1.10) actually holds for the
scalar curvature. This shows the unifying character of our result.

Corollary 3 Let f : Mn → Pn+1 be a complete hypersurface whose radial sectional
curvatures satisfy (1.4). Assume that f (M) ⊂ BP [R], with R as in Theorem 2. If K rad

P ≤ b
in BP [R], then

sup
M

sM ≥ C2
b (R) + inf

BP [R] KP .

Again observe that for the geodesic sphere Mn = ∂
Q
n+1
b

(R) of radius R in Q
n+1
b the

above inequality is in fact an equality. Corollary 3 leads to similar extrinsic radius results to
Corollaries 1 and 2 and, in particular, a criterion of unboundness:

Corollary 4 Let f : Mn → Pn+1 be a complete hypersurface whose radial sectional
curvatures satisfy (1.4). Assume that Pn+1 is a completeRiemannianmanifoldwith a pole and
sectional curvatures KP ≥ c and K rad

P ≤ b ≤ 0. If f (M) is bounded, then supM sM > c− b
and

R f ≥ C−1
b

(√
sup
M

sM − c

)
. (1.11)

In particular, if supM sM ≤ c − b, then f (M) is unbounded.

Corollary 5 Let f : Mn → S
n+1 be a complete hypersurface whose radial sectional cur-

vatures satisfy (1.4). If supM sM ≤ 1, then

R f ≥ π

2
. (1.12)

Finally, we also generalize in the same spirit of Theorem 2 the second part of the work
of Alías-Bessa-Montenegro [3], concerning proper complete cylindrically bounded subman-
ifolds with the norm of the second fundamental form with certain controlled growth.

Theorem 4 Let f : Mm → Nn+l = Pn × Ql be a proper isometric immersion with
codimension p = n + l − m < m − l of a complete Riemannian manifold. Assume that
f (M) ⊂ BP [R] × Ql, with R as in Theorem 2. If K rad

P ≤ b in BP [R], Ql is a complete
Riemannian manifold with a pole and

sup
f −1(BP [R]×∂BQ (t))

‖α‖ ≤ ς (t) , (1.13)

where α is the second fundamental form of f and ς : [0,+∞) → R is a positive function
satisfying

∫ +∞
0 1/ς = +∞, then (1.5) and (1.6) hold.

For hypersurfaces, the growth rate of the norm of the second fundamental form can be
improved as follows.

Theorem 5 Let f : Mn → Nn+1 = Pn+1−l × Ql, n − l > 1, be a properly immersed
complete hypersurface with f (M) ⊂ BP [R] × Ql, with R as in Theorem 2. Suppose that
Nn+1 satisfies the assumptions as in Theorem 4 and the second fundamental form α satisfies

sup
f −1(BP [R]×∂BQ (t))

‖α‖ ≤ ς2 (t) , (1.14)
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412 S. Canevari et al.

where ς : [0,+∞) → R is a positive function satisfying
∫ +∞

0

1

ς
= +∞ and lim sup

t→+∞
1

ς (t)
< +∞.

Then (1.5) and (1.6) hold.

2 Preliminaries

Ourmain tools to build the proof ofTheorem2 areOtsuki’s Lemma, theOmori-Yaumaximum
principle and the Hessian comparison theorem, which for the sake of organization will be
presented in two subsections.

2.1 Otsuki’s Lemma

Throughout this subsection, V n and W p will be real vector spaces of dimensions n and p,
respectively, endowed with positive definite inner products. For a symmetric bilinear form
α : V n × V n → W p , we denote

Kα (X, Y ) = 〈α (X, X) , α (Y, Y )〉 − ‖α (X, Y )‖2 ,

for any pair of vectors X, Y ∈ V n . If σ is a two-dimensional subspace of V n , we define

Kα (σ ) = Kα (X, Y )

‖X ∧ Y‖2 ,

where {X, Y } is any basis of σ and ‖X ∧ Y‖2 = ‖X‖2 ‖Y‖2 − 〈X, Y 〉2. Given an isometric
immersion f : Mm → M̃n with second fundamental form α, then for any x ∈ Mm and any
plane σ ⊂ TxM the Gauss equation yields

Kα (σ ) = K f (σ ) .

A basic tool in this article is the following algebraic lemma, known as Otsuki’s Lemma
(for a proof see, for instance, [7]).

Lemma 1 Let α : V n × V n → W p be a symmetric bilinear form. Suppose there exists a
real number λ ≥ 0 such that

(i) Kα (σ ) ≤ λ for every plane σ ⊂ V n,
(ii) ‖α (X, X)‖ >

√
λ for every unit vector X ∈ V n.

Then p ≥ n.

Given a symmetric bilinear form α : V n × V n → W p , a vector X ∈ V n is said to be an
asymptotic vector of α if

α (X, X) = 0.

In the next statement and the sequel, we write Kα ≤ 0 (respectively, Kα < 0) as a shorthand
for Kα (σ ) ≤ 0 (respectively, Kα (σ ) < 0) for any plane σ ⊂ V n .

Corollary 6 Let α : V n × V n → W p be a symmetric bilinear form.

(i) If Kα ≤ 0, then any subspace S ⊂ V n, with dim S > p, contains a nonzero asymptotic
vector of α.

123



Submanifolds with nonpositive extrinsic curvature 413

(ii) If Kα < 0, then p ≥ n − 1.

Proof (i) This is just an equivalent way of stating Lemma 1 for λ = 0.
(i i) If there are no nonzero asymptotic vectors of α, the result follows from Lemma 1.
Suppose p < n − 1, and assume that there exists a nonzero vector X0 ∈ V n such that
α (X0, X0) = 0. Denote byU the orthogonal complement to X0 in V n , and consider the
linear map BX0 : U → W p defined by BX0 (Y ) = α (X0, Y ). Since dimU = n−1 > p,
there exists a nonzero vector Y0 ∈ U such that BX0 (Y0) = 0. This fact, together with
α (X0, X0) = 0, contradicts the assumption.

��
The following result is a direct consequence of Corollary 6-(ii).

Theorem 6 Let f : Mn → M̃n+p be an isometric immersion. Assume that there exists a
point x0 ∈ Mn and a subspace Vx0 ⊂ Tx0M with dimension d such that K f (σ ) < 0 along
every plane σ ⊂ Vx0 . Then p ≥ d − 1.

The preceding inequality is sharp, as shown, e.g., by the n-dimensional Clifford torus
in S

2n−1. Theorem 6 comes from a purely algebraic restriction on the “codimension” p of
symmetric bilinear forms α : V n × V n → W p with Kα < 0, which gives its punctual
nature. If, on the other hand, K f (σ ) ≤ 0 in the above statement, it is possible to use
part (i) of Corollary 6 to obtain the stronger restriction p ≥ d , provided that the subspace
Vx0 is free of asymptotic directions. Actually, this is a central idea in the study of the global
implications of nonpositive extrinsic curvature in low codimension. The presence of a certain
amount of nonpositive extrinsic sectional curvature everywhere together with some global
assumption that can guarantee the existence of points without asymptotic directions must
imply codimension restrictions. For compactRiemannianmanifolds, for instance, one obtains
the following generalization of a result for the flat case due to Tompkins [20].

Theorem 7 Let Mn be a compact Riemannian manifold such that at any point x ∈ Mn

there exists a subspace Vx of Tx M with dimension d such that KM (σ ) ≤ 0 for every plane
σ ⊂ Vx . If f : Mn → R

n+p is an isometric immersion, then p ≥ d.

Proof Since Mn is compact, it is well known that there exist a point x0 ∈ Mn and a normal
vector ξ ∈ N f M (x0) such that the shape operator Aξ is positive definite, and in particular
αx0 (X, X) �= 0 for every nonzero vector X ∈ Tx0M . Furthermore, Kαx0

(σ ) ≤ 0 for every
plane σ ⊂ Vx0 by the Gauss equation. The statement then follows from Corollary 6-(i). ��

For the noncompact case, on the other hand,we have the following immediate consequence
of our Corollary 1.

Corollary 7 Let f : Mn → Pn+p be an isometric immersion of a complete Riemannian
manifold whose radial sectional curvatures satisfy (1.4) into a Hadamard manifold. Assume
that at any point x ∈ Mn there exists a subspace Vx of Tx M with dimension d such that
K f (σ ) ≤ 0 for every plane σ ⊂ Vx . If p < d, then f (M) is unbounded.

2.2 Omori-Yau maximum principle and Hessian comparison theorem

The Omori-Yau maximum principle for the Hessian is said to hold on a given Riemannian
manifold Mn if, for any function g ∈ C2 (M) with g∗ = supM g < +∞, there exists a
sequence of points {xk}k∈N in Mn satisfying:
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414 S. Canevari et al.

(i) g (xk) > g∗ − 1
k ,

(ii)
∥∥gradMg (xk)

∥∥ < 1
k ,

(iii) HessMg (xk) (X, X) ≤ 1
k 〈X, X〉 for all X ∈ Txk M .

Such a sequence {xk}k∈N satisfying (i)-(iii) above is called an Omori-Yau Hessian sequence
for g. One says that the Omori-Yau maximum principle holds if the condition on the Hessian
is replaced by a similar one on the Laplacian, namely, if

(iii) 
Mg (xk) ≤ 1
k .

In this case, {xk}k∈N is called an Omori-Yau sequence for g.
The following is a function theoretic characterization of Riemannianmanifolds that satisfy

the Omori-Yau maximum principle for the Hessian. For the proof of this, as well as of the
other results related to the Omori-Yaumaximum principle in this subsection, we refer to [14].

Theorem 8 Assume that the Riemannian manifold Mn supports a nonnegative function
γ ∈ C2 (M) satisfying the following conditions:

(a) γ is proper, that is, γ (x) → +∞ as x → ∞,
(b)

∥∥gradMγ
∥∥ ≤ c

√
γ outside a compact subset of Mn for some constant c > 0,

(c) HessMγ ≤ d
√

γ F
(√

γ
)〈 , 〉 outside a compact subset of Mn, for some d > 0 and

some F ∈ C∞ ([0,+∞)) that satisfies:

(i) F (0) > 0, (ii) F ′ (t) ≥ 0 on [0,+∞) , (iii) 1/
√
F (t) /∈ L1 [0,+∞) .

Then, the Omori-Yau maximum principle for the Hessian holds on Mn.

We point out that, although completeness of Mn is not required in Theorem 8, it is a con-
sequence of the assumptions (a) and (b). Examples of functions satisfying the requirements
in Theorem 8 are given by

F (t) = A2t2
J∏

j=1

(
log( j) t

)2
, t � 1,

where A > 0 is a constant and J ≥ 1 is an integer.
Sometimes, for the applications of the maximum principle as in our paper, the following

weaker version is enough.
The weak Omori-Yau maximum principle for the Hessian is said to hold on a Riemannian

manifold Mn if for any function g ∈ C2 (M) with g∗ = supM g < +∞ there exists a
sequence of points {xk}k∈N satisfying:

(i) g (xk) > g∗ − 1
k ,

(ii) HessMg (xk) (X, X) ≤ 1
k 〈X, X〉 for all X ∈ Txk M .

A sequence {xk}k∈N satisfying (i) and (ii) is called a weak Omori-Yau Hessian sequence for
g.

Riemannian manifolds that satisfy the weak Omori-Yau maximum principle for the
Hessian are characterized as follows.

Theorem 9 Assume that the Riemannian manifold Mn supports a nonnegative function
γ ∈ C2 (M) satisfying the following conditions:

(a) γ is proper,
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Submanifolds with nonpositive extrinsic curvature 415

(b) HessMγ ≤ d
√

γ F
(√

γ
)〈 , 〉 outside a compact subset of Mn, for some d > 0 and

some F ∈ C∞ ([0,+∞)) as in Theorem 8.

Then, the weak Omori-Yau maximum principle for the Hessian holds on Mn.

Accordingly, it is said that theweak Omori-Yau maximum principle holds if (ii) is replaced
by the condition

(ii) 
Mg (xk) ≤ 1
k ,

in which case {xk}k∈N is called a weak Omori-Yau sequence for g.
The function theoretic approach to the Omori-Yau Maximum Principle given in Theorem

8 allows one to apply it in different situations, where the choices of γ and F are suggested by
the geometric setting. For instance, one has the following special case, where as previously
agreed ρ stands for the distance function on a Riemannian manifold Mn to a fixed point.

Theorem 10 Let Mn be a complete noncompact Riemannian manifold. Assume that K rad
M ≥

−F (ρ), where F ∈ C∞ [0,+∞) satisfies the conditions listed in Theorem 8 and is even at
the origin, that is, its derivatives satisfy F (2k+1) (0) = 0 for k ≥ 0. Then, the Omori-Yau
maximum principle for the Hessian holds on Mn.

Remark 3 If we only assume that RicM
(
gradMρ

) ≥ −F (ρ), then the conclusion is that the
Omori-Yau maximum principle holds on Mn .

The last ingredient for the proof of Theorem 2 is the following version of the well-known
Hessian comparison theorem given in [16].

Theorem 11 Let Mn be a Riemannian manifold and o, x ∈ Mn be such that there is a
minimizing geodesic γ joining o and x, and let ρ be the distance function to o. Suppose that
K rad

M ≤ b along γ . If b > 0 assume ρ (x) < π

2
√
b
. Then, we have

HessMρ ≥ Cb (ρ) (〈 , 〉 − dρ ⊗ dρ)

along γ .

3 Proofs

Let f : Mm → M̃n be an isometric immersion between Riemannian manifolds. Given a
function h ∈ C∞(M̃) we set g = h ◦ f ∈ C∞(M). Since

〈gradMg(x), X〉 = 〈gradM̃h( f (x)), f∗X〉
for every x ∈ Mn and X ∈ TxM , we obtain

f∗gradMg(x) =
(
gradM̃ h( f (x))

)T
, (3.1)

where ( )T is the tangent component. An easy computation using the Gauss formula gives
the well-known relation (see e.g. [6]):

HessMg(x)(X, Y ) = HessM̃h( f (x))( f∗X, f∗Y ) + 〈gradM̃ h( f (x)), αx (X, Y )〉 (3.2)
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416 S. Canevari et al.

for all x ∈ Mn and X, Y ∈ TxM , where αx stands for the second fundamental form of f
at x . In particular, taking traces with respect to an orthonormal frame {e1, . . . , em} in TxM
yields


Mg(x) =
m∑

i=1

HessM̃ h( f (x))( f∗ei , f∗ei ) + n〈gradM̃ h( f (x)), H(x)〉,

where H(x) = 1
n

∑m
i=1 αx (ei , ei ) is the mean curvature vector of f at x .

Given an isometric immersion f : Mm → Nn+l = Pn ×Ql , we denote by πP : Nn+l →
Pn and πQ : Nn+l → Ql the projections onto Pn and Ql , respectively. We write (y, z) for
points in Nn+l = Pn × Ql and by abuse of notation denote y = πP ◦ f and z = πQ ◦ f .

Moreover, set

ψb =

⎧
⎪⎨

⎪⎩

1 − cos
(√

bt
)

if b > 0,

t2 if b = 0,
cosh

(√−bt
)

if b < 0,

where t > 0 if b ≤ 0 and 0 < t < π

2
√
b
if b > 0. Henceψ ′′

b = Cbψ
′
b.We define h ∈ C∞ (N )

by h = ψb ◦ r ◦ πP , where r is the distance function on Pn to the reference point o. We call
g = h ◦ f the modified radial function of f .

3.1 Proofs of Theorem 2 and corollaries

As mentioned in Remark 2, Theorem 2 is a consequence of the following stronger result.
Here the algebraic codimension p(x) of an isometric immersion f : Mm → M̃n at x ∈ Mm

is the dimension of its first normal space N1(x) and a sequence of real numbers {pk}k∈N is
said to be strictly bounded from above by another {qk}k∈N if pk < qk for all k ∈ N.

Theorem 12 Let f : Mm → Nn+l = Pn × Ql be an isometric immersion. Assume that

f (M) ⊂ BP [R] × Ql, with 0 < R < min
{
injP (o) , π

2
√
b

}
, where π

2
√
b
is replaced by +∞

if b ≤ 0. If K rad
P ≤ b in BP [R], then

lim inf min

{
max
σ⊂W

K f (σ ) : dim f∗W ∩ Ty(xk )P > p(xk)

}
≥ C2

b (R) (3.3)

for all weak Omori-Yau Hessian sequence {xk}k∈N for the modified radial function of
f with algebraic codimension sequence {p (xk)}k∈N strictly bounded from above by{
dim f∗Txk M ∩ Ty(xk )P

}
k∈N. Furthermore,

lim inf min

{
max
σ⊂W

KM (σ ) : dim f∗W ∩ Ty(xk )P > p(xk)

}
≥ C2

b (R) + inf
BP [R] KP . (3.4)

Proof By the assumption that f (M) ⊂ BP [R]×Ql , the modified radial function g satisfies

g∗ ≤ ψb (R) < +∞,

where we write ( )∗ = supM ( ). Let {xk}k∈N be a weak Omori-Yau Hessian sequence for g,
that is,

(i) g (xk) > g∗ − 1
k ,

(ii) HessMg (xk) ≤ 1
k 〈 , 〉.

123



Submanifolds with nonpositive extrinsic curvature 417

For each k ∈ N, take a tangent subspace Wk ⊂ Txk M such that dim Vk > pk , where
Vk = f −1∗

(
f∗Wk ∩ Tyk P

)
and for simplicity of notation we write pk = p (xk), yk =

y (xk). If the algebraic codimension sequence {pk}k∈N is strictly bounded from above by{
dim f∗Txk M ∩ Tyk P

}
k∈N, then at least Wk = Txk M satisfies the latter condition, so that

the sets on the left-hand side of inequalities (3.3) and (3.4) are nonempty. The idea of the
argument is to use (ii) above and (3.2) to estimate

∥∥αxk (X, X)
∥∥ for X ∈ Vk , and then apply

Lemma 1 to αxk |Vk×Vk . This will imply the estimates in the statement. By (3.1), we have

gradNh ( f (x)) = f∗gradMg (x) +
(
gradNh ( f (x))

)⊥
,

where ( )⊥ denotes the normal component. Note that

gradNh (y, z) = ψ ′
b (r (y)) gradPr (y) . (3.5)

Since h only depends on Pn , we obtain from (3.2) and (3.5) that

HessMg (x) (X, X) = HessPψb ◦ r (y (x)) (XP , XP )

+ψ ′
b (r (y (x))) 〈gradPr (y (x)) , αx (X, X)〉,

where XP = y∗X . Observe that

HessPψb ◦ r (y) (XP , XP ) = ψ ′′
b (r (y)) 〈gradPr (y) , XP 〉2

+ψ ′
b (r (y))HessPr (y) (XP , XP ) .

Since ψ ′′
b = Cbψ

′
b, the last two equations yield

HessMg (x) (X, X) = ψ ′
b (r (y (x))) (Cb (r (y (x))) 〈gradPr (y (x)) , XP 〉2

+〈gradPr (y (x)) , αx (X, X)〉 + HessPr (y (x)) (XP , XP )). (3.6)

Theorem 11 gives

HessPr (y) (Y, Y ) = HessPr (y)
(
Y⊥, Y⊥)

≥ Cb (r (y))
(
‖Y‖2 − 〈gradPr (y) , Y 〉2

)
,

(3.7)

where Y ∈ Ty P and here Y⊥ is defined by the orthogonal decomposition

Y = 〈gradPr (y) , Y 〉gradPr (y) + Y⊥.

Now, since XP = f∗X for any X ∈ Vk , we obtain from (3.6) and (3.7) that

HessMg (xk) (X, X) ≥ ψ ′
b (rk)

(
Cb (rk) ‖X‖2 + 〈gradPr (yk) , αxk (X, X)〉

)

≥ ψ ′
b (rk)

(
Cb (rk) ‖X‖2 − ∥∥αxk (X, X)

∥∥) ,

where rk = r (yk). Hence, by (ii)

1

k
‖X‖2 ≥ ψ ′

b (rk)
(
Cb (rk) ‖X‖2 − ∥∥αxk (X, X)

∥∥)

for every xk and every X ∈ Vk , and therefore,

∥∥αxk (X, X)
∥∥ ≥

(
Cb (rk) − 1

kψ ′
b (rk)

)
‖X‖2 .
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Since g (xk) = ψb (rk) approaches g∗ = ψb (r∗) > 0 by (i) andψb|[0,R] is a homeomorphism
onto its image (recall that R < π

2
√
b
ifb > 0), it follows that rk goes to r∗ > 0, and in particular

ψ ′
b (rk) → ψ ′

b (r∗) > 0. Thus,

Cb (rk) − 1

kψ ′
b (rk)

> 0

for k sufficiently large and, as dim Vk > pk , we can apply Lemma 1 to

αxk |Vk×Vk : Vk × Vk → N1 (xk) .

We obtain a plane σk ⊂ Vk such that, by the Gauss equation,

K f (σk) = Kαxk
(σk) ≥

(
Cb (rk) − 1

kψ ′
b (rk)

)2

.

In particular,

max
σ⊂Wk

K f (σ ) ≥
(
Cb (rk) − 1

kψ ′
b (rk)

)2
,

but since the subspaces Wk ⊂ Txk M satisfying dim f∗ (Wk) ∩ Tyk P > pk have been taken
arbitrarily, we have indeed

min

{
max
σ⊂Wk

K f (σ ) : dim f∗Wk ∩ Tyk P > pk

}
≥
(
Cb (rk) − 1

kψ ′
b (rk)

)2
.

Then (3.3) follows by letting k → +∞. We will now compare the sectional curvatures
KM (σk) and KN ( f∗σk). Since σk ⊂ Vk ⊥ Tzk Q, zk = z (xk), then

KN ( f∗σk) = KP (y∗σk) .

Then, we have that

KM (σk) = K f (σk) + KP (y∗σk)

≥
(
Cb (rk) − 1

kψ ′
b (rk)

)2
+ inf

BP [R]
KP ,

and (3.4) follows by a similar argument. ��
Remark 4 That the maximum and minimum on the left-hand side of (3.3) (and similarly for
(3.4)) are indeed attained can be argued as follows. At each x = xk , the extrinsic sectional
curvature K f = Kαx : G2 (TxM) → R is a continuous function on the Grassmannian
G2 (TxM) of (nonoriented) planes in TxM , and by compactness attains its maximum and
minimum. Since G2 (W ) is a compact subset of G2 (TxM) for any subspace W ⊂ TxM , so
does the restriction K f |W . Let

{
Wj
}
j∈N ⊂ W := {W ⊂ TxM : dim f∗W ∩ Ty(x)P > p (x)

} �= ∅
be a sequence such that

max
σ⊂Wj

K f (σ ) → inf

{
max
σ⊂W

K f (σ ) : W ∈ W
}

,

as j → +∞. After passing to a subsequence we can without loss of generality assume
that all Wj have the same dimension d and converge to some W∞ ∈ Gd (TxM), where
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Submanifolds with nonpositive extrinsic curvature 419

Gd (TxM) denotes the Grassmannian of (nonoriented) d-planes in TxM . Moreover, since f∗
is an isomorphism onto its image, it is clear that the functionW ∈ Gd (TxM) �→ dim f∗W ∩
Ty(x)P is upper semicontinuous, and so

dim f∗ (W∞) ∩ Ty(x)P > p (x) ,

or equivalently, W∞ ∈ W . Hence,

max
σ⊂W∞

K f (σ ) ∈
{
max
σ⊂W

K f (σ ) : W ∈ W
}

.

Finally, a straightforward contradiction argument allows to conclude that

lim
j→+∞ max

σ⊂Wj
K f (σ ) = max

σ⊂W∞
K f (σ ) ,

and therefore

max
σ⊂W∞

K f (σ ) = min

{
max
σ⊂W

K f (σ ) : W ∈ W
}

.

Proof of Theorem 2 According to Theorem 10, the curvature decay in the statement is suffi-
cient to conclude that the Omori-Yau maximum principle for the Hessian holds on Mm . Thus
there exists in Mm an Omori-Yau Hessian sequence {xk}k∈N for the modified radial function
of f , whose algebraic codimension sequence {pk}k∈N satisfies

pk ≤ p < m − l ≤ dim f∗Txk M ∩ Tyk P,

that is, {pk}k∈N is strictly bounded from above by
{
dim f∗Txk M ∩ Tyk P

}
as required in

Theorem 12. Moreover, given a subspace W ⊂ Txk M with dimW > p + l, it is clear that
dim f∗W ∩ Tyk P > p ≥ pk . In other words,

{
W ⊂ Txk M : dimW > p + l

} ⊂ {W ⊂ Txk M : dim f∗W ∩ Tyk P > pk
}
,

and in particular
{
max
σ⊂W

K f (σ ) : dimW > p + l

}
⊂
{
max
σ⊂W

K f (σ ) : dim f∗W ∩ Tyk P > pk

}
.

Therefore,

min

{
max
σ⊂W

K f (σ ) : dimW > p + l

}
≥ min

{
max
σ⊂W

K f (σ ) : dim f∗W ∩ Tyk P > pk

}
,

and (1.5) follows immediately from (3.3). Similarly, (1.6) follows from (3.4). ��
Proof of Corollary 1 Follows immediately from (1.5) observing that inf Cb = √−b for
b ≤ 0. ��
Remark 5 If, in addition, KP ≥ c in Corollary 1, then (1.6) provides

sup
M

min

{
max
σ⊂W

KM (σ ) : dimW > p + l

}
≤ c − b

as a criterion of cylindrical unboundness. In particular, when Pn+p is either the Euclidean
space R

n+p or the hyperbolic space H
n+p and Mn is a complete Riemannian manifold

[(whose radial sectional curvatures satisfy (1.4)] in which at any point x ∈ Mn there exists
a subspace Vx of TxM with dimension d such that KM (σ ) ≤ 0 for every plane σ ⊂ Vx ,
we conclude that every isometric immersion f : Mn → Pn+p with codimension p < d is
unbounded (compare with Corollary 7).
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Proof of Corollary 3 Here p = 1 and l = 0, so that (1.6) in Theorem 2 yields

sup
M

min KM ≥ C2
b (R) + inf

BP [R] KP .

Since clearly sM ≥ min KM at each point, the corollary follows. ��
3.2 Proofs of Theorems 4 and 5

Proof of Theorem 4 Again consider the modified radial function g : Mm → R. Since
πP ( f (M)) ⊂ BP [R], we have that g∗ ≤ ψb (R). Let φ : Mm → [0,+∞) be given
by

φ (x) = exp

(∫ |z(x)|

0

ds

ς (s)

)
,

where | | stands for the distance function to the pole of Ql . Since f is proper andπP ( f (M)) ⊂
BP [R], then the function |z (x)| satisfies |z (x)| → +∞ as x → ∞. By hypothesis we have
that

∫ +∞
0 1/ς (s) ds = +∞ so that φ (x) → +∞ as x → ∞. We let x0 ∈ Mm with

πP ( f (x0)) �= o and set

gk (x) = g (x) − g (x0) + 1

φ (x)1/k
.

Thus gk (x0) > 0, and since g∗ ≤ ψb (R) < +∞ and φ (x) → +∞ as x → ∞, we have that
lim supx→∞ gk (x) ≤ 0. Hence gk attains a positive absolute maximum at a point xk ∈ Mm .
This procedure yields a sequence {xk}k∈N such that (passing to a subsequence if necessary)
g (xk) converges to g∗. First suppose that xk → ∞ as k → +∞. Since gk attains a maximum
at xk , we have gradMgk (xk) = 0 and HessMgk (xk) (X, X) ≤ 0 for every X ∈ Txk M . This
yields

gradMg (xk) = g (xk) − g (x0) + 1

kφ (xk)
gradMφ (xk) (3.8)

and

HessMg (xk) ≤ g (xk) − g (x0) + 1

kφ (xk)

(
HessMφ (xk) +

(
1

k
− 1

)
1

φ (xk)
dφ ⊗ dφ

)

≤ g (xk) − g (x0) + 1

kφ (xk)
HessMφ (xk) . (3.9)

Since φ (x) = ζ (z (x)), where ζ (z) = exp
(∫ |z|

0 ds/ς (s)
)
, z ∈ Ql , from (3.2) we have

that

HessMφ(x)(X, X) = HessQζ(z(x))(XQ, XQ) + 〈gradQζ(z(x)), αx (X, X)〉 (3.10)

for all vectors X ∈ TxM , where XQ = z∗X . Also observe that

gradQζ (z) = ζ (z)

ς (|z|)grad
Q |z| ,

and then

gradMφ (x) = φ (x)

ς (|z (x)|)
(
gradQ |z (x)|

)T
. (3.11)
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Thus, for every X ∈ TxM such that XQ = 0, it follows from (3.10) that

HessMφ (x) (X, X) = φ (x)

ς (|z (x)|) 〈grad
Q |z (x)| , αx (X, X)〉

≤ φ (x)

ς (|z (x)|) ‖αx (X, X)‖ .

Therefore, by (1.13) we obtain that

1

φ (x)
HessMφ (x) (X, X) ≤ ‖αx (X, X)‖

ς (|z (x)|) ≤ ‖X‖2 (3.12)

for every X ∈ TxM with XQ = 0. Given Wxk ⊂ Txk M with dimWxk > p + l, we have
that the subspace Vk = f −1∗

(
f∗Wxk ∩ Tyk P

)
has dim Vxk ≥ dimWxk − l > p and f∗ (Vk)

is orthogonal to Tzk Q. Then, XQ = 0 for every X ∈ Vxk , and from (3.9) and (3.12) we get
that

HessMg (xk) (X, X) ≤ g (xk) − g (x0) + 1

kφ (xk)
HessMφ (xk) (X, X)

≤ ψb (R) + 1

k
‖X‖2 ,

for every X ∈ Vxk . Moreover, using Theorem 11, we also have here that

HessMg (x) (X, X) ≥ ψ ′
b (r (y (x)))

(
Cb (r (y (x))) ‖X‖2 − ‖αx (X, X)‖) (3.13)

for every X ∈ Vxk , since XP = X . Therefore, we obtain that

ψb (R) + 1

k
‖X‖2 ≥ HessMg (xk) (X, X)

≥ ψ ′
b (rk)

(
Cb (rk) ‖X‖2 − ∥∥αxk (X, X)

∥∥)

for every xk and every X ∈ Vxk , where as usual rk = r (yk). Hence

∥∥αxk (X, X)
∥∥ ≥

(
Cb (rk) − ψb (R) + 1

kψ ′
b (rk)

)
‖X‖2

with

Cb (rk) − ψb (R) + 1

kψ ′
b (rk)

> 0

for k sufficiently large. Reasoning now as in the last part of the proof of Theorem 12, there
exists a plane σk ⊂ Vxk such that, by the Gauss equation

K f (σk) = Kα (σk) ≥
(
Cb (rk) − ψb (R) + 1

kψ ′
b (rk)

)2

,

and (1.5) and (1.6) follow by letting k → +∞ as in the last part of the proof of Theorem
12. To finish the proof of Theorem 4, we need to consider the case where the sequence
{xk}k∈N ⊂ Mm remains in a compact set. In that case, passing to a subsequence if necessary,
we may assume that xk → x∞ ∈ Mm and g attains its absolute maximum at x∞. Thus
HessMg (x∞) (X, X) ≤ 0 for all X ∈ Tx∞M . In particular, if follows from (3.13) that for
every X ∈ Vx∞

0 ≥ HessMg (x∞) (X, X) ≥ ψ ′
b (r∞)

(
Cb (r∞) ‖X‖2 − ∥∥αx∞ (X, X)

∥∥) .
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Therefore
∥∥αx∞ (X, X)

∥∥ ≥ Cb (r∞) ‖X‖2 .

By applying Lemma 1 to α|Vx∞×Vx∞ : Vx∞ × Vx∞ → N f M (x∞) and reasoning again as in
the last part of the proof of Theorem 12, we have that there exists a plane σ∞ ⊂ Vx∞ such
that, by the Gauss equation,

K f (σ∞) = Kα (σ∞) ≥ C2
b (r∞) ,

and (1.5) follows. Again (1.6) follows as in the last part of the proof of Theorem 12. ��
Proof of Theorem 5 We proceed as in the proof of Theorem 4 to obtain a sequence {xk}k∈N
such that g (xk) converges to g∗ and satisfying

gradMg (xk) = g (xk) − g (x0) + 1

kφ (xk)
gradMφ (xk) (3.14)

and

HessMg (xk) ≤ g (xk) − g (x0) + 1

kφ (xk)
HessMφ (xk) . (3.15)

Recall that [(see (3.11)]

gradMφ (x) = φ (x)

ς (|z (x)|)
(
gradQ |z (x)|

)T
. (3.16)

Let us first consider the case where xk → ∞ as k → +∞. From (3.14) and (3.16) we know
that

∥∥∥gradMg (xk)
∥∥∥ ≤ g∗ + 1

k

1

ς (|zk |) ≤ ψb (R) + 1

k

1

ς (|zk |) .

Since f is proper and πP ( f (M)) ⊂ BP (R), then |zk | → +∞ as k → +∞. Therefore,
taking into account that lim supt→+∞ 1/ς (t) < +∞, we obtain from here that

lim
k→+∞

∥∥∥gradMg (xk)
∥∥∥ = 0. (3.17)

Observe that

gradNh ( f (x)) = ψ ′
b (r (y)) gradPr (y) = gradMg (x) +

(
gradNh ( f (x))

)⊥
,

where y = y (x). Therefore,

ψ ′
b (rk)

2 =
∥∥∥gradMg (xk)

∥∥∥
2 +

∥∥∥∥
(
gradNh ( f (xk))

)⊥∥∥∥∥
2

, (3.18)

and making k → +∞ here we obtain that

lim
k→+∞

∥∥∥∥
(
gradNh ( f (xk))

)⊥∥∥∥∥ = ψ ′
b

(
r∗) > 0,

which implies that
(
gradNh ( f (xk))

)⊥ �= 0
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for k sufficiently large. As in the proof of Theorem 4, since n−l > 1, givenWxk ⊂ Txk M with
dimWxk > l + 1, we have that Vk = f −1∗

(
f∗Wxk ∩ Tyk P

)
has dim Vxk ≥ dimWxk − l > 1

and f∗ (Vk) is orthogonal to Tzk Q. Then, using Theorem 11, we also have that

HessMg (xk) (X, X) ≥ ψ ′
b (rk)

(
Cb (rk) ‖X‖2 − ∥∥αxk (X, X)

∥∥) (3.19)

for every X ∈ Vxk , since y∗X = X . On the other hand, we also know from (3.15) that

HessMg (xk) (X, X) ≤ ψb (R) + 1

k

HessMφ (xk) (X, X)

φ (xk)

= ψb (R) + 1

k

1

ς (|zk |) 〈grad
Q |zk | , αxk (X, X)〉

(3.20)

for every X ∈ Txk M . Since we are in codimension one and
(
gradNh ( f (xk))

)⊥ �= 0 (for k
large enough), then

αxk (X, X) = λk (X, X)
(
gradNh ( f (xk))

)⊥
(3.21)

for a real function λk . Now observe that

〈gradQ |zk | , αxk (X, X)〉 = λk (X, X)

〈
gradQ |zk | ,

(
gradNh ( f (xk))

)⊥〉

= λk (X, X) 〈gradQ |zk | , gradMg (xk)〉
because of 〈gradQ |zk | , gradPr (yk)〉 = 0. Therefore,

〈gradQ |zk | , αxk (X, X)〉 ≤ |λk (X, X)|
∥∥∥gradMg (xk)

∥∥∥

≤ |λk (X, X)| ψb (R) + 1

k

1

ς (|zk |) .

On the other hand, from our hypothesis (1.14) we know that

‖αx (X, X)‖ ≤ ς2 (|z (x)|) ‖X‖2 ,

and from (3.18) and (3.21) we have that

∥∥αxk (X, X)
∥∥ = |λk (X, X)|

√
ψ ′
b (rk)2 − ∥∥gradMg (xk)

∥∥2 ≤ ς2 (|zk |) ‖X‖2 .

That is,

|λk (X, X)|
ς (zk)

≤ ς (zk) ‖X‖2
√

ψ ′
b (rk)2 − ∥∥gradMg (xk)

∥∥2
.

It follows from here that

〈gradQ |zk | , αxk (X, X)〉 ≤ ψb (R) + 1

k

ς (zk) ‖X‖2
√

ψ ′
b (rk)2 − ∥∥gradMg (xk)

∥∥2

for every X ∈ Txk M , so that by (3.20) we get

HessMg (xk) (X, X) ≤
(

ψb (R) + 1

k

)2 ‖X‖2
√

ψ ′
b (rk)2 − ∥∥gradMg (xk)

∥∥2
. (3.22)
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Therefore, from (3.19) and (3.22) we have that

ψ ′
b (rk)

(
Cb (rk) ‖X‖2 − ∥∥αxk (X, X)

∥∥) ≤
(

ψb (R) + 1

k

)2 ‖X‖2
√

ψ ′
b (rk)2 − ∥∥gradMg (xk)

∥∥2

for every X ∈ Vxk . Hence

∥∥αxk (X, X)
∥∥ ≥

⎛

⎝Cb (rk) − (ψb (R) + 1)2

k2ψ ′
b (rk)

√
ψ ′
b (rk)2 − ∥∥gradMg (xk)

∥∥2

⎞

⎠ ‖X‖2 ,

with

lim
k→+∞

⎛

⎝Cb (rk) − (ψb (R) + 1)2

k2ψ ′
b (rk)

√
ψ ′
b (rk)2 − ∥∥gradMg (xk)

∥∥2

⎞

⎠ = Cb
(
r∗) ≥ Cb (R) > 0.

Reasoning now as in the last part of the proof of Theorem 12, there exists a plane σk ⊂ Vxk
such that, by the Gauss equation,

K f (σk) ≥
⎛

⎝Cb (rk) − (ψb (R) + 1)2

k2ψ ′
b (rk)

√
ψ ′
b (rk)2 − ∥∥gradMg (xk)

∥∥2

⎞

⎠
2

,

and (1.5) and (1.6) follow by letting k → +∞ as in the last part of the proof of Theorem
12. Finally, in the case where the sequence {xk}k∈N ⊂ Mn remains in a compact subset of
Mn , and passing to a subsequence if necessary, we may assume that xk → x∞ ∈ Mn and
g attains its absolute maximum at x∞. Thus, HessMg (x∞) (X, X) ≤ 0 for all X ∈ Tx∞M .
Therefore, it follows again from Theorem 11 that for every X ∈ Vx∞ ,

0 ≥ HessMg (x∞) (X, X) ≥ ψ ′
b (r∞)

(
Cb (r∞) ‖X‖2 − ∥∥αx∞ (X, X)

∥∥) .

The proof now finishes as in Theorem 4. ��

4 Notes

The idea of the proof that any compact surface in R
3 must have a point of positive Gauss

curvature was first taken up by Tompkins [20], who showed that there is no isometric immer-
sion f : Mn → R

2n−1 if Mn is compact and flat. This result inspired the seminal paper
of Chern-Kuiper [4], where Lemma 1 was proved for dimensions n = 2, 3 and conjectured
to be true for any dimension. This conjecture was proved by Otsuki [13] for λ = 0 who,
consequently, obtained Theorem 6 for all dimensions.

The Chern and Kuiper result gave rise to a long series of works, among others, by O’Neill
[12], Stiel [19], Moore [9], Jorge-Koutroufiotis [6], Pigola-Rigoli-Setti [14] and, finally, by
Alías-Bessa-Montenegro [3] who obtained Theorem 1 on cylindrically bounded submani-
folds.

The maximum principles used throughout this paper, as well as their related results,
namely, Theorems 8, 9 and 10, are due to Pigola-Rigoli-Setti [14]. On the other hand, it
was shown in [1] that conditions (b) and (c) in Theorem 8 can be replaced by the following
equivalent although apparently stronger requirements:

(b)
∥∥gradMγ

∥∥ ≤ c for a constant c > 0 outside a compact subset of Mn ,
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(c) HessMγ ≤ d〈 , 〉 for a constant d > 0 outside a compact subset of Mn .

A similar observation holds for the Omori-Yau maximum principle.
Regarding complete hypersurfaces of nonpositive Ricci curvature, Leung [8] pioneered

their study by proving Theorem 3 in the case b = 0 and conjecturing that the assumption
on the sectional curvature could be dropped. This, however, turns out not to be true, as
shown by Nadirashvili’s [10] celebrated counterexample to both Hadamard’s and Calabi-
Yau’s conjectures on negatively curved and minimal surfaces. After Leung’s work, Smith
[17] gave an answer for the case b < 0 but with a non-sharp estimate (for having made the
Hessian comparison to R

n+1 instead ofHn+1
b ), and finally Veeravalli [21] obtained Theorem

3.
It is a natural question to ask whether Theorem 2 is still true in the limiting case, that

is, when R = injP (o) = π

2
√
b
, where π

2
√
b
is replaced by +∞ if b ≤ 0. This motivates the

following conjecture.

Conjecture 1 Let f : Mm → Nn+l = Pn×Ql be an isometric immersionwith codimension
p = n+l−m < m−l of a complete Riemannianmanifold. Assume that R = injP (o) = π

2
√
b
,

where π

2
√
b
is replaced by +∞ if b ≤ 0. If K rad

P ≤ b in BP [R], then

sup
M

min

{
max
σ⊂W

K f (σ ) : dimW > p + l

}
≥ max {−b, 0} . (4.1)

Moreover,

sup
M

min

{
max
σ⊂W

KM (σ ) : dimW > p + l

}
≥ max {−b, 0} + inf

BP [R] KP . (4.2)

It is not clear the extent to which the above conjecture is true, but an affirmative answer
at least in the most classic cases, such as Pn = R

n and l = 0, would have deep implications
in the field of submanifolds with nonpositive extrinsic curvature. Indeed, Conjecture 1 in
this case implies when p = m − 1 that a complete Riemannian manifold Mm with sectional
curvature K ≤ −c < 0 cannot be immersed isometrically in R

2m−1, a kind of Efimov’s
theorem in n dimensions. In particular, this would give us the m-dimensional version of the
classical theorem of Hilbert that the hyperbolic plane cannot be realized isometrically in R

3.
There is yet another attempt to extend Efimov’s theorem to higher dimensions in a different

direction proposed independently by Reilly [15] and Yau [22,23] (see also [24] and Gromov
[5]):

“There are no complete hypersurfaces in R
n+1 with Ricci curvature ≤ −c” and proved to

be very true for n = 3 and essentially true for n > 3 by Smyth-Xavier [18]. Their main result
seems to be inaccessible to techniques using theOmori-Yaumaximumprinciple, and its proof
relies on a purely geometric result on the principal curvatures of complete submanifolds of
Euclidean space. Still in the case Pn = R

n and l = 0, Conjecture 1 for p = 1 would not
only settle the above question at all, but also, in the same spirit of Corollary 3, weaken the
assumption that Ric ≤ −c to s ≤ −c.
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